What is the cheapest Coke can that holds $355 \mathrm{~cm}^{3}$ of soda?

Cheapest ...: Minimum cost
Cost is proportional to surface area
Coke can is a cylinder (approximately)

Surface area: SA $=2 \cdot \underbrace{\pi r^{2}}_{\begin{array}{c}\text { base } \\ \text { area }\end{array}}+\underbrace{2 \pi r}_{\begin{array}{c}\text { base } \\ \text { perim. }\end{array}} \cdot h$
Volume: $\mathrm{V}=\pi r^{2} h=355$ (in cubic centimetres)
r, h are radius, height of can (in centimetres)

Two independent variables, r and h

$$
\begin{aligned}
& 355=\pi r^{2} h \Rightarrow h=\frac{355}{\pi r^{2}} \text { or } r=\sqrt{\frac{355}{\pi h}} \\
& \mathrm{SA}=2 \pi r^{2}+2 \pi r \frac{355}{\pi r^{2}}=2 \pi r^{2}+\frac{710}{r}
\end{aligned}
$$

r is a length, so $r \geq 0$
$r=0$ is impossible (would give $\mathrm{V}=0$)
r can be very big (if the can is short)

Domain is $(0, \infty)$

$$
\begin{aligned}
\mathrm{SA} & =2 \pi r^{2}+2 \pi r \frac{355}{\pi r^{2}}=2 \pi r^{2}+\frac{710}{r} \\
\frac{\mathrm{~d}}{\mathrm{~d} r} \mathrm{SA} & =4 \pi r-\frac{710}{r^{2}}
\end{aligned}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \mathrm{SA}=4 \pi r-\frac{710}{r^{2}}
$$

Undefined at $r=0$ (not in domain)
Zero when

$$
\begin{aligned}
4 \pi r & =\frac{710}{r^{2}} \\
4 \pi r^{3} & =710 \\
r & =\sqrt[3]{\frac{355}{2 \pi}}
\end{aligned}
$$

r	$S A$
0	∞
$\sqrt[3]{\frac{355}{2 \pi}}$	277.5
∞	∞

So optimum dimensions are $r=\sqrt[3]{\frac{355}{2 \pi}} \approx 3.837$, $h=\frac{355}{\pi r^{2}}=2 \sqrt[3]{\frac{355}{2 \pi}} \approx 7.674$ (in centimetres)
Actual dimensions: $r \approx 3.2 \mathrm{~cm}, h \approx 11 \mathrm{~cm}$

