HOMEWORK 12 CALCULUS III
 DUE 02-28

(1) Consider the function

$$
f(x, y)=\frac{x}{x^{2}+y^{2}}
$$

(a) The equation of the level curve at height $z=c$ can be re-written as the equation of a circle. In terms of c, what are its centre and radius?
(b) According to your work in (a), the point $(0,0)$ lies on all level curves; but, in class, we said that a point could only lie on one level curve. Explain this apparent contradiction.
(2) Consider the function

$$
f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}
$$

(a) Show that, as (x, y) approaches $(0,0)$ along any line through the origin, $f(x, y)$ approaches 0 . (Hint: What is the equation of a line through the origin? You will need to consider two different cases.)
(b) Find a path through the origin such that, as (x, y) approaches $(0,0$ along that path, $f(x, y)$ does not approach 0. (Hint: Try a parabola!)

- Eleven book problems: \#13.1.37, 45-48, 53, 83, 86 (8 problems); \#13.2.25, 28, 35 (3 problems).

