WEEKLY 7
 APPLIED CALCULUS
 DUE 10-10

Show your work! There are 5 total questions; be sure to check p. 2!
(1) Suppose that S measures the weekly sales of a certain product. What do the following sentences tell you about the signs of S^{\prime} and $S^{\prime \prime}$?
(a) Sales are decreasing more slowly.
(b) Sales are increasing at a constant rate.
(c) Sales are steady.
(d) Sales have hit bottom, and are about to start increasing.
(2) Consider functions of the form $y=x e^{-b x}$, where b is a constant.
(a) In terms of b, what is the inflection point of y ?
(b) If y has an inflection point at $x=4$, where is its critical point? Is that critical point a local maximum, local minimum, or neither?
(3) Consider the function $f(x)$ whose derivative is graphed below.

This is not the graph of $y=f(x)$.
(a) Where is $f(x)$ increasing? Where is it decreasing? (Hint: You already answered this on Weekly \#6.4(b).)
(b) Where is $f(x)$ concave up? Where is it concave down? Justify your answer.
(c) Use the information in (a) and (b) to sketch a possible graph of $f(x)$.
(4) The figure below

shows the graphs of a function $f(x)$, its derivative $f^{\prime}(x)$, and its second derivative $f^{\prime \prime}(x)$ on the same set of axes. Which graph is which? Justify your answer.

- One book problem: \#12.2.61. Use the quadratic formula!

