HOMEWORK 10 DISCRETE MATHEMATICS II DUE 02-27

(1) In class, we considered the number of ways of bracketing a product of n symbols. We count a single symbol like x as already bracketed, but insist that a pair of symbols appear with a bracket around them, like $(x y)$. We wrote a_{n} for the number of possible bracketings, and discovered the recurrence

$$
\begin{equation*}
a_{n}=\sum_{i=1}^{n-1} a_{i} a_{n-i}, \quad a_{1}=1 . \tag{*}
\end{equation*}
$$

(a) Explain why only one initial condition is needed, even though the sum in $(*)$ involves $n-1$ terms.
(b) Use this recurrence to compute a_{2}, a_{3}, a_{4}, and a_{5}. Write out your work, and be sure that it actually uses (*).
(c) List all possible bracketings of $x_{1} x_{2} x_{3} x_{4} x_{5}$. How do you know that you have them all?
(2) In Example 8.1.5 in the text, the author finds a recurrence for the number of ways of bracketing a product of $n+1$ symbols. He writes C_{n} for the number of such bracketings. (Note that the subscript is n, but the number of symbols is $n+1$.) Explain how to use $\# 1(*)$ to produce a recurrence relation for C_{n}. (You must use $\# 1(*)$; it is not enough just to copy the recurrence from the text.)
(3) Let a_{n} be the number of paths from $(0,0)$ to (n, n) that never go above the line $y=x$, where a path is a series of steps, each of which is a move one unit to the right or one unit upwards. (Compare to \#6.4.33.)
(a) Find a recurrence relation for a_{n}. (Hint: Suppose that the first point where you hit the line $y=x(\operatorname{after}(0,0))$ is (i, i).)
(b) What is the initial condition?
(c) What can you say about the numbers a_{n} using only the answers to (a) and (b), without trying to solve the recurrence?

- Three book problems: \#8.1.13, 24, 26. For \#8.1.24, as in \#8.1.7, it may help to look at Example 8.1.4.

