
The problem Read the problem Formulæ Cut down independent variables Domain Calculus

What is the cheapest Coke can that holds 355 cm3 of soda?
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Cheapest . . . : Minimum cost

Cost is proportional to surface area

Coke can is a cylinder (approximately)
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Surface area: SA = 2 · πr2︸︷︷︸
base
area

+ 2πr︸︷︷︸
base

perim.

·h

Volume: V = πr2h = 355 (in cubic centimetres)

r , h are radius, height of can (in centimetres)
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Two independent variables, r and h

355 = πr2h ⇒ h =
355

πr2
or r =

√
355

πh

SA = 2πr2 + 2πr
355

πr2
= 2πr2 +

710

r
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r is a length, so r ≥ 0

r = 0 is impossible (would give V = 0)

r can be very big (if the can is short)

Domain is (0,∞)
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SA = 2πr2 + 2πr
355

πr2
= 2πr2 +

710

r
d

dr
SA = 4πr − 710

r2
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d

dr
SA = 4πr − 710

r2

Undefined at r = 0 (not in domain)

Zero when

4πr =
710

r2

4πr3 = 710

r =
3

√
355

2π
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r SA

0 ∞
3

√
355

2π
277.5

∞ ∞

So optimum dimensions are r = 3

√
355

2π
≈ 3.837,

h =
355

πr2
= 2 3

√
355

2π
≈ 7.674 (in centimetres)

Actual dimensions: r ≈ 3.2 cm, h ≈ 11 cm
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