HOMEWORK 11

DISCRETE MATHEMATICS II

 DUE 03-04(1) (a) Describe how to solve the Towers of Hanoi problem for 3 discs.
(b) Describe how to solve the Towers of Hanoi problem for 4 discs.
(2) Consider the following XKCD comic:

My Hobbr:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

(http://xkcd.com/287). Let p_{n} be the price of the nth menu item, in cents. Thus, for example, $p_{1}=215$ and $p_{2}=275$. Let $a(n, p)$ be the number of ways of ordering from the first n items on the menu so that the total price is exactly p cents.
(a) We make the following slightly unusual choice of initial conditions:

- $a(0,0)=1$,
- $a(0, p)=0$ for all $p \neq 0$, and
- $a(n, p)=0$ for all $p<0$.

Explain why these are sensible.
(b) Fill out a table of the non- 0 values of $a(1, p)$ and $a(2, p)$ with $p \leq 1505$. Explain. Note that you may order more than one of each item.
(c) Write down a recurrence for $a(n, p)$ in terms of $a(n-1, q)$, where p and q do not have to be the same. (Hint: Your formula will be a sum of terms, depending on how many of the nth item you order. It will involve the price p_{n}.)
(3) Show that the generating function of the finite sequence $(1,1, \ldots, 1)$ is $\frac{x^{m}-1}{x-1}$ for some m. How is m related to the number of terms in the sequence?

- Two book problems: \#8.1.38, \#8.4.30.

