
In this handout, we will discuss the effect that derivatives and their sign diagrams have on
the shape of a graph. There are a lot of sign diagrams to worry about, but it can be hard to
keep track of which diagram means what. We’ll use as our extended example the function
from Exercise 12.2.5,

R(x) = −0.928x3 + 31.492x2 − 326.80x + 1143.88,

that measures the revenue (in billions of dollars) earned by an airline that flies x hundred
billion seat–miles ∗. We find that R(x) = 0 for exactly one value of x, satisfying x ≈ 18.50 †

Plugging in, say, x = 18 gives

R(18) = −0.928 · 183 + 31.492 · 182 − 326.80 · 18 + 1143.88 = 52.792 > 0,

so R > 0 for x < 18.50. Plugging in, say, x = 19 gives

R(19) = −0.928 · 193 + 31.492 · 192 − 326.80 · 19 + 1143.88 = −61.860 < 0

so R < 0 for x > 18.50. Thus, a sign diagram for the function R looks like:

This tells us almost nothing about the graph of R, just when it’s above and when it’s below
the x-axis:

∗ The term ‘seat–mile’ is unfamiliar, but it is a compound unit like, say, ‘kilowatt–hour’. Just as a kilowatt–
hour is a unit of energy corresponds to doing one kilowatt of work for one hour, a seat–mile corresponds to
one seat on an airplane flying one mile. For example, a 500-mile airline flight on a 40-seat airplane would
rack up 20,000 seat–miles.

The original problem only claims that this model is valid for 8 ≤ x ≤ 12, but the formula makes sense for
any x-value, even if it doesn’t model the same thing; so we’ll drop the restrictions on x.
† It’s reasonable to ask where we got this value. One way would be just to graph the function and use the

TRACE button on a TI calculator, or more sophisticated approaches such as the CALC > zero or MATH
> Solver. . . tool; but we’re trying to figure out how to sketch graphs ourselves, so that’s not very satisfying.
A brute-force way would be simply to enumerate many, many test values, until you got one that gave an
output close to 0, and then plug in nearby values to try to find one that gave an output of exactly 0. There’s
no way to get around the requirement to make some initial guess, but there is a way to refine that guess
intelligently; it’s called Newton’s method. We won’t discuss it here, but it boils down to the idea of replacing
solving a cubic equation by solving a linear equation—essentially, the tangent-line equation.
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Surely this isn’t the graph of R? No, it’s absolutely not; but it’s a reasonable first stab if we
only know the sign diagram for R.

Part of the reason that the graph of R above looks so crude is that it’s not changing ; it’s
just two horizontal lines, with a jump discontinuity in between. To take the change into
account, we need the derivative of R:

R′ = −2.784x2 + 62.984x− 326.80.

It’s pretty much hopeless to try to factor this, so we use the quadratic formula to find its
roots:

x =
−62.94 ±

√
62.9842 − 4(−2.784)(−326.80)

2(−2.784)
≈ 8.060, 14.56.

Plugging in, say, x = 8, x = 9, and x = 15 gives

R′(8) = −2.784 · 82 + 62.984 · 8 − 326.80 = −1.104 < 0,

R′(9) = −2.784 · 92 + 62.984 · 9 − 326.80 = 14.552 > 0,

R′(15) = −2.784 · 152 + 62.984 · 15 − 326.80 = −8.440 < 0,

so that a sign diagram for the function R′ looks like:

Just like before, this tells us almost nothing about the graph of R′, just when it’s above and
when it’s below the x-axis:

Again, this isn’t actually the graph of R′, just a first approximation. Notice, however, that
we’re not interested in the graph of R′, but rather in the graph of R. We can change our
original, very crude graph of R so that it is increasing when it should be, and decreasing
when it should be:
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This still isn’t the graph of R, but at least it’s looking more like some kind of graph. In
particular, we can now tell apart the different kinds of local extrema. Notice that the zeroes
of R′ correspond to the local extrema of R. It’s possible to have a zero of R′ which isn’t a
local extremum of R, if R′′ doesn’t change sign there; but this doesn’t happen for us.

What’s missing? Well, the bits of the graph of R aren’t really lines ; their slopes are
changing. To measure how the slopes are changing, we need the slope of the slope—the
second derivative! We compute

R′′ = −5.568x + 62.984,

which is 0 when x =
62.984

5.568
≈ 11.31. Plugging in, say, x = 11 and x = 12 gives

R′′(11) = −5.568 · 11 + 62.984 = 1.736 > 0 and R′′(12) = −3.832 < 0,

so that a sign diagram for the function R′′ looks like:

Just like before, this tells us almost nothing about the graph of R′′, just when it’s above and
when it’s below the x-axis:
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Just as we used the graph of R′ to refine the graph of R, we can use the graph of R′′ to refine
the graph of R′ so that it is increasing when it should be, and decreasing when it should be:

Notice that the zero of R′′ corresponds to the local maximum of the derivative R′. This
doesn’t mean that the original function R reaches a local maximum there; instead, it means
that that’s where the original function R will be (locally) steepest. In general, we should
draw R ‘curling up’ (in technical terms, concave up) when R′ is increasing, and ‘curling down’
(in technical terms, concave down) when R′ is decreasing:
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The zero of R′′ corresponds to the local maximum of R′, which corresponds to the point of
inflection of R. It’s possible to have a zero of R′′ which isn’t a point of inflection of R, if R′′

doesn’t change sign there; but this doesn’t happen for us. Our picture of R is now extremely
accurate (except that we haven’t paid any attention to hitting, say, the right y-intercept ‡),
but, if we wanted to be still more accurate, we could take still more derivatives. It gets
harder and harder to see the effects of higher derivatives on the original graph, though.

By the way, in our work above, we called x ≈ 11.31 a point of inflection for R, but the
text calls it a point of diminishing returns. The terms mean the same thing; which one you
use depends on what hat you’re wearing. If you’re wearing a mathematician’s hat, then you
notice that the graph has changed from ‘curling up’ to ‘curling down’, and you call it a point
of inflection. If you’re wearing an economist’s or accountant’s hat, then you notice that,
although revenue is still increasing (since the first derivative R′ is still positive at x ≈ 11.31;
it’s R′(11.31) ≈ 29.43), it’s doing so more slowly. Thus, the returns on an investment spent in
increasing seat–miles aren’t what they were in the early days, so perhaps that money might
be better spent elsewhere.

‡ Technically, we should call it an R-intercept, but that just sounds confusing.


