DAILY 1
 APPLIED CALCULUS

DUE 2012-08-22

Show your work!

All problems are from "Preparation for Applied Calculus, and Applied Calculus extras". Make sure you do all 12 problems.
\#18 (p. 21) Simplify $\frac{(m+1)^{2} /\left(m^{2}+3 m+2\right)}{\left(m^{2}-m-2\right) /\left(m^{2}+5 m+6\right)}$ to factored form.
\#11 (p. 50) For the equation $x=\frac{8}{x}+\frac{x}{2}$, (a) write the value(s) of x where the denominators equal 0 , and (b) keeping these restrictions in mind, find the solution(s). Check your answer(s) by plugging into the original equation.
$\S 3.2$ (p. 87) Graph each of the following piecewise-defined functions. Be careful to distinguish omitted values (with an open circle) from included endpoints (with a closed circle).
\#8. $f(x)= \begin{cases}2-x^{2} & \text { if } x \leq-1 \\ 3+3 x & \text { if } x>-1\end{cases}$
\#9. $f(x)= \begin{cases}-2 & \text { if } x<4 \\ -2-x & \text { if } 4 \leq x \leq 12 \\ 10 & \text { if } x>12 .\end{cases}$
§3.3 (pp. 94-95)
$\# 13$. In 2004, the price of a car was $\$ 36,000$. In 2009, its trade-in value was $\$ 7,200$. Write a linear function that models the price depreciation p of the car at time t years after 2004.
\#14. A company has observed that, when $\$ 5,000$ is spent advertising a new item, 900 units of it are sold monthly; but, when $\$ 50,000$ is spent, 990 units are sold monthly. Write a linear function that models the number N of units sold monthly in terms of the amount x spent on advertising, in thousands of dollars.
§§3.4, 3.6, 3.7 (p. 118)
\#8. (a) Describe the end behaviour, (b) find the x-intercept(s), and (c) complete a sign diagram for the polynomial function $f(x)=6 x^{2}-x^{3}$.
\#12. (a) Describe the end behaviour, (b) determine any holes, (c) determine any vertical asymptotes, (d) find the x-intercept(s), and (e) complete a sign diagram for the rational function $f(x)=\frac{-x^{2}+6 x-5}{(x-3)^{2}}$.
$\S 4.3$ (p. 124) For $\# 15,20$, use the properties of logarithms to expand the expression as a sum, difference, and/or multiple of a logarithm.
\#15. $\ln \left(\frac{e^{x}}{e^{x}+1}\right)$.
\#20. $\ln x^{\ln x}$.
$\S 4.4$ (p. 130) Solve the following equations algebraically. Give approximate decimal equivalents, rounded to three decimal places.
$\# 31 . \log _{3}(x+1)+\log _{3}(2 x)=\log _{3}(3 x+1)$.
$\# 32.3+\log (2 x+5)=2$.

