HOMEWORK 20

DISCRETE MATHEMATICS I

DUE 04-16 (NOT 04-18)
(1) Suppose that using the Euclidean algorithm on the numbers a and b gives a table that looks like:

Q	R	S	T
	a	1	0
	b	0	1
\vdots	\vdots	\vdots	\vdots
q_{n-2}	r_{n-2}	s_{n-2}	t_{n-2}
q_{n-1}	r_{n-1}	s_{n-1}	t_{n-1}
q_{n}	r_{n}	s_{n}	t_{n}

(a) Write formulæ for r_{n}, s_{n}, and t_{n} in terms of r_{n-2} and r_{n-1}, s_{n-2} and s_{n-1}, t_{n-2} and t_{n-1}, and q_{n}.
(b) Suppose that you already know that

$$
r_{n-2}=a s_{n-2}+b t_{n-2}
$$

and

$$
r_{n-1}=a s_{n-1}+b t_{n-1}
$$

Prove that

$$
r_{n}=a s_{n}+b t_{n} .
$$

- Eight book problems: \#3.1.21, 40, 42; \#3.2.5, 15, 24, 26, 27.

