(1) Check if the expression can be re-written as a basic derivative.

Example: $\left(\frac{\square^{2}}{\square^{5}}\right)^{\prime}=\left(\square^{-3}\right)^{\prime} \cdot \square^{\prime}=-3 \square^{-4} \cdot \square^{\prime}$.
Warning: The power rule only works if the exponent is a constant. $\left(e^{x}\right)^{\prime} \neq x e^{x-1}$. If it is a variable, then you must use the exponential rule: $\left(e^{\square}\right)^{\prime}=e^{\square} \cdot \square^{\prime}$.
Warning: Don't forget to multiply by \square^{\prime}. $\left(e^{x^{2}}\right)^{\prime} \neq e^{x^{2}}$ and $\left[\left(e^{x}\right)^{2}\right]^{\prime} \neq 2 e^{x}$. You can omit it only if \square is \boxed{x}, in which case $\square^{\prime}=1$.
(2) If there is a constant in front of every term, pull it out. This is the Constant Times a Function Rule (p. 709).

Example: $\left(3 x^{2}+3 e^{x}\right)^{\prime}=3\left(x^{2}+e^{x}\right)^{\prime}=3\left(2 x+e^{x}\right)$.
Warning: The constant has to be in front of every term: $\left(-\frac{1}{x}+1\right)^{\prime} \neq-\left(\frac{1}{x}+1\right)^{\prime}$. If it's only in front of some terms, break up the derivative first (see Step 3).
(3) If the function is a combination, find the last combining operation.

Example: $y=x+e^{x} \rightsquigarrow$ last operation is addition.
Warning: $y=x e^{x}+\sqrt{x} \rightsquigarrow$ last operation is not multiplication, but addition.
(a) For addition or subtraction, use the Sum-or-Difference Rule (p. 711).

$$
(u+v)^{\prime}=u^{\prime}+v^{\prime}
$$

Example: $\left[x^{2}+\ln (x)\right]^{\prime}=\left(x^{2}\right)^{\prime}+[\ln (x)]^{\prime}=2 x+\frac{1}{x}$.
(b) For multiplication, use the Product Rule (p. 720):

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime} \quad \text { or } \quad(u v)^{\prime}=u^{\prime} v+v^{\prime} u .
$$

"Derivative of the first, times the second; plus derivative of the second, times the first." Order is not important.

Example: $\left[x^{2} \ln (x)\right]^{\prime}=\left(x^{2}\right)^{\prime}[\ln (x)]+\left(x^{2}\right)[\ln (x)]^{\prime}=2 x \ln (x)+x$.
Hint: Don't bother using the product rule for multiplication by a constant.
Warning: Don't just multiply the derivatives! $\left[x^{2} \ln (x)\right]^{\prime} \neq\left(x^{2}\right)^{\prime}[\ln (x)]^{\prime}$.
(c) For division, use the Quotient Rule (p. 722):

$$
\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \quad \text { or } \quad\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} .
$$

"Lo, d(hi), minus hi, d(lo), over lo squared." Order is important.
Example: $\left[\frac{x^{2}}{\ln (x)}\right]^{\prime}=\frac{\left(x^{2}\right)^{\prime}[\ln (x)]-\left(x^{2}\right)[\ln (x)]^{\prime}}{[\ln (x)]^{2}}=\frac{2 x \ln (x)-x}{[\ln (x)]^{2}}$.
Hint: Don't bother using the quotient rule for division by a constant.
Hint: You can use the product rule instead: $\left(\frac{e^{x}}{x^{2}}\right)^{\prime}=\left(e^{x} x^{-2}\right)^{\prime}$.
Warning: Don't just divide the derivatives! $\left[\frac{x^{2}}{\ln (x)}\right]^{\prime} \neq \frac{\left(x^{2}\right)^{\prime}}{[\ln (x)]^{\prime}}$.
(d) For any other operation, use the Chain Rule (p. 731):

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

"Derivative of the outside, times derivative of the inside." This may be easier if you use box notation.

Example: If $y=[\ln (x)]^{2}$, then $y=u^{2}=\square^{2}$, where $u=\square=\ln (x)$, so

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} u}\left(u^{2}\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}[\ln (x)]=\frac{2 u}{x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \ln (x)}{x} .
$$

Derivatives (starter kit)

y	y^{\prime}
\square^{n}	$n \cdot \square^{n-1} \cdot \square^{\prime}$
e^{\square}	$e^{\square} \cdot \square^{\prime}$
$\ln (\square)$	$\square^{\prime} / \square$

Derivatives (exponential and logarithmic)

y	y^{\prime}
$\ln \|\square\|$	$\square^{\prime} / \square$
a^{\square}	$\ln (a) \cdot a^{\square} \cdot \square^{\prime}$
$\log _{a}(\square)$	$\square^{\prime} /[\ln (a) \cdot \square]$
$\log _{a}\|\square\|$	$1 /[\ln (a) \cdot \square]$

Derivative rules

(Constant-Multiple Rule)
(Sum or Difference Rule)
(Product Rule)
(Quotient Rule)
(Chain Rule)
(Chain Rule)

$$
\begin{aligned}
(c \cdot \square)^{\prime} & =c \cdot \square^{\prime} \\
(\square \pm \triangle)^{\prime} & =\square^{\prime} \pm \triangle^{\prime} \\
(\square \triangle)^{\prime} & =\square^{\prime} \cdot \Delta+\square \cdot \Delta^{\prime} \\
\left(\square \square^{\prime}\right)^{\prime} & =\frac{\square^{\prime} \cdot \Delta-\square \cdot \Delta^{\prime}}{\triangle^{2}} \\
{[f(\square)]^{\prime} } & =f^{\prime}(\square) \cdot \square^{\prime} \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x} .
\end{aligned}
$$

