HOMEWORK 20
 DISCRETE MATHEMATICS II DUE 04-15 (NOT 04-17)

(1) Suppose that you pick some simple path in a graph G that is not a cycle.
(a) Show that, if every vertex of G is even, then it is possible to extend the path to a longer one that is still simple. (Hint: First draw a picture to see what this means. Be sure not to use Euler's theorem (Theorem 10.5.1), since this problem is part of the proof of that theorem!)
(b) Give an example to show that (a) can fail if G has one or more vertices of odd degree.
(2) Suppose that you pick some path in a graph G that does not include all edges of G, and delete from G all edges occurring in that path.
(a) Show that, if the original graph G was connected, then there is some vertex that is part of the path and that is still incident with one or more (undeleted) edges.
(b) Give an example to show that (a) can fail if G is not connected.

- Four book problems: \#10.5.1, 14, 18, 26. The graphs C_{n}, W_{n}, and Q_{n} referenced in \#10.5.26 are defined in Examples 10.2.6-8 on p. 655.

