HOMEWORK 22

DISCRETE MATHEMATICS I

DUE 04-30 (NOT 05-02)
(1) For each of the following statements, prove it or give a counterexample. These are not consequences of Theorem 3.8.
(a) If $n \equiv 1(\bmod 2)$, then $n^{2} \equiv 1(\bmod 4)$.
(b) If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1(\bmod 6)$.
(c) If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1(\bmod 9)$.
(2) (a) Prove that the 3-digit number $a b c$ is congruent to $a-b+c$ modulo 11 .
(b) Prove that the 3-digit number $a b c$ is divisible by 11 if and only if $a-b+c$ is divisible by 11. (Hint: Don't work too hard; once you've got (a), this is a 'one-liner'.)
(3) Let a and n be integers such that $\operatorname{gcd}(a, n)=1$. Suppose that x and y are inverses of a modulo n.
(a) Prove that $a(x-y) \equiv 0(\bmod n)$.
(b) Prove that $x-y \equiv 0(\bmod n)$. (Hint: Be careful about cancellation (see \#3.3.62). What allows you to get rid of the a ?)
(c) Prove that $x \equiv y(\bmod n)$. (Hint: Once you've got (b), this is a one-liner.)

- Five book problems: $\# 3.3 .18,22,30,31,62$

