HOMEWORK 25
 CALCULUS III
 DUE 04-30

Show your work!

(1) Re-work Example 15.6 .5 on p. 1119, using cylindrical coördinates

$$
\vec{r}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), 4-r^{2}\right\rangle .
$$

(Don't confuse the vector \vec{r} with the parameter r !)
(2) Compute $\iint_{S} \vec{F} \cdot \vec{N} \mathrm{~d} S$, where

- $\vec{F}(x, y, z)=\left\langle y^{2}, x z, e^{x y}\right\rangle$,
- S is the part of the cylinder of radius 2 centred on the z-axis between $z=1$ and $z=3$, and
- \vec{N} is the outward-pointing normal vector.
- Eleven book problems: \#15.5.1-6, 22, 23 and \#15.6.27, 30, 31. For \#15.6.31, do not use Gauss's law; instead, compute the answer directly.

