WEEKLY 6
 APPLIED CALCULUS
 DUE 10-01

Show your work! There are 6 total questions; be sure to check p. 2 !
(1) Pictured below are the graphs of two functions $u=f(x)$ and $v=g(x)$.

(These are the same graphs as on Weekly \#4, handout problem 1.) Find the value and derivative of $y=f(g(x))$ at the indicated points, if they exist.
(a) $y(10)$ and $y^{\prime}(10)$.
(b) $y(40)$ and $y^{\prime}(40)$.
(c) $y(70)$ and $y^{\prime}(70)$.
(2) (a) The product rule for two functions states that

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime} .
$$

Use this rule multiple times to come up with a product rule for three functions. That is, give a formula for $(u v w)^{\prime}$.
(b) Use your rule from (a) to compute $\frac{\mathrm{d} y}{\mathrm{~d} x}$, where $y=\left(8^{x^{2}}\right) \cdot[\ln (x)]^{2} \cdot\left(e^{\sqrt{x}}\right)$.
(3) The total revenue R obtained by selling x units at a price of p dollars each is $R=x p$. Suppose that $p=e^{-x}$.
(a) Compute the marginal revenue formula $\frac{\mathrm{d} R}{\mathrm{~d} x}$.
(b) Use the chain rule to write down a relationship between $\frac{\mathrm{d} R}{\mathrm{~d} x}$ and $\frac{\mathrm{d} R}{\mathrm{~d} p}$.
(c) Use your answers to (a) and (b) to find $\frac{\mathrm{d} R}{\mathrm{~d} p}$.
(4) (a) For the function $y=f(x)$ graphed below,

where is $f(x)$ increasing? Where is it decreasing? Where are its local extrema, if any? Are they maxima or minima?
(b) Answer the same question for the function $y=f(x)$ whose derivative is graphed below.

This is not the graph of $y=f(x)$; it is also not the same function as in (a).

- Two book problem: \#11.6.40; \#11.7.65.

