HOMEWORK 2
 CALCULUS III
 DUE 2013-01-22

Show your work!

(1) Recall the problem from class: A camera that weighs 120 lb is supported 4 ft off the ground by a tripod whose feet are equally spaced around a circle of radius 1 ft . We saw that each leg supports a weight of $10 \sqrt{17} \approx 41.23 \mathrm{lb}$.
(a) How long are the legs of the tripod?
(b) If the camera is at $(0,0,0)$ and one of the feet of the tripod is at $(0,1,-4)$, then where are the other two feet of the tripod?
(c) Suppose that the legs slip (without changing length) so that the feet of the tripod are equally spaced around a circle of radius 2 ft . How high is the camera off the ground?
(d) In the situation of (c), how much weight does each leg support?
(2) Suppose that the 2-dimensional vector \vec{u} has length ℓ and makes angle α with the positive x-axis, and that the 2-dimensional vector \vec{v} has length m and makes angle β with the positive x-axis.
(a) In terms of ℓ, m, α, and β, what are the component forms of \vec{u} and \vec{v} ?
(b) In terms of α and β, what is the angle θ between \vec{u} and \vec{v} ?
(c) By using your answers to (a) and (b), and a trigonometric identity, show that

$$
\vec{u} \cdot \vec{v}=\ell m \cos (\theta) .
$$

(Do not just cite the identity from class!)

- 10 book problems: \#11.2.3, 30, 76, 77, 95; \#11.3.7, 9, 18, 27, 36

