HOMEWORK 21 DISCRETE MATHEMATICS I DUE 04-30

- (1) The definition of congruence on p. 85 of the notes assumes that the modulus is a positive integer, but it doesn't have to do so. Namely, we can make the following definition:
 For any integer n, two integers a and b are said to be congruent modulo n if and only if n | (b a). We denote this by a ≡ b (mod n).
 - (a) Let a be an integer. Describe $\{b \in \mathbb{Z} \mid a \equiv b \pmod{1}\}$.
 - (b) Let a be an integer. Describe $\{b \in \mathbb{Z} \mid a \equiv b \pmod{0}\}$.
- (2) For each of the following statements, prove it or give a counterexample.
 - (a) If $ab \equiv 0 \pmod{2}$, then $a \equiv 0 \pmod{2}$ or $b \equiv 0 \pmod{2}$.
 - (b) If $ab \equiv 0 \pmod{3}$, then $a \equiv 0 \pmod{3}$ or $b \equiv 0 \pmod{3}$.
 - (c) If $ab \equiv 0 \pmod{4}$, then $a \equiv 0 \pmod{4}$ or $b \equiv 0 \pmod{4}$.
 - Six book problems: #3.3.13, 14, 15, 58, 60, 61.