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verbal comments added by Stuart White. No responsibility is taken for any errors.

Day 1

The Classification Theorem

This all begins with the famous classification of injective von Neumann algebras.

Theorem 1.1.1 (Connes’76, Haagerup ’85). Separably acting injective factors are classiified
by their type and flow of weights

Classification of C*-algebras starts with Glimm, Bratteli and Elliott’s classification of AF
algebras. But really starts in the very late 80’s with Elliott’s work on AT algebras. Today we
have the following definitive theorem, which is a C*-algebra parallel of Theorem 1.1.1.

Theorem 1.1.2 (Many). Unital Simple Separable Nuclear (USSN) Z-stable C*-algebras
satisfying the UCT are classified by K-theory and traces.1 Ie. for A,B USSN Z-stable UCT,
we have A ∼= B iff there exists isomorphisms αi : Ki(A) → Ki(B) and γ : T (A) → T (B) such
that ⟨γ(T ), x⟩ = ⟨T, α0(x)⟩ for all x ∈ K0(A), τ ∈ T (B), and α0([1A]) = [1B] ∈ K0(B).

Here ”Unital simple separable nuclear” corresponds to working with injective factors. The
two other conditions: Z-stability and satisfying the UCT will be explained later. Take them
as black boxes for now. Algebras satisfying all these axioms are called classifiable.

There is a dichotomy between whether classifiable algebras have traces or not. When they
do not, they are purely infinite, and the classification is the Kirchberg–Phillips theorem in
the 90’s. These lectures will focus on the case where there are traces. The methods are quite

1Here T (A) is the collection of tracial states on A. It is a Choquet simplex.
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different between the two sides of the dichotomy (though there is a recent new approach to
the Kirchberg–Phillips, inspired by the stably finite methods presented here).

The main focus of these lectures is on unital C*-algebras. There are also definitive
classification theorems for non-unital algebras, where traces are replaced by the cone of
densely defined lower semicontinuous tracial weights, and instead of keeping track of the unit
(which no longer exists), one keeps track of the scale; those elements in K0(A) realized by
projections in the algebra.

Example 1.1.3. For (X,µ) a standard probability space (eg. L∞[0, 1]). Suppose we have
a countable discrete amenable group Γ and Γ ↷ (X,µ) is measuring preserving, free and
ergodic. Then L∞(X,µ)⋊ Γ is an injective II1 factor if it is infinite dimensional. Thus all
these are isomorphic by Theorem 1.1.1.

Example 1.1.4. Suppose Z ↷ T by multiplication by e2πiθ where θ is irrational. Then
L∞(T)⋊ Z is independent of θ.

For C*-algebras, one also gets a huge class of examples from dynamics. The condition
giving rise to simplicity is by now not so difficult, but the fact that all the examples below
satisfy the UCT is a very deep theorem, proved by Tu, buidling on work of Higson and
Kasparov on the Baum–Connes conjecture.

Example 1.1.5. For a compact metrizable space X and a countable discrete amenable group
Γ and Γ ↷ X topologically free, minimal, then C(X)⋊ Γ is unital separable simple nuclear
UCT.

There has been a huge body of work determining whether such algebras are Z-stable with
very rapid progress in recent years. Here is a major result (but note that this also holds for
groups of subexponential growth which are not-elementary amenable). It could well hold for
all amenable groups. The hypothesis of finite dimensionality of the space is necessary (by an
example of Giol and Kerr).

Theorem 1.1.6 (Kerr-Naryshkin). If Γ ↷ X is free and dim(X) <∞ and Γ is elementary
amenable, then C(X)⋊ Γ is Z-stable.

Definition 1.1.7 (KTu). The invariant (K0, K1, T, [1], ⟨, ⟩) is called KTu.

Remark 1.1.8. The classical Elliot invariant Ell(A) includes K+
0 but for USSA Z-stable A

we have K+
0 (A) = {x ∈ K0(A) : ⟨τ, x⟩ > 0 for all τ ∈ T (A) ∪ {0}}.

For classifiable C*-algebras we could equally use KTu or Ell – they carry the same
information – but we will use KTu. This makes it more transparent that only the pairing is
used, and the order structure on K0 is not explicitly required. Also, the range of the invariant
is much easier to describe for KTu and fully understood.

Theorem 1.1.9 (Range of the Invariant). For all separable unital C*-algebra A, there exists
USSN Z-stable UCT C*-algebra B with KTu(A) ∼= KTu(B).
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One can also describe this abstractly. Any pair of countable abelian groups with a
designated element as the class of the unit, together with any metrizable Choquet simplex
and any possible pairing arises as the invariant of a classifiable C*-algebra (the only constraints
are that in the finite case, the pairing sends the class of the unit to 1 under all traces, forcing
this element to have no torsion).

This gives a strategy for obtaining results through classification. Build models with the
required behavior and use classification. The following theorem is an excellent example, it is
hard to imagine how this could be proved from the abstract hypotheses (just as it is hard
to see how one would directly build a von Neumann algebraic Cartan subalgebra inside an
injective factor, but this is straightforward using hyperfiniteness)

Theorem 1.1.10 (Li). Every USSN Z-stable UCT (classifiable) C*-algebra has a Cartan
subalgebra and is isomorphic to a twisted groupoid C*-algebra.

There are other examples of this technique, particularly for without traces where Spielberg
showed certain Kirchberg algebras are semiprojective by building models where this can be
seen directly. In a similar fashion he was able to lift certain group actions from the invariant
to a Kirchberg algebra. This is much more developped for Kirchberg algebras where there
are many more groupoid models currently known, but there is much potential to use stably
finite classification to obtain further results of this nature.

Here is a concrete example – the C*-version of Example 1.1.4.

Example 1.1.11. Take the irrational rotation algebras Aθ = C(T)⋊ Z = C∗(u, v). This is
classifiable.

Given that these algebras are classifiable, what is the invariant? This is a place where the
pairing between K-theory and traces plays an important role.

Remark 1.1.12. The K-theory of a crossed product α : Z ↷ A then Pimsner-Voiculescu
gives a 6-term exact sequence

K0(A) K0(A) K0(A⋊ Z)

K1(A⋊ Z) K1(A) K1(A)

1− α∗

1− α∗

Using this, we have K0(Aθ) ∼= Z2 ∼= K1(Aθ). In particular, K0(A) is generated by 1, p
where τ(p) = θ. And Aθ has a unique trace τ coming from the Haar measure on T. This
is also easy to see. So neither the traces nor the K-theory distinguish these algebras. But
the pairing does. The trace τ induces τ̂ : K0(A) → R with τ(1) = 1 and τ(p) = θ so that
Im(τ) = Z + θZ. As a corollary

Aθ1
∼= Aθ2 ⇒ Z + θ1Z = Z + θ2Z ⇒ θ1 = ±θ2 (mod Z).

In fact the reverse implication also holds (without using classification). If θ1 = ±θ2 (mod Z),
then Aθ1

∼= Aθ2 is easily checked (adjusting the angle by addition of an integer doesn’t change
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the action, and changing the sign, is just rotation in the other direction, which is a conjugate
action).

This calculation is now very old and allows one to see the angle of an irrational rotation
C*-algebra upto integers and sign. What the classification theorem does is classify these
algebras within a much larger class (this goes back to Elliott and Evans when they showed
it was AT, so within the class of AT algebras of real rank zero classified by Elliott. To see
that Aθ is Z-stable there are a range of techniques. Toms-Winter have a general result for
Z actions on finite dimensional spaces, or one could use Elliott–Evans to get finite nuclear
dimension. It was pointed out in the lecture that as these algebras have real rank zero and
unique trace, one can use the order structure on K0 to see that they have strict comparison,
and hence are Z-stable by a famous result of Matui and Sato. Also, Blackadar, Kumjian and
Rørdam gave a relatively elementary argument coming from rational approximations to θ to
prove almost divisibility, and hence obtain Z-stability.

Let us now turn to the classification of maps. Going back to Murray and von Neumann’s
uniqueness of the hyperfinite II1 factor, classification results for operator algebras have been
obtained by first classifying maps.

The following result is a consequence of Connes’ theorem (it would be straightforward for
separable hyperfinite M).

Remark 1.1.13. If M is a separable injective Von Neumann algebra and N is a II1 factor,
then if φ, ψ :M → N are normal unital and τN ◦ φ = τN ◦ ψ then there exists a sequence of
unitaries (un) in U(N) such that unφ(a)u

∗
n → ψn(a) for any a ∈ A in SOT.

Furthermore, for existence if τM ∈ T (M) is a normal trace then there exists a unital
normal φ :M → N such that τN ◦ φ = τM .

The corresponding C*-result is the following classification of embeddings. Outlining this
will be the main objective of a number of the lectures.

Theorem 1.1.14 (Classification of embeddings, CGSTW). For A unital separable nu-
clear UCT and B is unital simple Z-stable and all quasitraces on B are traces (eg. if
B is exact), then unital embeddings A ↪→ B are classified by the total invariant KTu =

(K0, K1, T,K1
alg
, K0(−,Zn), [1], pairings).

Here there are a number of natural pairing maps between all these objects (8, if one allows
various infinite families to be packaged as one collection of pairing maps), and these form
part of KTu.

The classification of embeddings theorem can be extended further by moving hypotheses
from the algebras to morphisms. For example, one can take A to be exact and drop simplicity
of B by requiring the map to by full and nuclear. i.e. the simplicity and amenability
hypotheses can be placed on the maps. But, while we can classify maps in vast generality,
when one symmeterises assumptions this will not lead to any larger classification of algebras.
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Intertwining Arguments

How do we show A ∼= B for abstract C∗-algebras. Need ∗-homomorphisms φ : A→ B and
ψ : B → A with ψφ = idA, φψ = idB. As analysts, we’re trained not to try and prove things
are equal on the nose, but rather that they are close. So can we relax equality here?

Definition 1.2.1 (Approximately Unitarily Equivalent). Maps φ, ψ : A→ B with B unital
A separable are approximately unitarily equivalent if there exists a sequence of unitaries
(un)

∞
n=1 ⊆ B such that

∥unφ(a)u∗n − ψ(a)∥ → 0 for all a ∈ A

Written φ ≈u ψ.

Theorem 1.2.2 (Elliott’s two-sided approximate intertwining argument). If A,B are unital
separable C*-algebras, and we have ∗-homomorphisms φ : A → B,ψ : B → A such that
φ◦ψ ≈u idB and ψ ◦φ ≈u idA, then A ∼= B. In fact there exists φ̂ : A→ B such that φ̂ ≈u φ
and (φ̂)−1 ≈u ψ.

Proof. Set φ1 = φ. Note that ψ ◦ φ1 = ψ ◦ φ ≈u idA, so for fixed F1 ⊆ A finite and ϵ1 > 0
there exists u1 ∈ U(A) such that

∥u1ψ(φ1(a))u
∗
1 − a∥ < ϵ1 for all a ∈ F1

Then set ψ1 = Ad(u1)ψ. Note that

φ ◦ ψ1 = φ ◦ Ad(u1) ◦ ψ = Ad(φ(u1)) ◦ φ ◦ ψ ≈u φ ◦ ψ ≈u idB,

so for a fixed G1 ⊆ B finite there exists v2 ∈ U(B) such that

∥v2(φ(ψ1(b))v
∗
2 − b∥ < ϵ1 for all b ∈ G1.

Then define φ2 = Ad(v2)φ : A→ B. Then ψ ◦ φ2 ≈u idA so we get a ψ2 : B → A as before
and so on. We get a diagram which commutes approximately on larger and larger finite
subsets and smaller and smaller ϵ

A A A ...

B B B ...

idA

φ1

idA

φ2

ψ1

idB idB

ψ2 .

Note that

φn+1 = φn+1 idA ≈u φn+1(ψnφn) = (φn+1ψn)φn ≈u idB φn = φn

If we choose the Fn with Fn ⊆ Fn+1 and
⋃
nFn = A and same for the Gn, and ϵ1 > ϵ2 > · · · > 0

with
∑
ϵn <∞, then what we get if we do this carefully is that (φn(a))n ⊆ B and (ψn(b))n ⊆ A

are Cauchy for any a ∈ A, b ∈ B. Then define

φ̂ : A→ B
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φ̂(a) = lim
n
φn(a)

and similarly for ψ̂. These are ∗-homomorphisms and as one can check ψ̂φ̂ = idA and
φ̂ψ̂ = idB.

Corollary 1.2.3. Suppose we have a functor F : C∗Alg → C into some category C such that
F is ≈u invariant (ie. φ ≈u ψ implies Fφ = Fψ). Suppose further that S is the class of
unital separable C*-algebras and assume

1. (Uniqueness) If A,B ∈ S and if φ, ψ : A→ B with Fφ = Fψ then φ ≈u ψ

2. (Existence) If A,B ∈ S and there is some morphism α : FA→ FB, then there exists
φ : A→ B such that Fφ = α.

Then, if A,B ∈ S and FA ∼= FB, then A ∼= B. In fact, if FA → FB is an isomorphism
then it is induced by some isomorphism A→ B.

Proof. Suppose we have A,B ∈ S and an isomorphism α : FA → FB. Choose ∗-
homomorphisms φ : A → B and ψ : B → A such that Fφ = α, Fψ = α−1. Now,
F (ψφ) = F (idA) and F (φψ) = F (idB) and then uniqueness implies ψφ ≈u idA, φψ ≈u idB.
Thus by the intertwining argument we get φ̂ : A → B with φ̂ ≈u φ and (φ̂)−1 ≈u ψ, so by
≈u invariance we get that Fφ̂ = Fφ = α.

Remark 1.2.4. Although it is not normally done in this way, one can set up the uniqueness
of the hyperfinite II1 factor with separable predual in a similar fashion. It is illustrative to
note that these ideas do not work for type III factors, indeed there is not a unique hyperfinite
type III factor.

Remark 1.2.5. Upto now one might have the impression the plan to prove the classification
theorem is to apply Corollary 1.2.3 to KTu. However if S = {classifiable C*-algebras} and
F = KTu then existence holds, but uniqueness does not. More invariants will be needed to
obtain uniqueness.

Example 1.2.6. Take O3 ⊗ O3 and α ∈ Aut(O3 ⊗ O3) which flips: α(x ⊗ y) = y ⊗ x.
Then K0(O3 ⊗ O3) = K1(O3 ⊗ O3) ∼= Z2 so α∗ = idK∗(O3) but α is not approximately
unitarily equivalent to the identity on O3⊗O3, for example because α⊗ idO3 and idO3⊗O3⊗O3

differ on K0(O3 ⊗ O3 ⊗ O3) ∼= Z2 ⊕ Z2. However, this can be witnessed in K∗(−,Zn) :=
K∗(− ⊗ On+1), n ≥ 2. It will be necesssary to add this ‘K-theory with coefficients’ to the
invariant to obtain a uniqueness result.

Example 1.2.7. Take A = Z ≀ Z = Z⊗Z⋊Z where the automorphism from Z shifts the indices.
We know that K0(A) = K1(A) = Z and K0(A) is generated by [1A]. We also know that A
has unique trace and that Aut(KTu(A)) ∼= Z2. We have a dual action γ : T ↷ A, and for
z1, z2 ∈ T we have that γz1 , γz2 are homotopic, hence KTu(γz1) = KTu(γz2), but a de la Harpe
– Skandalis determinant argument shows that if γz1 ≈u γz2 =⇒ z1 = z2. Indeed, if z1 ̸= z2

then γz1 and γz2 do not agree on K
alg

1 (A) = lim−→Un(A)/[Un(A), Un(A)] ∼= T ⊕ Z2. In this case

though, using that A has stable rank one, it turns out that K
alg

1 is just U1/[U1(A), U1(A)].

6



This is why we extend the invariant for the classification of embeddings and work with an
extended invariant KTu rather than KT to obtain uniqueness. KTu(A) is obtained by adding
the total K-theory K(A) (consisting of all the groups K∗(Z;Z/n) together with the natural

maps connecting them), and K
alg

1 (A) (together with further natural maps). However, adding
additional data to prove uniqueness makes proving existence harder as one has to prove the
existence of many more maps – all the allowed homomorphisms between KTu(A) → KTu(B).

Once one has the classification of embeddings, one gets a classification of the algebras
in Theorem 1.1.2 from Elliott’s two sided approximate intertwining argument. Notice that
to apply this one would need to symmetrise assumptions, so that the collection of algebras
classified is those A satisfying both the hypotheses on the domain, and on the codomain of
the classification of embeddings, and also for which the identity map satisfies any required
hypotheses on the map.2 This will produce a classification as in Theorem 1.1.2 but with KTu
as the classifying invariant, rather than KTu. A final detail is to show that any isomorphism
KTu(A) ∼= KTu(B) gives rise to an isomorphism KTu(A) ∼= KTu(B).

Also, although we now have a strategy for proving Theorem 1.1.2 by proving existence and
uniqueness theorems for morphisms A→ B, it is still very hard to produce a *-homomorphism
between abstract C*-algebras A and B as required for the existence part of the classification of
embeddings. Instead it is easier to produce approximate morphisms between C*-algebras. This
should be compared with quasidiagonality: simple C*-algebras will never have non-zero maps
into matrices, but they can have be quasidiagonal, i.e. have approximately multiplicative
maps. Indeed the stably finite C*-algebras covered by the classification theorem are all
quasidiagonal. This will be sketched during these lectures.

Definition 1.2.8 (Approximate Morphism). An approximate morphism is a sequence
(φn)n for ucp maps φn : A→ B such that

∥φn(a1a2)− φn(a1)φn(a2)∥ → 0 for all a1, a2 ∈ A.

When A is nuclear (so that we can use the Choi-Effros lifting theorem) this is also equivalent
to a ∗-morphism φ : A→ B∞ = l∞(B)/c0(B).

Remark 1.2.9. Being an approximate morphism without the ucp assumption is equivalent
to a ∗-morphism A→ B∞.

Uniqueness of maps A→ B∞ immediately implies uniqueness of maps A→ B. There are
simply less maps A→ B than A→ B∞. However one needs both existence and uniqueness
of maps A→ B∞ to run an Elliott intertwining argument to get existence of maps A→ B.

The main thrust of these lectures is devoted to the existence and uniqueness of maps
A→ B∞ by KTu.

2This means that if one works with more general classfification of embedding theorems, with a separable
exact domain, Z-stable codomain and full nuclear maps, it is the requirement that the identity map be full
and nuclear that forces the final classification to be for simple nuclear C*-algebras.
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Day 2

KK-Theory

Remark 2.1.1. Throughout we’ll assume A is separable.

Many very different looking pictures, and people don’t really say how to move between
them. We’ll focus on the one most useful to us.

Remark 2.1.2. The goal of KK-theory is to force an abelian group structure on the set of
∗-morphisms mod some homotopy and other equivalence conditions we want.

Naively one approach that we might think would work is we could define

V (A,B) = {A→ B ⊗K}/ ∼h .

(Here K is the comparct operators on a separable infinite dimensional Hilbert space.) And we

add [φ], [ψ] : A→ B ⊗K by [φ] + [ψ] =

[(
φ 0
0 ψ

)]
where we use a canonical isomorphism

K ∼= M2(K), which is unique up to homotopy.. Then V (A,B) is an abelian semigroup
(commutativity is through using rotation matrices to build a homotopy, and associativity in
a similar fashion). It’s not clear whether there is an additive identity. Then we can take the
Grothendieck group of this semigroup: V (A,B)− V (A,B).

If we then try with an example A = C we have V (B) := V (C, B) = P (B ⊗ K)/ ∼h

which is the Murray von Neumann semigroup of B. Then when B is unital we get back
V (B) − V (B) = K0(B). But if B is non-unital, say B = C(R2) ⊆ C(S1), then V (B) = 0

while K0(B) = Z generated by the difference of

[
1 0
0 0

]
and 1

2

[
1 + x y + iz
y − iz 1− x

]
∈ P∞(C(S2)).

The basic problem is that there aren’t enough projections to start with. In general there
might not be enough *-homomorphisms A→ B ⊗K. The solution is to allow for morphisms
to take values in a much larger algebra.

Definition 2.1.3 (Cuntz Pair). A Cuntz pair from A to B is a pair of ∗-morphisms

A
ψ
−−⇒
φ
E ▷B ⊗K

with Im(φ − ψ) ∈ B ⊗K where E is some C*-algebra containing B ⊗K as an ideal. We
think of such a Cuntz pair as a formal difference φ− ψ. KK(A,B) will be defined as Cuntz
pairs modulo a suitable notion of homotopy.

Notice that since we can take E = M(B ⊗ K) which contains a copy of B(H), as
B ⊗M(K) ⊂M(B ⊗K), there are always maps A→M(B ⊗K).

Remark 2.1.4. Any ∗-morphism φ : A→ B induces a Cuntz pair A
φ⊗e11−−−−−−⇒

0
B ⊗K.

8



Remark 2.1.5. Suppose

A
ψ
−−⇒
φ
E ▷B ⊗K

is a Cuntz pair. We always have a map λ : E → B⊗K and this enables us to regard (λφ, λψ) ∼
(φ, ψ). One can use this to only work with Cuntz pairs taking values in M(B ⊗K) (allowing
us to define homotopy between Cuntz pairs A⇒M(B ⊗K) as below), or alternatively view
working with more general notions of homotopy coming from the Fredholm module picture
of KK we have that (λφ, λψ) is homotopic to (φ, ψ)

Why allow for E, and not just insist Cuntz pairs take values in M(B ⊗K) in the first
place? The reason is that in natural examples (as happens when we construct a Cuntz pair
in the classification of lifts) we obtain a Cuntz pair from some other ideal containing B ⊗K,
rather than going directly into the multiplier algebra.

Definition 2.1.6 (Homotopy of Cuntz Pairs). Suppose we have 2 Cuntz pairs A
ψ0−−⇒
φ0

M(B⊗K)

and A
ψ1−−⇒
φ1

M(B ⊗K). Then we write (φ0, ψ0) ∼h (φ1, ψ1) if there exists Cuntz pairs A
ψt−−⇒
φt

M(B ⊗K), 0 ≤ t ≤ 1 with t 7→ φt(a), t 7→ ψt(a) strictly continuous,3 and t 7→ φt(a)− ψt(a)
is norm continuous for all a ∈ A.4

Definition 2.1.7. We define KK(A,B) to be the set of all Cuntz pairs mod homotopy of
Cuntz pairs

Remark 2.1.8. KK(A,B) is an abelian group with ⊕, inverses are given by −[φ, ψ] = [ψ, φ],
and the zero element is [φ, φ] for any φ : A→M(B ⊗K) (for instance we can take φ = 0;
there is work to be done to show that all Cuntz pairs (φ, φ) are homotopic.).

One can define KK groups for non separable B, and KK(A,B) is often defined for
separable A and σ-unital B. One can extend B further, but separability of A is often crucial.
One place is in defining the Kasparov product, through the usual use of separability in
analysis to make countably many estimates and run 2−nϵ-arguments.

Remark 2.1.9. There are many ∗-homomorphisms A→M(B⊗K) since B(H) =M(K) ↪→
M(B ⊗K). We can obtain a sufficiently generic such morphism using Voiculescu’s theorem,
and many computational aspects of KK go back to Voiculescu’s theorem in some way.

Remark 2.1.10. Some properties of KK:

1. KK(C, B) ∼= K0(B) and KK(C0(R), B) ∼= K1(B).

2. Also KK(B,C0(R)) gives BDF-theory, and KK(B,C) gives BDF-theory of the suspen-
sion SB.

3The strict topology is given by cλ → c strictly in M(B ⊗ K) iff ∥cλb − cb∥, ∥c∗λb − c∗b∥ → 0 for all
b ∈ B ⊗K.

4If one has Cuntz-pairs taking values in ideals Ei ▷M(B ⊗K),
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3. KK(A,−) is a covariant functor5 and KK(−, B) is a contravariant functor (this is
easy: precompose a Cuntz pair by a map C → A).

4. KK has various properties like homotopy invariance, stability, versions of the 6-term
exact sequence etc. For instance, suppose we have a short exact sequence

0 I E D 0

where the quotient has a completely positive split. Then we get a 6-term exact sequence

KK(A, I) KK(A,E) KK(A,D)

KK(A, SD) KK(A, SE) KK(A, SI)

Remark 2.1.11. Note that a map C0(R) → B induces a unital map C(T) → B̃ and C(T) is
generated by a unitary so we get a unitary in B̃. Taking differences of unitaries then gives
KK(C0(R), B) ∼= K1(B)

Definition 2.1.12 (Kasparov Product). Given separable A,B,C there exists an associative
bilinear product (not to be defined) called the Kasparov product

◦ : KK(A,B)×KK(B,C) → KK(A,C)

where for ∗-homomorphisms A
φ−→ B

ψ−→ C we have [ψ] ◦ [φ] = [ψ ◦ φ].

Remark 2.1.13. Using the Kasparov product we get KK(C, A)×KK(A,B) → KK(C, B)
so any κ ∈ KK(A,B) induces a group homomorphism κ0 : K0(A) → K0(B) and similarly
we get κ1 : K1(A) → K1(B).

Remark 2.1.14. In this way we get an additive category KK whose objects consist of
separable C*-algebras and whose morphisms are KK classes. Separable C*-algebras A and
B are KK-equivalent if they are isomorphic in KK, i.e. if there exist elements κ ∈ KK(A,B)
and κ′ ∈ KK(B,A) with κ′ ◦ κ = [idA] and κ ◦ κ′ = [idB].

The UCT

Theorem 2.2.1 (The Universal Coefficient Theorem (Rosenberg, Schochett)). Let A be a
C*-algebra. Then TFAE:

1. For all C*-algebras B, there is a natural exact sequence

0 Ext(K∗(A), K∗+1(B)) KK(A,B) Hom(K∗(A), K∗(B)) 0
κ0 ⊕ κ1 ,

5This is harder to see in this picture, as not all maps B → C extend to maps M(B ⊗K) → M(C ⊗K)
but it can be done. This is a place where other pictures of KK are easier
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2. There exists LCH X such that KK(A,−) ∼= KK(C(X),−).

Proof. (Sketch) For (2) implies (1), KK(C0(−), B) is a generalized homology theory of
pointed compact spaces and then mimic the proof of Eilenberg and Maclane’s UCT in
algebraic topology.

Definition 2.2.2 (UCT). We say A satisfies the UCT if for any B we have a short exact
sequence

0 Ext(K∗(A), K∗+1(B)) KK(A,B) Hom(K∗(A), K∗(B)) 0

Theorem 2.2.3 (Rosenberg, Schochett). If A,B satisfy the UCT then any isomorphism
κ∗ : K∗(A) → K∗(B) is induced by some invertible κ ∈ KK(A,B).

The map KK(A,B) → Hom(K∗(A), K∗(B)) above always exists: it is given by the
Kasparov product as in Remark 2.1.13. The UCT asserts that this is surjective. The other
map is defined in the other direction, from Ker(KK(A,B) → Hom(K∗(A), K∗(B))) back
to Ext(K∗(A), K∗+1(B)). It is a little hard to see in the Cuntz pair picture, but viewing

an element in KK(A,B) as given by an extension 0 A D SB 0 ,
the condition that such an extension lies in the kernel of KK(A,B) → Hom(K∗(A), K∗(B))
is precisely that the boundary maps of the extension vanish, and hence one gets an element of
Ext(K∗(A), K∗+1(B)). The UCT asserts that this map surjects onto Ext(K∗(A), K∗+1(B)).

Example 2.2.4. The following have the UCT:

1. C0(X) for any LCH X,

2. If An have UCT then so does any inductive limit of the An with injective connecting
maps.

3. If we have an extension 0 I E D 0 and 2/3 of these have
the UCT then so does the third. (Warning: it does not follow that quotients of C*-
algebras with the UCT have the UCT. All cones C0(0, 1]⊗D have the UCT, but as in
item 6 below, the quotient D might not).

4. If A ∼ B where ∼ is any of: homotopy equivalence, Morita equivalence, or KK-
equivalence (there exists invertible κ ∈ KK(A,B)), then A has UCT iff B does.

5. If A satisfies UCT then so does A⋊ Z and A⋊ R.

6. If A is UCT and Γ is torsion free amenable then A⋊ Γ is UCT. This is incredibly hard!
It uses Higson and Kasparov’s solution to the Baum-Connes conjecture, together with
some hard homological algebra of Meyer and Nest.

7. If A,B are unital UCT then A ∗C B is UCT. If ρ, γ are states on A,B respectively then
(A, ρ) ∗ (B, γ) is UCT.
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Slogan: if your algebra is built out of reasonable things then it will satisfy the UCT. For
example, AT-algebras, AH-algebras etc.

Remark 2.2.5 (Non example). If Γ is an infinite biexact group with property (T). Then
C∗
λ(Γ) fails the UCT. This can be embedded in O2, so the UCT does not pass to subalgebras.

Remark 2.2.6. Major open problem: Do all separable nuclear C*-algebras satisfy the UCT?
No conjectural counterexamples, and no approach for proving it either.

Theorem 2.2.7 (Tu/Barlak-Li, again building on Higson-Kasparov). If G is a locally compact
hausdorff 2nd-countable étale amenable groupoid with twist Σ, then C∗(G,Σ) satisfies the
UCT.

Remark 2.2.8. . For φ, ψ : A → B with φ ≈u ψ then it is possible for [φ] ̸= [ψ] ∈
KK(A,B). However, it is true that if there exists a continuous path (ut)t≥0 ⊆ U(B) with
limt→∞ ∥utφ(a)u∗t − ψ(a)∥ = 0 for all a ∈ A then [φ] = [ψ].

Definition 2.2.9 (Topology on KK). There is a natural topology on KK(A,B) such that
if φn, ψ : A → B are ∗-homomorphisms with ∥φn(a) − ψ(a)∥ → 0 for all a ∈ A, then
[φn] → [ψ] in KK(A,B). Note that if we have φn → φ in point norm, then there exists a
∗-homomorphism Φ : A → C(N+, B) (where N+ = N ∪ {∞} and C(N+, B) are convergent
sequences from N+ to B) with

Φ(a)(n) =

{
φn(a) if n <∞
φ(a) if n = ∞

For κn, κ ∈ KK(A,B), we say κn → κ inKK(A,B) iff there exists some κ̃ ∈ KK(A,C(N+, B))
such that

(evn)∗(κ̃) =

{
κn if n <∞
κ if n = ∞

If we quotient KK(A,B) by the closure of {0}, then we obtain KL(A,B) which is invariant
under approximate unitary equivalence, fixing the problem in the previous remark: if
φ, ψ : A→ B, φ ≈u ψ, then [φ] = [ψ] ∈ KL(A,B).

And yes, KL is so named since L comes after K. Rørdam introduced KL assuming A
satisfies the UCT, and this was extended by Dadarlat to a general definition.

Both philosophically and practically, one should think of KK as an invariant senstive
(and potentially for classifying up to) assymptotic unitary equivalence (i.e. by continuous
paths of unitaries), while KL works for approximate unitary equivalence (i.e. sequences of
unitaries).

Theorem 2.2.10 (Dadarlat-Loring, Universal Multicoefficient theorem). If A satisfies the
UCT, then for all B we have KL(A,B) ∼= HomΛ(K(A), K(B)) (just as with the UCT, the map
KL(A,B) → HomΛ(K(A), K(B)) always exists, is natural, and defined using the Kasparov
product) where K(A) is total K-theory (which consists of K∗, K∗(−,Zn), and the change of
coefficient maps)

12



Non-Stable KK-Theory

Remark 2.3.1. There are 2 problems that concern us:

1. Given a Cuntz pair A
ψ
−−⇒
φ
M(B ⊗K) with [φ, ψ] = 0, then how are φ, ψ related?

2. Given κ ∈ KK(A,B), when is κ induced by a ∗-morphism A→ B?

This should be compared with similar problems with K0. Given projections p, q ∈ A
which agree in K0, we know p⊕ 1⊕n ∼ q ⊕ 1⊕n, which we can view as a stable equivalence.
However typically what we want is a cancellation result, implying that p and q are actually
equivalent, without adding these copies of the unit.

In the case of Kirchberg algebras, these have very satisfactory answers.

Theorem 2.3.2 (Kirchberg-Phillips). If A is separable nuclear, and B is simple stable purely
infinite, then

KK(A,B) = {embeddings A ↪→ B}/ ∼h .

(This homotopy can be implemented via strong asymptotic unitarily equvialence, i.e. a
continuous path (ut)

∞
t=1 of unitaries with u1 = 1 and ∥utφ(x)u∗t − ψ(x)∥ → 0 for all x ∈ A.)

Also
KL(A,B) ∼= {embeddings A ↪→ B}/ ≈u .

In both cases, the unitaries are in the minimal unitisation of B

While the Kirchberg–Phillips theorem is often stated as a classification of UCT Kirchberg
algebras by K-theory, the real statement is that Kirchberg algebras are classified by KL.
The stable version of this statement is given below. There is a corresponding unital version,
where one needs to work with KL-elements which preserve the unit.

Theorem 2.3.3. If A,B are separable simple nuclear stable purely infinite (stable Kirchberg
algebras), then A ∼= B iff KL(A,−) ∼= KL(B,−). If A,B satisfy the UCT, then A ∼= B iff
K∗(A) ∼= K∗(B).

Proof. Combine the previous Kirchberg-Phillips with an intertwining argument applied to
the functor C∗alg → KL. The role of the UCT in the second statement is to be able to lift
any isomorphism K∗(A) ∼= K∗(B) to a KL-equivalence between A and B.

Returning to the general case, the Dadarlat–Eilers stable uniqueness theorem gives an
answer to the first question in Remark 2.3.1. In the sprit of the stable equivalence of
projections, one can go from [φ, ψ] = 0 to approximate unitary equivalence after adding on
an additional morphism θ to both sides.
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Theorem 2.3.4 (Dadarlat-Eilers, stable uniqueness Theorem). Suppose B is separable. Let

A
ψ
−−⇒
φ
M(B ⊗K) be a Cuntz pair. Then [φ, ψ] = 0 iff there exists θ : A→M(B ⊗K) and a

continuous path (ut)t≥0 ⊆ U( ˜M2(B ⊗K)) such that∥∥∥∥ut(φ(a) 0
0 θ(a)

)
u∗t −

(
ψ(a) 0
0 θ(a)

)∥∥∥∥ → 0 for all a ∈ A

Moreover, θ can be taken to be any absorbing representation θ : A→M(B⊗K) (in particular
for any ν : A→M(B ⊗K), we have ν ⊕ θ ≈u θ) (with unitaries in M(B ⊗K)).

It is tempting to ask why we can not just use absorption to get a result like this (and indeed
this came up in the lectures). The point is that using absorption to get an approximate unitary
equivalence would give unitaries coming from the muliplier algebra, and we really need that
the unitaries in the Dadarlat-Eilers stable uniqueness theorem lie in the unitisation of the 2×2
matrices over B⊗K, and not in the much larger algebra M2(M(B⊗K)) ∼= M(M2(B⊗K)).6

This will be crucial when we later use the stable uniqueness theorem. Indeed, we hinted

earlier that we would obtain our Cuntz pairs A
ψ
−−⇒
φ
E ▷B ⊗K, and then obtain Cuntz pairs

into the multiplier algebra as A
λψ
−−⇒
λφ

M(B ⊗K)▷B ×K. Suppose we could find unitaries

in (B ⊗K)∼ approximately conjugating φ to λψ. Then since these can also be viewed as
elements of E, they will also approximately conjugate φ to ψ in E. If our unitaries could
only be found in M(B ⊗K), then we would not learn anything about the original maps into
the smaller algebra E.

6and note that M is being used for matrices and multipliers in this equation!)
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Day 3

Z-Stability and Regularity

Definition 3.1.1 (Z-Stable). A C*-algebra A is Z-stable if A⊗Z ∼= A where the Jiang-Su
algebra Z is the unique infinite-dimension classifiable C*-algebra with KTu(Z) = KTu(C).

The exact definition of Z is not particularly important (though we will sketch a definition
below). What matters much more is the properties of Z, and more importantly Z-stable
C*-algebras. There are also now a range of tools developed for testing for Z-stability, without
direct reference to Z.

Remark 3.1.2. Note that if A is unital then KTu(A⊗Z) ∼= KTu(A).
7 However, one of the

reasons we drop K+
0 from the invariant is because K+

0 does change under tensoring with Z.
For instance, one property of Z-stable algebras is that if nx > 0 for some n ≥ 1 then x > 0
and there are algebras that do not satisfy this.

Definition 3.1.3 (M2∞-Stable). A is M2∞-stable if A⊗M2∞
∼= A.

Proposition 3.1.4. If A is separable unital, then A is M2∞-stable iff there exists an isomor-
phism θ : A→M2(A) and a sequence (un)

∞
n=1 ⊆M2(A) of unitaries such that∥∥∥∥un(a 0

0 a

)
u∗n − θ(a)

∥∥∥∥ → 0 for all a ∈ A

Proof. When A =M2∞ we haveM2(M2∞) ∼= M2∞ , and any 2 unital ∗-homomorphisms ofM2∞

are approximately unitarily equivalent (due to Glimm). Next, in general if ψ : A
∼=−→ A⊗M2∞

then choose an isomorphism θ0 :M2(M2∞) →M2∞ . Then we have

A
ψ−→ A⊗M2∞

idA ⊗θ−−−→ A⊗M2(M2∞) =M2(A⊗M2∞)
M2(ψ)−1

−−−−−→M2(A)

And idA⊗θ is approximately unitarily equivalent to id⊗d where d(x) =

(
x 0
0 x

)
, and

composing everything we see that the above map A → M2(A) is approximately unitarily

equivalent to a 7→
(
a 0
0 a

)
. The reverse direction is clear.

Remark 3.1.5. Note that, in the above proposition, the diagonal embedding A→M2(A) is

a point-norm limit of isomorphisms

(
a 0
0 a

)
= limnAd(u

∗
n)θ(a).

This

7In general one can use the Kunneth formula to compute K-theory of tensor products (here as Z satisfies
the UCT), but this is not necessary and one can show that K∗(A) ∼= K∗(A⊗Z) directly from a definition of
Z. The identification of traces and pairing is also relatively straightforward.
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Definition 3.1.6 (Strongly Self-Absorbing). A C*-algebra A is strongly self-absorbing if
A is unital, separable, infinite dimensional (this is here just to rule out C), and there exists
an isomorphism θ : A→ A⊗ A which is approximately unitarily equivalent to a 7→ a⊗ 1A.

Remark 3.1.7. At first glance it may seem like we need to specify what tensor product we
are using. But if this isomorphism holds in any particular tensor norm, then the algebra
must be nuclear, so the choice of tensor norm is irrelevant.

Theorem 3.1.8 (Effros and Rosenberg). Strongly self-absorbing algebras are simple, nuclear,
and either unique trace or purely infinite.

Example 3.1.9. The following are all strongly self-absorbing:

1. For a supernatural number n, the UHF-algebras of infinite type Mn∞ . This includes Q
– the universal UHF algebra – corresponding to the supernatural number

∏
n∈N n.

2. The Cuntz algebras On and O∞,

3. The Jiang-Su algebra,

4. Mn∞ ⊗O∞, for a supernatural number n

Theorem 3.1.10. The above examples are the only UCT strongly self-absorbing C*-algebras.

Theorem 3.1.11. If A is unital, separable, and D is ssa, then TFAE:

1. A⊗D ∼= A,

2. There exists θ : A→ A⊗D with θ ≈u idA ⊗ 1D,

3. There is a unital embedding D ↪→ A∞ ∩ A′ where A∞ = l∞(A)/c0(A).

Remark 3.1.12. The last condition above can be rewritten as a finitary statement using a
presentation for D.

For example, A⊗M2∞
∼= A iff for any finite F ⊆ A and ϵ > 0 there exists unital M2 ↪→ A

such that ∥eija− aeij∥ < ϵ for all a ∈ A, i, j = 1, 2.

Remark 3.1.13. The idea of defining Z is that we roughly want “Z =
⋂
n≥2Mn∞ =

M2∞ ∩M3∞”

Commentary: At the level of K-theory, if we understand an abelian group after inverting
2 and after inverting 3, then we can recover the original group.

Definition 3.1.14. Define

Z2∞,3∞ = {f ∈ C([0, 1],M2∞ ⊗M3∞) : f(0) ∈M2∞ ⊗ C, f(1) ∈ C ⊗M3∞}.
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Remark 3.1.15. Note that there are no non-trivial projections in Z2∞,3∞ . Indeed if p ∈
Z2∞,3∞ then for 0 ≤ t ≤ 1 we have tr(p(t)) ∈ Z[1/6] (viewing M2∞ ⊗M3∞ ⊆M6∞), so tr(p(t))
is constant as Z[1/6] is totally disconnected. However, tr(p(0)) ∈ Z[1/2] and tr(p(1)) ∈ Z[1/3]
so tr(p(t)) ∈ Z and hence p(t) = 0 or p(t) = 1 identically since it is a projection.

The following can be obtained from a short exact sequence argument using

0 C0((0, 1),M2∞ ⊗M3∞ Z2∞,3∞ M2∞ ⊕M3∞ 0 . (1)

Theorem 3.1.16. K0(Z2∞,3∞) ∼= Z, K1(Z2∞,3∞) = 0.

Theorem 3.1.17 (Rørdam-Winter/Schemaitat). There exists (unique up to approximate
unitary equivalence) α ∈ End(Z2∞,3∞) such that for any τ ∈ T (Z2∞,3∞), we have τα = τleb,

and Z = lim−→(Z2∞,3∞
α−→ Z2∞,3∞

α−→ · · · ).

The idea is that one views α as collapsing the interval as shown in the
SECOND DIAGRAM
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Then one uses the standard way to turn an endormorphism on a C*-algebra into an
automorphism on a containing algebra via a stationary inductive limit. The description of Z
in Theorem 3.1.17 is not the original (which was in terms of a carefully defined inductive
limit of similar dimension drop algebras Zpn,qn for coprime integers (rather than supernatural
numbers) pn and qn). Today for many purposes we can the conclusion of Theorem 3.1.17 as
the definition of Z.

It’s worth noting that Rørdam-Winter’s proof that an α as in Theorem 3.1.17 exists
goes through the earlier construction of Z; they build maps Z2∞,3∞ → Z → Z2∞,3∞ (which
will certainly collapse trace).8 Schemaitat uses classification results for morphisms between
UHF-algebras (upto asymptotic unitary equivalence) to obtain an α through an intertwining
argument. He gives a direct proof that Z is strongly self-absorbing from the inductive limit
in Theorem 3.1.17 using asymptotic classification results for UHF-algebras.

Often the way to prove results for Z-stable algebras, is to first understand how to prove
the result in UHF-stable algebras, and then try and use that Z2∞,3∞ is locally UHF in a
suitable sense.

Theorem 3.1.18 (Jiang). If A is unital Z-stable, then K1(A) = U(A)/U0(A)

This was first proved by Jiang from the original inductive limit picture. As part of the
classification paper, part of this was reproved using the corresponding results for UHF-stable
C*-algebras (and tensoring the short exact sequence (1) by A) in the classification paper,
and the other part by Hua. These give very good examples of how to go from UHF-stable
results to Z-stable results.

Trace–kernel extension

Remark 3.2.1. Goal: A,B unital separable simple nuclear (ussn), Z-stable UCT [not all
these hypotheses are needed on both A and B]. Then unital A→ B are classified up to ≈u

by

KTu = (K,K
alg
,Aff T, compatibility)

Via intertwining arguments it’s enough to classify embeddings A→ B∞ by KTu. (With
some care one can replace B∞ by Bω; in the end it makes no real difference, intertwining is a
bit easier with sequence algebras, traces are slightly nicer with ultrapowers. In the lectures
we’ll use what ever is most convenient at the time).

What can be said about B∞ (or Bω)? For example, B∞ is not nuclear and is not separable.
Also even if B is simple, Bω is typically no longer simple (it will be when B is Kirchberg).

Example 3.2.2.
∏

ωMn, is not a simple C*-algebra:

{(xn)∞n=1 ∈
∏

Mn :
rank(xn)

n
= 0}◁

∏
ω

Mn

8They don’t show that τα = τleb but instead realise Z as the inductive limit for any trace collapsing α.

18



In fact if Bω is simple, then either B is a matrix algebra, or B is simple and purely infinite,
when Bω is also simple and purely infinite.

Remark 3.2.3. For the rest of this section we’ll assume T (B) ̸= 0. Recall that classification
is split into the traceless (purely infinite) case, and the stably finite case (where B has at
least one trace).

Definition 3.2.4. If τ is a trace on B then we define

Jτ = {(bn)∞n=1 ⊆ B : lim
n
τ(b∗nbn)

1/2 = 0}⊴Bω

We then define

JB = {(bn)∞n=1 ∈ Bω : lim
n→ω

sup
τ∈T (B)

τ(b∗nbn)
1/2 = 0}⊴Bω

We call JB the trace-kernel ideal.

When computing K-theory one of the major tools is 6-term exact sequences, so it can
be difficult to calculate K-theory for a simple C*-algebra, where have no ideals to cut it
into smaller pieces. For Bω the ideal JB provides a tool for 6-term exact sequences, and
importantly the quotient is well behaved.

Theorem 3.2.5. Assume B is unital unique trace. Then Bω := Bω/JB (same as the 2-norm
tracial ultrapower of B) is isomorphic to (πτ (B)

′′)ω. In particular, Bω is a von Neumann
algebra (in fact a finite factor).

Proof. πτ (B)
′′ is a factor since τ is the unique normal trace. The map πτ : B → πτ (B)

′′

induces a map πωτ : Bω → (πτ (B)
′′)ω. Injectivity is easy and surjectivity comes from

Kaplansky density.

Definition 3.2.6 (Trace-Kernel Extension). We call the extension

eB : 0 JB Bω Bω 0ι qB

the trace-kernel extension of B.

Our strategy will be to split the classification into two parts. In the unique trace case, we
understand the von Neumann algebra Bω very well, and so can classify maps into this, up to
an error lying in JB.

Remark 3.2.7. Surprisingly, the trace-kernel extension was first used by Matui–Sato in the
more complicated central sequence form

0 JB ∩B′ Bω ∩B′ Bω ∩B′ 0

(which is harder to show is short exact!) and they obtained a lot of information about JB ∩B′,
enabling them to get Z-stability from strict comparison (for simple nuclear B with unique

19



trace). One can view their strategy as a lifting problem: when B is nuclear with unique trace,
Connes’ theorem shows that πτ (B)′′ is McDuff, and so R embeds into Bω ∩B′. Z is dense in
R, and the challenge is to lift the copy of Z back to Bω ∩B′:

0 JB ∩B′ Bω ∩B′ Bω ∩B′ 0

Z R

qB

?

The use of the trace-kernel extension without central sequences came later.

Remark 3.2.8. The strategy for classifying maps A→ Bω:

1. Classify embeddings A→ Bω (by traces)

2. Classify lifts along qB:

A

0 JB Bω Bω 0

θ
?

qB

The obstruction to existence of lifts is found in KK1(A,Bω). For uniqueness, given two
lifts φ, ψ of θ, then (φ, ψ) forms a (A, JB)-cuntz pair and so a class in KK(A, JB); this
class will determine whether φ and ψ are approximately unitarily conjugate.

3. Compute KK∗(A, JB) in terms of things related to A,B (this is where UCT enters).

Remark 3.2.9. Here are more details for step 1 when B has a unique trace: T (B) = {τB}.
Since we assume B, and hence πτB(B)

′′ is infinite dimensional, so Bω is a II1 factor. Next
assume A is separable nuclear. Due to Connes we have existence and uniqueness:

For uniqueness: if φ, ψ : A→ Bω are ∗-homomorphisms with τBωφ = τBωψ, then φ ∼u ψ
(normally we’d have φ ≈u ψ, but since we are in an ultrapower we can reindex and get
unitary conjugation on the nose). Indeed define τ := τBωφ = τBωψ, so φ, ψ extend to maps
φ, ψ : πτ (A)

′′ → Bω, and πτ (A)
′′ is hyperfinite by Connes’ theorem. This is a point in

which it matters we can get internal structure on A. Then the result follows from Murray
and von Neumann’s classification of projections in a II1 factor by their trace, which gives
a classification of maps out of finite dimensional algebras into II1 factors by trace. In this
way we have φ ≈u ψ. The approximate unitary equivalence here is in strong∗-topology, but
because we work in a ultrapower, one can reindex and get unitary equivalence of φ and ψ,
and hence unitary equivalence of φ and ψ.

For existence, if τ ∈ T (A), then there exists φ : A → Bω with τBωφ = τA by using
amenability of the trace τA to get approximately multiplicative maps from A into matrix
algebras which induce this trace, and embedding these matrix algebras into Bω.
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Day 4

Classifying Lifts

Remark 4.1.1. Let B be unital with T (B) ̸= 0. Recall

Bω = l∞(B)/{(bn) : lim
n→ω

∥bn∥ = 0}

Bω = l∞(B)/{(bn) : lim
n→ω

sup
τ∈T (B)

τ(b∗nbn)
1/2 = 0}

This gives the trace-kernel extension

0 JB Bω Bω 0
ιB qB

Theorem 4.1.2 (Ozawa). Let B be simple exact and Z-stable. Then T (Bω) = T (Bω).
Moreover the traces on Bω are generated by the limit traces9 coming from B.

As described in the last lecture, when T (B) = {τ} one has classification into Bω by
traces as a consequence of Connes’ theorem. When there are more traces, Z-stability (in fact
the weaker condition of uniform property Γ suffices), can be used to obtain von Neumann
like behavior on Bω (which is no longer a von Neumann algebra), and glue together the
classification along the traces one gets applying from Connes’ theorem into the ultrapower
for each individual trace to a global result. This gives:

Theorem 4.1.3 (Castillejos-Evington-Tikuisis-White-Winter10). Let A be separable unital
nuclear, B unital Z-stable, T (B) ̸= 0. Then

{Unital ∗-homs A→ Bω}/ ∼u = {Unital positive Aff T (A) → Aff T (Bω)}

Definition 4.1.4 (Full). A map θ : A→ D is full if for any a ∈ A\{0}, we haveDθ(a)D = D.
Equivalently, ker θ = 0 and θ(A) ∩D0 = 0 for any proper ideal D0 ⊇ D.

This definition should be compared with the condition in Voiculescu’s theorem that we
work with injective essential representations A→ B(H), i.e. injective maps range does not
intersect the compacts non-trivially. Fullness is the analogue for a map into an arbitrary
C*-algebra.

Theorem 4.1.5 (Classification of Lifts, CGSTW). Let E be unital, separable, Z-stable, let
I be stable, and let A be separable, unital, nuclear, and let θ : A → D be unital and full.

9A limit trace on Bω is a trace τ given by a sequence (τn) from T (B), and τ((bn)) = limn→ω τn(bn). Then
Ozawa’s theorem says that T (Bω) is the closure of the limit traces (noting that the collection of limit traces
is already convex).

10CETWW proved this when B is also nuclear; the version of the result given here uses results from
Carrión, Castillejos, Evington, Gabe, Schafhauser, White, Winter.
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Consider an extension11

A

0 I E D 0

θ

ι q

Then

1. There exists a unital lift ψ : A → E, ie. qψ = θ, iff there exists κ ∈ KK(A,E) such
that [q]κ = [θ] ∈ KK(A,D) and κ0[1A] = [1E] ∈ K0(E).

2. For a fixed ψ as in (1),

{Unital φ : A→ E : qφ = θ}/ ≈u with unitaries from Ĩ

is in bijective correspondence with

{κ ∈ KL(A, I) : κ0[1A] = 0 ∈ K0(I)},

by the map
φ 7→ [φ, ψ].

The point here is that given another lift φ of θ, then

A
ψ
−−⇒
φ
E ▷ I

is a Cuntz pair so defines a class [φ, ψ] ∈ KL(A, I).

Proof. (Sketch of injectivity for (2)): Assume we have a pair of maps A
ψ
−−⇒
φ
E with qφ = qψ = θ

(which is full) and [φ, ψ] = 0 ∈ KL(A, I). Then we get the following diagram with exact rows

A

0 I E D 0

0 I M(I) Q(I) 0.

ψφ

λ

Then we have a Cuntz pair A
λφ
−−⇒
λψ

M(I)⊵ I vanishing in KL(A, I). Then by (a KL-version

of the) Dadarlat-Eilers stable uniqueness theorem for any unitally absorbing µ : A→M(I),

there is a sequence (un)
∞
n=1 ⊆ U2(Ĩ) of unitaries such that

un

(
λφ(a) 0
0 µ(a)

)
u∗n →

(
λψ(a) 0

0 µ(a)

)
for all a ∈ A.

11Correction: one shoud also assume ind : K1(D) → K0(I) vanishes. This holds when in the trace-kernel
extension setting since K1(B

ω) = 0.
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By the theorem below we know that λφ, λψ : A → M(I) are unitally absorbing. Thus we
can apply this twice to get:(

λφ 0
0 λφ

)
≈u︸︷︷︸

in U2(Ĩ)

(
λψ 0
0 λφ

)
≈u︸︷︷︸

in U2(Ĩ)

(
λψ 0
0 λψ

)
.

It is vital that these approximate unitary equivalences happen with unitaries in U2(Ĩ) so
that they can be found in E. If we just used absorption, we would get λφ is approximately
unitarily equivalent to λψ with unitaries coming from M(I), but there is absolutely no reason
why this should give information about approximate unitary equivalence in E.

Thus we have that if φ, ψ : A → E are such that qφ = qψ = θ and [φ, ψ] = 0, then
φ ⊕ φ ≈u ψ ⊕ ψ. Note that if E ⊗M2∞ ≈ E then it would follows that φ ≈u ψ (in the
spirit of the last lecture. The approach to use Z-stability for something is to prove it first
for M2∞ and M3∞ and try to “glue it together” to get Z). Similarly if E is M3∞-stable then
φ⊕ φ⊕ φ ≈u ψ ⊕ ψ ⊕ ψ would imply φ ≈u ψ. The rough idea of the rest of the proof (for
which the details are omitted) is to patch these 2 together in Z2∞,3∞ to get φ ≈u ψ.

Theorem 4.1.6 (Elliott-Kucerovsky, Kuc-Ng, Ortega-Perera-Rørdam). If A is separable
unital nuclear, I-stable, Z-stable, and µ : A → M(I) is unital and full, then µ is unitally
absorbing.

Remark 4.1.7. Recall a unital µ : A→M(I) is unitally absorbing if for all unital η : A→
M(I) we have µ⊕η ≈u µ. Here the unitaries witnessing this approximate unitary equivalence
are in M(I).

Definition 4.1.8 (Separably Z-Stable). A C*-algebra A is separably Z-stable if for any
E0 ⊆ E separable there exists E1 ⊆ E separable such that E0 ⊆ E1 and E1 is Z-stable. In
general we can replace “Z-stable” with any other property we want.

Remark 4.1.9. Next, let’s apply the classification of lifts to the trace-kernel extension. This
fails immediately because Bω is not separable nor Z-stable (ultrapowers are not non-trivial
tensor products for set-theoretic silliness). However, Bω is separably Z-stable when B is
Z-stable. Similarly, JB is not stable, but we have a theorem telling us when JB is separably
stable.

Theorem 4.1.10. When B is unital, simple, Z-stable, QT (B) = T (B) (for instance B is
exact), then JB is separably stable.

Proof. (Sketch): We will assume B has real-rank zero. Then JB does as well. Note that for
p ∈ JB we have for any τ ∈ T (Bω) that τ(p) = 0 < 1 = τ(1 − p). By Z-stability we get
p ≾ 1− p so we get q as in the below theorem. In the non real-rank zero case, it’s similar
using positive elements and Cuntz comparison (and a slightly more technical condition), in
place of the comparison by projections.

Theorem 4.1.11 (Hjlemborg-Rørdam). For I real rank zero, I is separably stable iff for any
projection p ∈ P(I), there exists a projection q ∈ I such that qp = 0 and p ∼ q (Murray von
Neumann equivalence).
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Computing the Invariant

Theorem 4.2.1 (Classifying Maps A → Bω). Let A be separable unital nuclear, B unital
Z-stable. Then

{Unital θ : A→ B}/ ∼u
∼= {Positive unital Aff T (A) → Aff T (Bω)}

θ 7→ Aff T (θ)

Also, θ is full iff τθ ∈ T (A) is faithful for any τ ∈ T (Bω).

Definition 4.2.2. If A is separable, unital, and B is unital, Z-stable, simple, QT (B) = T (B),
then for unital φ, ψ : A → Bω with Aff T (φ) = Aff T (ψ), by the classification of lifts there
is a unitary u ∈ U(Bω) with Im(Ad(u)φ − ψ ⊆ JB). We then define ⟨φ, ψ⟩ = [Ad(u), ψ] ∈
KL(A, JB).

Theorem 4.2.3. ⟨φ, ψ⟩ is well-defined.

Proof. (Sketch) For existence of u, we have

A

0 JB Bω Bω 0

ψ φ

ι q

And Aff T (φ) = Aff T (ψ) implies Aff T (qφ) = Aff T (qψ), so there exists a unitary u ∈ Bω

such that Ad(u)qφ = qψ by the classification in Theorem 4.2.1. When B has unique trace, Bω

is a von Neumann algebra so U(Bω) is connected, hence u lifts to u ∈ U(Bω). In general (using
Z-stability) it is still true that U(Bω) is connected using “complemented partitions of unity”
[Castillejos-Evington-Tikuisis-White-Winter in the nuclear case; and work of CCEGSTW for
more general Z-stable B]. So there exists u ∈ U(Bω) that lifts u. Then qAd(u)φ = Ad(u)ψ.

For ⟨φ, ψ⟩ being independent of the choice of u, the key idea is that U(Bω) ∩ q(φ(A))′ is
path connected (again a consequence of complemented partitions of unity via Z-stability).
Then one uses ideas from the proof of the stable uniqueness theorem.

This class ⟨φ⟩ψ is the final piece of data needed to complete the classification of maps
A→ B∞:

Theorem 4.2.4 (Classifying Maps A→ Bω). Suppose γ : Aff T (A) → Aff T (Bω) is positive,
unital, faithful (meaning γ∗ : T (Bω) → T (A) has range in the faithful traces), and fix
θ : A→ Bω full with Aff T (θ) = γ. Then

1. There exists ψ : A → Bω with Aff T (θ) = γ iff there exists κ ∈ KK(A,Bω) with
[q]κ = [θ] ∈ KK(A,Bω) and κ0[1A] = [1B]

2. Given ψ : A→ Bω with Aff T (ψ) = γ, we have

{φ : A→ Bω : Aff T (φ) = γ}/ ∼u
∼= {κ ∈ KL(A, JB) : κ0[1A] = 0}

via the map φ 7→ ⟨φ, ψ⟩.
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Without the UCT, to go further at present one needs a map from A → B to give a
solution to the KK-lifting problem in part 1 of Theorem 4.2.4. If this map is assumed to
induce an isomorphism at the level of KK and traces, then one can run an intertwining
argument using the second part of the classification of maps A→ Bω without using the UCT:

Theorem 4.2.5 (S). If A,B are USSN Z-stable and φ : A→ B is unital with [φ] ∈ KK(A,B)
and T (φ) : T (B) → T (A) are invertible, then A ∼= B via an isomorphism that is ≈u to φ.

Another result without the UCT is that isomorphism of finite strongly self-absorbing
algebras is determined by unit preserving KK-equivalence.

With the UCT, things simplify as the UCT can be used to calculate KK(A,Bω and (via
the universal multicoefficient theorem) KL(A, JB).

Proposition 4.2.6. Let A,B be USSN Z-stable UCT. There exists κ ∈ KK(A,Bω) with
qκ = [θ] and κ0[1] = [1] iff there exists α : K0(A) → K0(B) with K0(q)α = K0(A) and
α[1] = [1]

Proof. (Sketch) The key idea for the above proposition is that Un(Bω) is connected for any
n ≥ 1, so K1(B

ω) = 0. And furthermore, projections in Bω are classified by their trace(s),
so K0(B

ω) ∼= Aff T (Bω), Both of these results rely on the von Neumann like behaviour of
Bω which comes from Z-stabiilty. Hence by the UCT KK(A,Bω) ∼= Hom(K0(A), K0(B

ω)).
Thus, given any α : K0(A) → K0(Bω) with K0(q)α = K0(A) and α[1] = [1], any KK-lift of α
to κ ∈ KK(A,Bω) works (this is far from unique, but that does not matter).

To illustrate these ideas, we show how these classification results pick up the quasidiago-
nality theorem of Tikuisis-White-Winter. The original proof of this theorem was one of the
last components of the original proof of the stably finite classification theorem. In hindsight
the lifting proof below, is a prototype for the abstract approach to classification.

Theorem 4.2.7 (Tikuisis-White-Winter). If A is separable, nuclear, UCT with a faithful
trace, then A is QD.

Proof. (Sketch) Let Q = ⊗n≥1Mn, then by Voiculescu A is QD iff A ↪→ Qω (this uses
nuclearity of A). If 1 ∈ A and τA is a faithful trace then Connes’ theorem gives the existence
of an embedding θ : (A, τA) ↪→ Rω = Qω. Thus we have

A

0 JQ Qω Rω 0

θ
?

ι q

And using classification of lifts, it is enough to show there exists a K0 lift preserving the unit

K0(A)

K0(Qω) K0(R
ω) 0

?

q∗
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The quotient map q∗ is surjective since the rationals are dense in the reals. AndK0(Qω), K0(R
ω)

are vector spaces and q is linear, so such a lift does indeed exist.

Remark 4.2.8. Finally to compute KL(A, JB), the UMCT (which is equivalent to UCT)
gives KL(A, JB) ∼= HomΛ(K(A), K(B). Then use the 6-term exact sequence in K applied to

0 JB Bω Bω 0

This leads to the invariant KTu(A) = (K,K
alg

1 ,Aff T, ρ) where we note that K1(JB) = K
alg

1 .
This leads to classifying embeddings A ↪→ Bω by KTu, which by intertwining leads to
classification of maps A→ B. Lastly,

K
alg

1
∼= K1(A)⊕ Aff T (A)/Im(ρ : K0(A) → Aff T (A))

(non-canonically) and

K∗(A;Zn) ∼= (K∗(A)⊗ Zn)⊕ Tor(K∗+1(A),Zn)

also non-canonically. So, for the classification of algebras, any isomorphismKTu(A) ∼= KTu(B)
lifts (non-canonically) to an isomorphism KTu(A) ∼= KTu(B). In this way we can rid of K

and K
alg

1 and classify algebras by the usual Elliott invariant.
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Day 5

Equivariant Classification

Remark 5.1.1. Throughout A,B are separable unital C*-algebras, and Γ is a countable
discrete group, and α : Γ ↷ A is an action unless otherwise specified. (For non unital algebras
things work, but one has to take care about where the unitaries are).

Definition 5.1.2 (Conjugate). We say α : Γ ↷ A and β : Γ ↷ B are conjugate if there
exists an equivariant isomorphism A → B, ie. an isomorphism φ : A → B such that
βgφ = φαg for all g ∈ G.

Definition 5.1.3 (Outer Automorphism). α : Γ ↷ A is outer if for any 1 ̸= g ∈ Γ, we have
αg ̸∈ Inn(A) = {Ad(u) : u ∈ U(A)}.

Theorem 5.1.4 (Connes 77’, Jones 80’). If Γ is finite, there exists a unique outer action
Γ ↷ R up to conjugacy. In particular, all outer actions are conjugate to the Bernoulli shift
Γ ↷ R⊗Γ

Remark 5.1.5. For infinite groups, conjugacy is often too strong. For equivariant maps
φ, ψ : (A,α) → (B, β) we have that φ ≈u ψ iff there exists unitaries (un)

∞
n=1 ⊆ B such that

∥unφ(a)u∗n − ψ(a)∥ → 0 and ∥βg(un)− un∥ → 0 for all a ∈ A, g ∈ G. In finite groups we can
always average and get lots of fixed points, but this is not always possible for infinite groups.

Also, note that if we have φ : (A,α) → (B, β) and ψ : (B, β) → (A,α) which are
equivariant and ψφ ≈u idA and φψ ≈u idB, then we do not necessarily have (A,α) conjugate
to (B, β). However this does imply (A,α) is cocycle conjugate to (B, β).

Definition 5.1.6 (Cocycle Conjugate). We say α : Γ ↷ A and β : Γ ↷ B are cocycle
conjugate if there exists φ : A → B and u : Γ → U(B) (just a function) such that
Ad(ug)βgφ = φαg for all g ∈ G, and ugβg(uh) = ugh. We write (A,α) ∼cc (B, β). We call
such a u a β-cocycle (or a β-1-cocycle).

Remark 5.1.7. If (A,α) ∼cc (B, β) then A⋊α Γ ∼= B ⋊β Γ.

Definition 5.1.8. Given β : Γ ↷ B and u : Γ → U(B) is a β-cocycle, there is a natural
action βu : Γ ↷ B given by βug = Ad(ug)βg.

Remark 5.1.9. Note that βu really is a group action. (This is one very good reason for
working with cocycle conjugacy).

βug β
u
h = Ad(ug)βg Ad(uh)βh

= Ad(ugβg(uh))βgβh

= Ad(ugh)βgh

= βugh

Theorem 5.1.10 (Oceanu 85’). If Γ is a countable discrete amenable group there is a unique
outer action Γ ↷ R up to cocycle conjugacy.
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Definition 5.1.11 (Cocycle Morphism). A cocycle morphism (φ, u) : (A,α) → (B, β) is a
∗-homomorphism φ : A→ B along with a function u : Γ → U(B) such that Ad(ug)βgφ = φαg
and ugβg(uh) = ugh. Composition is given by (ψ, v) ◦ (φ, u) = (ψφ, ψ(u•)v•).

Example 5.1.12. For β : Γ ↷ U(B) and u ∈ U(B) (so that Ad(u) is an automorphism), then
we can define a cocycle morphism ∂u : Γ → U(B) by (∂u)g = uβg(u)

∗. Then (Ad(u), ∂u) :
(B, β) → (B, β) is a cocycle morphism and these are the inner cocycle automorphisms.

Definition 5.1.13 (Approximately Unitarily Equivalent). If we have (φ, u), (ψ, v) : (A,α) →
(B, β), then we write (φ, u) ≈u (ψ, v) if there exists unitaries (wn)

∞
n=1 ∈ U(B) such that

(Ad(wn), ∂wn) ◦ (φ, u) → (ψ, v) in point-norm, or equivalently,

∥wnφ(a)w∗
n − ψ(a)∥ → 0

And
∥wnugβg(wn)∗ − vg∥ → 0

for all a ∈ A, g ∈ G.

Another important reason for working with cocycle conjugacy is that the two-sided
intertwining argument works in this framework. The abstract framework for this was developed
by Szabó; previously a different style of intertwining argument was used (Kishimoto-Evans
intertwining) for classification results for actions.

Theorem 5.1.14 (Szabó). Given cocycle morphisms (φ, u) : (A,α) → (B, β) and (ψ, v) :
(B, β) → (A,α) such that (φ, u) ◦ (ψ, v) ≈u idB and (ψ, v) ◦ (φ, u) ≈u idA, then (A,α) ∼cc

(B, β).

Remark 5.1.15. For the above theorem to work you only need A,B separable, Γ countable,
and this also works for twists by a 2-cocycle.

Theorem 5.1.16 (Gabe-Szabó). If A,B stable Kirchberg algebras, Γ amenable, α : Γ ↷ A
and β : Γ ↷ B outer actions, then (A,α) ∼cc (B, β) iff (A,α) ∼KKΓ (B, β).

Remark 5.1.17. There is a way to define KKΓ by taking “Cuntz pairs” of cocycle maps

(A,α)
(ψ,v)
−−−−−−⇒
(φ,u)

(E, γ)⊵ (B ⊗K, β ⊗ id).

Theorem 5.1.18 (Higson-Kasparov/Meyer-Nest). If Γ amenable torsion free, A,B separable
(not necessarily unital), and κ ∈ KKΓ(A,B) with κ invertible in KK(A,B), then κ is
invertible in KKΓ(A,B).

Remark 5.1.19. Take A,B = O2 so that KK(A,B) = 0. Then every element of
KKΓ(O2,O2) is invertible (as KK(O2,O2) = 0 and so all elements are invertible there)
hence every torsion-free amenable group has a unique outer action on O2 up to cocycle
conjugacy.
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In order to define the fundamental abstract property used by Gabe and Szabó we need a
model action.

Definition 5.1.20. Let Γ be a countable infinite group. Write

OΓ =

{
sg : g ∈ Γ : s∗gsh =

{
1 if g = h

0 else

}

(this is just O∞ but reindexed as Γ is infinite countable). We define γ : Γ ↷ OΓ by
γg(sh) = sgh.

Definition 5.1.21 (Isometric Shift Absorbing). An action β : Γ ↷ B is isometric shift
absorbing (ISA) if there exists unital equivariant (OΓ, γ) ↪→ (Bω ∩B′, β). This is equivalent
to (B, β)⊗ (OΓ, γ) ∼cc (B, β).

Theorem 5.1.22. If B is a unital Kirchberg algebra and β : Γ ↷ B an amenable outer
action, then (B, β) is ISA

Proof. (Sketch) Due to Kirchberg, Bω ∩B′ is simple purely infinite. Also, β : Γ → Bω ∩B′ is
outer. Then we can use a result of Kishimoto on the structure of outer actions on simple
C*-algebras.

Definition 5.1.23 (O2-Stable). We say (A,α) is O2-stable if (A,α)⊗ (O2, idO2) ∼cc (A,α),
or equivalently, if O2 ↪→ (Aω ∩ A′)α unitally where the superscript means the fixed points of
α.

Theorem 5.1.24 (Gabe-Szabo). For Γ torsion-free amenable, all outer actions of Γ ↷ O2

are (O2, idO2)-stable.

Sketch proof. Goal: For Γ amenable, α : Γ ↷ O2, β : Γ ↷ O2 outer, then α ∼cc β. For
convenience we will assume Γ is infinite.

This will be proved by establishing the following one-sided statement: For A unital
separable nuclear, α : Γ ↷ A and β : Γ ↷ O2 outer, O2-stable, there exists

(φ, u) : (A,α) ↪→ (O2, β)

which is unique up to ≈u.

For existence, we note that A ⋊α Γ is separable unital nuclear, so by Kirchberg’s O2-
embedding theorem A ⋊α Γ ↪→ O2. Set φ = φ̃|A : A → O2 which is a ∗-morphism, and
u = φ̃|Γ : Γ → U(O2) which is a group homomorphism, and then (φ, u) : (A,α) → (O2, id) is
a cocycle morphism. Then consider

(A,α)
(φ,u)−−−→ (O2, id)

1⊗id−−→ (O2, β)⊗ (O2, id) → (O2, β)
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The last map comes from O2-stability of β.

For uniqueness, For convenience we will assume that we have equivariant morphisms
φ, ψ : (A,α) → (O2, β) with A separable unital nuclear, and B separable O2-stable. We
want to find a unitary u ∈ U(B) such that Ad(u)φ ≈ ψ and u ≈ βg(u). By non-equivariant
classification, we can find w0 ∈ U((O2)ω) such that Ad(w∗

0)φ = ψ. Next, since O2 is ISA, we
can find a sequence of orthogonal isometries (sg)g∈Γ ⊆ (O2)ω ∩ O′

2 with βg(sh) = sgh. Fix
finite G ⊆ Γ and set

w =
1

|G|1/2
∑
g∈G

sgβg(w0) ∈ (O2)ω.

12 Then we compute that (using commutativity and orthogonality of the isometries)

w∗φ(a)w =
1

|G|
∑
g,h∈G

βg(w0)
∗s∗gφ(a)shβh(w0)

=
1

|G|
∑
g∈G

βg(w
∗
0)φ(a)βg(w0)

=
1

|G|
∑
g∈G

βg(w
∗
0φ(α

−1
g (a))w0)

=
1

|G|
∑
g∈G

βgψ(α
−1
g (a))

=
1

|G|
∑
g∈G

ψ(a)

= ψ(a)

We also note that w is an isometry and that

βg(w) =
1

|G|1/2
∑
h∈G

βg(shβh(w0))

=
1

|G|1/2
∑
h∈G

sghβgh(w0)

One can then check that

∥w − βg(w)∥2 =
|gG∆G|

|G|
Then take a sequence of Følner sets. What we get is that there exists an isometry w ∈ (O2)ω
such that w∗φ(a)w = ψ(a) and βg(w) = w. We denote this by φ ≾Γ ψ. By symmetry,
ψ ≾Γ φ.

12If we start with cocycle morphsisms (φ, u) and (ψ, v), take w =
1

|G|1/2
∑
g∈G

sgugβg(w)v
∗
g .
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Finally, to from this subequivalence in both directions to obtain unitary equivalence,
we use Connes’ 2 × 2 matrix trick. Suppose we have φ, ψ : A → O2 and consider π =(
φ 0
0 ψ

)
: A→M2(O2). Then we work with M2(O2)ω ∩π(A)′, where there are two canonical

projections p =

(
1 0
0 0

)
, q =

(
0 0
0 1

)
∈M2(O2)ω ∩ π(A)′. If p ∼ q in M2(O2)ω ∩ π(A)′, then

φ ≈u ψ. This works compatibly with the actions: If p ∼ q in (M2(O2)ω ∩ π(A)′)Γ then
φ ≈u ψ equivariantally.

Returning to uniqueness, we have φ ≾Γ ψ and ψ ≾Γ φ which implies p ≾ q and q ≾ p
in (M2(O2)ω ∩ π(A)′)Γ. And p + q = 1 implies p, q are full. A result of Cuntz states that
if p, q ∈ D are properly infinite full projections, then p ∼ q iff [p]0 = [q]0 ∈ K0(D). Now,
using that β is O2-stable, we see that (M2(O2)ω ∩ π(A)′)Γ is separably O2-stable. So p, q are
properly infinite full, and [p]0 = [q]0 since K0((M2(O2)ω ∩ π(A)′)Γ) = 0. Thus p ∼ q and so
φ ≈u ψ.
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