HOMEWORK 12
 APPLIED CALCULUS
 DUE 2013-10-08

Show your work!

(1) Consider the function $f(x)=\ln \left(x^{2}+1\right)$.
(a) Compute the first derivative $f^{\prime}(x)$, and make a sign diagram for it.
(b) Compute the second derivative $f^{\prime \prime}(x)$, and make a sign diagram for it.
(c) Use your sign diagrams from (a) and (b), and the fact that the only x-intercept of $y=f(x)$ is at $x=0$, to sketch a picture of the graph of $y=f(x)$.
(2) Consider the function $g(x)=\frac{x^{2}}{x+1}$.
(a) Compute the first derivative $g^{\prime}(x)$, and make a sign diagram for it.
(b) Compute the second derivative $g^{\prime \prime}(x)$, and make a sign diagram for it.
(c) Use your sign diagrams from (a) and (b), and the facts that the only x-intercept of $y=g(x)$ is at $x=0$ and the only vertical asymptote is at $x=-1$, to sketch a picture of the graph of $g(x)$.
(3) (a) What is the critical number of $y=(x+1)^{4}$?
(b) Explain why the second-derivative test cannot be used to identify whether the answer to (a) is a local maximum or minimum.
(c) Use the first-derivative test to identify whether the answer to (a) is a local maximum or minimum.
(d) What changes if you solve the whole problem again, this time with $y=(x+1)^{5}$?

- Eight book problems: \#12.2.38, 40, 42, 47, 49; \#12.3.2, 5, 6.

