HOMEWORK 21 DISCRETE MATHEMATICS I
 DUE 04-30

(1) The definition of congruence on p .85 of the notes assumes that the modulus is a positive integer, but it doesn't have to do so. Namely, we can make the following definition:

For any integer n, two integers a and b are said to be congruent modulo n if and only if $n \mid(b-a)$. We denote this by $a \equiv b(\bmod n)$.
(a) Let a be an integer. Describe $\{b \in \mathbb{Z} \mid a \equiv b(\bmod 1)\}$.
(b) Let a be an integer. Describe $\{b \in \mathbb{Z} \mid a \equiv b(\bmod 0)\}$.
(2) For each of the following statements, prove it or give a counterexample.
(a) If $a b \equiv 0(\bmod 2)$, then $a \equiv 0(\bmod 2)$ or $b \equiv 0(\bmod 2)$.
(b) If $a b \equiv 0(\bmod 3)$, then $a \equiv 0(\bmod 3)$ or $b \equiv 0(\bmod 3)$.
(c) If $a b \equiv 0(\bmod 4)$, then $a \equiv 0(\bmod 4)$ or $b \equiv 0(\bmod 4)$.

- Six book problems: \#3.3.13, 14, 15, 58, 60, 61.

