HOMEWORK 13
 DISCRETE MATHEMATICS II
 DUE 03-18; UPDATED 03-05

In class, I erroneously stated that $\varphi=\frac{\sqrt{5}-1}{2}$ and $\bar{\varphi}=-\left(\frac{\sqrt{5}+1}{2}\right)$. The
correct values are the ones in $\# 1$. Please be sure to use them.
(1) Consider the polynomial $x^{2}-x-1$. Call its positive root φ and its negative root $-\bar{\varphi}$.
(a) Explain informally why $x^{2}-x-1=(x-\varphi)(x+\bar{\varphi})$.
(b) Without using the quadratic formula or any numeric approximation, show that

$$
\varphi \cdot \bar{\varphi}=1 \quad \text { and } \quad \varphi+\bar{\varphi}=1 \quad \varphi=1+\bar{\varphi}
$$

(Hint: Use (a). These properties are why we call φ the golden ratio.)
(c) Without using the quadratic formula or any numeric approximation, show that $1 / \varphi=\varphi / \bar{\varphi}$. (This property is why we call φ the golden ratio. Hint: Use (a, b).)
(2) Use the values of φ and $\bar{\varphi}$ from \#1 (not the wrong values from class).
(a) Show that $1-x-x^{2}=(1+\bar{\varphi} x)(1-\varphi x)$. (Hint: Use \#1.)
(b) Find constants A and B so that

$$
\frac{x}{1-x-x^{2}}=\frac{A}{1+\bar{\varphi} x}+\frac{B}{1-\varphi x} .
$$

(Hint: If necessary, review the technique of partial fractions from Calculus II. It may also help to use \#1(b).)

- Three book problems: $\# 8.4 .16,27,35$. For $\# 8.4 .16$, you must use the techniques from class to get a numeric answer. For \#8.4.35, just give the generating function for the sequence.

