HOMEWORK 20
 CALCULUS III
 DUE 04-09

Show your work!

(1) Show that the area of a 'polar block' given by $a \leq r \leq a+\mathrm{d} r, b \leq \theta \leq b+\mathrm{d} \theta$ is, to first order, $a \mathrm{~d} r \mathrm{~d} \theta$. (Hint: Compute the area exactly, then discard 'second-order' terms involving more than one term of the form $\mathrm{d} r$ or $\mathrm{d} \theta$.)

This is one explanation for why $\mathrm{d} A=r \mathrm{~d} r \mathrm{~d} \theta$.
(2) Remember that $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Compute

$$
\operatorname{det}\left(\begin{array}{ll}
\partial x / \partial r & \partial x / \partial \theta \\
\partial y / \partial r & \partial y / \partial \theta
\end{array}\right)
$$

The matrix above is called the Jacobian for the change of variables from polar to rectangular coördinates. This is another explanation for why $\mathrm{d} A=r \mathrm{~d} r \mathrm{~d} \theta$.

- Nine book problems: \#14.2.63, 65 (2 problems); \#14.3.12, 27, 29, 36 (4 problems); \#14.6.27, 31, 71 (3 problems).
- Read $\S 11.7$ for Tuesday's class.

