If it takes a pigeon only 75% as much energy to fly over land as over water, what path will it take when flying from a point 1 mi from shore to its nest which is 2 mi down the shoreline?

Pigeon wants to minimise energy
Best approach: fly straight to a point on the shore, then fly straight along the shoreline

By Pythagorean theorem, distance flown over water is $\sqrt{1+x^{2}}$
Distance flown on land is $2-x$
x is horizontal distance flown before reaching shoreline (in miles)

Total energy spent is

$$
E_{\text {tot }}=E_{\text {water }}+E_{\text {land }}=k_{\text {water }} \cdot \sqrt{1+x^{2}}+k_{\text {land }} \cdot(2-x)
$$

Given $k_{\text {land }}=0.75 \cdot k_{\text {water }}$

Only one independent variable x; nothing to do!
$x=0$: fly straight to shore
$x<0$: start flying away from nest
$x=2$: fly straight to nest
$x>2$: fly past nest
Domain is [0,2]

$$
\begin{aligned}
E_{\text {tot }} & =k_{\text {water }} \cdot \sqrt{1+x^{2}}+k_{\text {land }} \cdot(2-x) \\
\frac{\mathrm{d}}{\mathrm{dx}} E_{\text {tot }} & =k_{\text {water }} \cdot \frac{x}{\sqrt{1+x^{2}}}-k_{\text {land }}
\end{aligned}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x} E_{\mathrm{tot}}=k_{\mathrm{water}} \cdot \frac{x}{\sqrt{1+x^{2}}}-k_{\mathrm{land}}
$$

Denominator is never 0 ; always defined

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} E_{\text {tot }}=k_{\text {water }} \cdot \frac{x}{\sqrt{1+x^{2}}}-k_{\text {land }} \\
& k_{\text {water }} \cdot \frac{x}{\sqrt{1+x^{2}}}=k_{\text {land }} \\
& k_{\text {water }} \cdot x=k_{\text {land }} \cdot \sqrt{1+x^{2}} \\
& k_{\text {water }}^{2} \cdot x^{2}=k_{\text {land }}^{2}\left(1+x^{2}\right) \\
&\left(k_{\text {water }}^{2}-k_{\text {land }}^{2}\right) x^{2}=k_{\text {land }}^{2} \\
& x= \pm \sqrt{\frac{k_{\text {land }}^{2}}{k_{\text {water }}^{2}-k_{\text {land }}^{2}}}
\end{aligned}
$$

$$
x= \pm \sqrt{\frac{k_{\text {land }}^{2}}{k_{\text {water }}^{2}-k_{\text {land }}^{2}}}
$$

Negative numbers are not in domain
Use $k_{\text {land }}=0.75 \cdot k_{\text {water }}$, and cancel $k_{\text {water }}^{2}$ in numerator and denominator of expression for x :

$$
x=\sqrt{\frac{0.75^{2} \cdot k_{\text {water }}^{2}}{\left(1-0.75^{2}\right) k_{\text {water }}^{2}}} \approx \sqrt{1.286} \approx 1.134
$$

Use $k_{\text {land }}=0.75 \cdot k_{\text {water }}$:

x	$E_{\text {tot }}$
0	$3.5 \cdot k_{\text {water }}$
1.134	$2.161 \cdot k_{\text {water }}$
2	$2.236 \cdot k_{\text {water }}$

Best path is to fly straight to a point 1.134 mi along the shoreline, then fly the rest of the way along the shoreline

