HOMEWORK 11

DISCRETE MATHEMATICS I
 LAST UPDATED 03-05
 DUE 03-05

You may need the following fact about integers: "All integers are even or odd." This can be proven, but, for now, you should just assume it.
(1) Prove that an integer that is not even is odd.
(1) Prove that any integer whose square is even is itself even.
(2) Use the following axioms of the integers:

AA: For all integers a, b, and c, we have that $(a+b)+c=a+(b+c)$.
AC: For all integers a and b, we have that $a b=b a a+b=b+a$.
MI: There is an integer 1 so that, for all integers a, we have that $a \cdot 1=a$ and $1 \cdot a=a$.
D: For all integers a, b, and c, we have that $a b+a c=a(b+c)$.
(a) Axiom MI gives a definition of the integer 1. Give a definition of the integer 2. (Don't overthink it!)
(b) Use only the axioms (not just 'by algebra') to prove that, for all integers a and b, we have that

$$
(2 a+1)+(2 b+1)=2[(a+b)+1] .
$$

(Hint: Your proof can be just a string of equalities, but each step must be justified. Don't be tempted to skip steps! For me, this took nine steps.)
(3) (a) Give a definition of the absolute value $|x|$ of a real number x.
(b) Explain why a statement involving the absolute value will probably need to be proved by cases.
(c) Book problem \#1.5.14 \#1.5.12.

- Five book problems: \#1.5.3, 5, 9, 11, 34 .

