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Lecture 1: The classification theorem

The lecture will be devoted to a discussion of the following theorem:

Theorem A (The classification theorem: the unital case). Let A and
B be simple, separable, nuclear, regular C∗-algebras satisfying the UCT.
Then A ∼= B if and only if Ell(A) ∼= Ell(B). Moreover any isomorphism
between Ell(A) and Ell(B) is induced by an isomorphism between A and
B.

The theorem is the culmination of several decades of work spread
over thousands of pages in the literature with at least a few dozen
authors directly involved in the proof over this time. The theorem will
be compared to the fundamental result of Connes and Haagerup that
simple, separably acting, injective von Neumann algebras are classified
by their type and flow of weights. In the von Neumann algebraic setting,
the regularity condition is automatic. There is also no clear analogy
of the UCT condition—it appears in the C∗-algebraic setting due to
the necessity of K-theoretic invariants. Some applications will also be
discussed: for example, as the range of the Elliott invariant is well
understood, the classification theorem shows all such C∗-algebras are
(twisted) groupoid C∗-algebras and admit Cartan subalgebras.

The participants will be familiar with the first three hypotheses,
but many will be less familiar with the latter two. A detailed discus-
sion of regularity and the UCT will be deferred to Lectures 5 and
3, respectively. For this first lecture, the hypotheses will be explained
through examples, focusing on the class of crossed product C∗-algebras
C(X)⋊G for a compact metrizable space X, a discrete group G, and
an action G ↷ X by homeomorphisms. I will discuss sufficient (and
in some cases, necessary) conditions on the action which guarantee the

1



2 PRINCIPAL SPEAKER: C. SCHAFHAUSER

crossed product C∗-algebras is classifiable: briefly, this holds if the ac-
tion is free and minimal, X is finite dimensional, and G is elementary
amenable. I will also discuss how the invariant relates to the dynam-
ics, restricting to the case of the irrational rotation algebras C(T)⋊Z,
given by an aperiodic rotation of the circle.

Lecture 2: Intertwining Arguments

The most basic tools underlying classification results in C∗-algebras
are intertwining arguments. For unital, separable C∗-algebras A and B
and unital morphisms ϕ, ψ : A→ B, we say ϕ and ψ are approximately
unitarily equivalent if there is a sequences of unitaries in B which in the
limit, pointwise in norm, conjugate ϕ to ψ. A fundamental observation
of Elliott is that if there are morphisms A→ B and B → A which are
inverses up to approximate unitary equivalence, then A ∼= B. This has
become known as Elliott’s two-sided intertwining argument. Although
the result is not too difficult to prove, it leads to a template for classi-
fying C∗-algebras up to isomorphism: one first classifies morphisms up
to approximate unitary equivalence. This is the strategy taken in the
classification theorem.

I will lead into this result with a discussion and sketch of proof
of Elliott’s classification of AF-algebras: those C∗-algebras which are
the closure of a union of an increasing sequence of finite dimensional
C∗-subalgebras. The basic idea is that morphisms between finite di-
mensional C∗-algebras are completely understood by the Wedderburn
theorems, and hence the entire content of the classification is the inter-
twining arguments. AF-algebras and their classification will be familiar
to a large portion of the audience, but the presentation will be some-
what different than the standard textbook presentations in that it will
isolate and highlight the intertwining arguments and will focus on a
one-sided version classifying morphisms from AF-algebras to very gen-
eral codomains.

This also leads into another fundamental intertwining argument. In
the case of AF-algebras, one classifies morphisms out of finite dimen-
sional C∗-algebras and uses a construction known as “Elliott’s one-
sided intertwining argument” to extend the classification result to the
inductive limit. Without an inductive limit decomposition of the do-
main (say in the setting of Theorem A), one replaces morphisms out
of subalgebras with approximate morphisms : sequences of linear maps
A→ B which preserve multiplication in the limit. An abstract version
of the one-sided intertwining argument reduces classifying morphisms
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to classifying approximate morphisms. Or equivalently, the classifica-
tion reduces to classifying morphisms from a C∗-algebra A to the se-
quence algebra B∞ = ℓ∞(B)/c0(B) of a C∗-algebra B. This will reap-
pear in Lecture 6.

Lecture 3: KK-Theory and the UCT

Kasparov’s KK-theory is a formidable tool in C∗-algebra theory. It
provides a link between (and a simultaneous generalization of) oper-
ator K-theory and the K-homology/extension theory of Atiyah and
Brown–Douglas–Fillmore. Very loosely speaking, KK-theory can be
viewed as an abelianization of the category of C∗-algebras with homo-
topy classes of ∗-homomorphisms. It serves as a bridge between C∗-
algebras and their K-theory groups. For instance, every morphisms of
C∗-algebras A → B induces an element of KK(A,B), and every ele-
ment of KK(A,B) induces a morphism K∗(A) → K∗(B). The compu-
tational properties ofKK-theory allow for manipulations of elements of
KK(A,B) which are not possible at the level of ∗-homomorphisms. It
is impossible to give a full description of KK-theory in a 50 minute lec-
ture, but I will give an intuitive description, highlighting the definition
in terms of Cuntz pairs, which is most relevant ot the the classification
theory and, in particular, to the next several lectures.

This lecture will also discuss theUniversal Coefficient Theorem (UCT)
which essentially states that KK-theory is completely determined by
its action on the operator K-theory functors K∗. In the context of
Theorem A, if two such C∗-algebras A and B have isomorphic Elliott
invariants, then, in particular, they have isomorphic K-theory groups.
The UCT allows one to conclude that A and B are KK-equivalent in
the sense that there are elements in KK(A,B) and KK(B,A) which
are inverses under Kasparov product (the natural notion of composition
in KK-theory). This is in some sense the starting point for obtaining
an isomorphism A→ B.

Lecture 4: Non-stable extension theory

The main drawback of KK-theory and extension theory is that one
loses a lot of information in the stabilizations and homotopy equiv-
alences needed to obtain computational tools. Non-stable extension
theory focuses on removing these stabilizations and replacing the ho-
motopies with more rigid equivalence relations (e.g. approximate uni-
tary equivalence). A landmark result in this direction is the Kirchberg–
Phillips theorem which, in one form, states that for a separable nu-
clear C∗-algebra A and simple, non-unital C∗-algebra B, the group



4 PRINCIPAL SPEAKER: C. SCHAFHAUSER

KK(A,B) is naturally in bijection with asymptotic unitary equiva-
lence classes of ∗-homomorphisms A → B ⊗ O∞. For the stably finite
classification, the main underlying tool from non-stable KK-theory is
the Dadarlat–Eilers–Lin stable uniqueness theorem.

Roughly, suppose A and B are separable C∗-algebras. Let K de-
note the compact operators on a separable, infinite dimensional Hilbert
space and let M(B ⊗K) be the stable multiplier algebra of B. Two ∗-
homomorphisms ϕ, ψ : A→M(B⊗K) with ϕ(a)−ψ(a) ∈ B⊗K induce
an element [ϕ, ψ] ∈ KK(A,B)—this will be the picture of KK(A,B)
taken as the definition in Lecture 3. The stable uniqueness theorem
states that if [ϕ, ψ] = 0, there is a ∗-homomorphism θ : A→M(B⊗K)
and a one-parameter family of unitaries (ut) in the minimal unitization
of M2(B ⊗K), which in the limit conjugates ϕ⊕ θ to ψ ⊕ θ pointwise
in norm. The point of the theorem is that the stabilizations in KK-
theory can be collected in a single map θ (and there is some freedom
in choosing θ), and the homotopies can be implemented by unitaries.

The lecture will focus around the notion of absorption, which is an
abstracted version of the conclusion of Voiculescu’s theorem. When ϕ
and ψ are absorbing, one can take the summand θ to be either ϕ or ψ,
and by doing both of these, one can conclude that ϕ ⊕ ϕ and ψ ⊕ ψ
are asymptotically unitarily equivalent via unitaries in the minimal
unitization of M2(B ⊗ K). A slightly more refined version allows one
to replace the 2 × 2 matrix amplification with a tensor factor of Z to
get a similar equivalence between ϕ⊗ 1Z and ψ ⊗ 1Z .
The proofs are somewhat involved. Instead of going into the details of

the result (or even a precise statement), the goal of the lecture will be to
introduce the notion of absorption, drawing intuition from Voiculescu’s
theorem, and to highlight the fundamental role in plays in passing from
KK-theoretic computations back to C∗-algebraic results. I will end
with a statement of the Elliott–Kucerovsky theorem, which gives a very
concrete method for verifying absorption under nuclearity hypotheses.
Using this theorem, the absorption will be accessed in Lecture 6 using
the regularity theory laid out in Lecture 5.

Lecture 5: Z-stability and regularity

This lecture will be devoted to the remaining hypothesis in Theo-
rem A: regularity. The three main flavors of regularity are

(i) finite nuclear dimension, a non-commutative analogue of a
topological space being finite dimensional,
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(ii) Z-stability, an analytic condition characterized by a rich supply
of approximately central sequences and analogous to McDuff’s
property in von Neumann algebras, and

(iii) strict comparison, asking that the comparison theory in the C∗-
algebra is determined by scalar-valued rank functions, analo-
gous to Murray and von Neumann’s classification of projections
in a finite factor by their trace.

The Toms–Winter Conjecture (circa 2005) states that the three condi-
tions are equivalent for unital, separable, simple, nuclear, non-elementary
C∗-algebras. The implications (i)⇔(ii)⇒(iii) are known and the re-
maining implication (iii)⇒(ii) is known in several cases of interest (e.g.
for C∗-algebras with unique trace).

The regularity conditions (ii) and (iii) will be most relevant to the
later lectures, and this is where the focus will be (although (i) is often
how regularity is verified in examples). I will define these conditions,
and in particular, sketch a construction of the Jiang–Su algebra Z.
I will also discuss the connection between tensorial absorption of Z
and the central sequence algebras, drawing analogies with McDuff’s
analogous results from von Neumann algebra theory.

Lecture 6: The trace-kernel extension

The trace-kernel extension lies at the heart of the new approach to
the classification theorem. Let A and B be as in Theorem A and assume
they have at least one trace (the traceless case of Theorem A follows
from the Kirchberg–Phillips theorem mentioned in Lecture 4). The non-
stable extension theory cannot apply to such C∗-algebras directly as
simple C∗-algebras, by definition, have no ideals. However, the sequence
algebra B∞ = ℓ∞(B)/c0(B) discussed in Lecture 2 has a very natural
ideal JB ⊴ B∞ consisting the “tracially null sequences” in B. This is
the trace-kernel ideal of B. The quotient B∞ = B∞/JB carries natural
von Neumann algebraic structure—loosely speaking, it is a bundle of
II1 factors. Making use of the central sequences in B∞ arising from Z-
stability, Connes’s theorem can be combined with a partition of unity
argument to classify morphisms A → B∞ up to unitary equivalence
by tracial data. This reduces the classification of maps A → B∞ to
classifying lifts along the trace-kernel extension as pictured below:

A

0 JB B∞ B∞ 0.

θ
?

jB qB
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Extension theoretic regularity coming from strict comparison of B al-
lows one to reduce to classify such lifts.

After recalling the definition of the sequence algebra of B∞ and defin-
ing the trace-kernel extension, this lecture will focus on the case when
B has unique trace. In this case, the partition of unity argument us-
ing Z-stability can be avoided entirely. I will also only focus on the
question of when there is a lift A → B∞ of a given map θ and de-
fer discussion the uniqueness problem for such lifts to Lecture 7. This
special case is enough to prove the celebrated quasidiagonality theo-
rem of Tikuisis, White, and Winter, and the lecture will be focused
around this application. In the larger picture, this provides a method
for constructing an approximate morphism A → B, which is the first
step towards producing an isomorphism, as discussed in Lecture 2 on
intertwining arguments. Lectures 7 and 8 will refine this idea, leading
to the full classification theorem.

Lecture 7: Classification of lifts

This will be a continuation of Lecture 6 describing all lifts of a given
map θ : A → B∞ up to unitary equivalence. Strict comparison of B
is used to obtain a refined non-stable extension theory through the
Elliott–Kucerovsky theorem. The non-stable extension theory from lec-
ture 4 and KK-theory from lecture 3 will be recalled and refined to
discuss how to classify morphisms A→ B∞ in terms of their behavior
on traces and a secondary invariant in the group KK(A, JB).

Lecture 8: Computing the invariant

The intertwining arguments of Lecture 2 reduce the Theorem A to
the classification of morphisms A → B∞. Then Lecture 7 obtains the
classification of such morphisms in terms of traces and KK(A, JB).
The goal of this final lecture on Theorem A will be to relate the group
KK(A, JB) to K-theoretic data of B∞. Roughly, KK(A, JB) can be
computed in terms of the K-theory groups K∗(B∞;Z/n) and (a varia-

tion of) the algebraicK1-group K̄
alg
1 (B∞). This computation then read-

ily implies Theorem A from Lecture 1 via the intertwining arguments
from Lecture 2. In fact, one obtains a stronger version of Theorem A
which classifies embeddings A → B under the same hypotheses (and
even somewhat more generally).

I will state the result of the computation in general but will re-
strict all further discussion to the case B has unique trace with divis-
ible K-theory groups, which drastically simplifies the computation of
KK(A, JB) and only involves working with the more familiar K-theory
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groups K0 and K1. This special case is also enough to prove separable,
nuclear, monotracial C∗-algebras with a unique trace can be embedded
into a simple AF-algebra.

Lecture 9: Equivariant classification I

The final two lectures are devoted to the next steps in the classifica-
tion theory. Following Connes’s fundamental work on injective factors,
there was a large body of work of Connes, Jones, and Ocneanu in the
subsequent decade on the structure of symmetries of such algebras.
A high point of this investigation was Ocneanu’s theorem that every
countable, discrete, amenable group admits an outer action on the sep-
arably acting, hyperfinite II1 factor and this action is unique up to
cocycle conjugacy. The classification and structure of group actions on
simple, nuclear C∗-algebras is still in early stages but has been a rapidly
growing subject.

This first lecture on equivariant classification will put the problem in
context and give basic definitions, such as the definition of cocycle con-
jugacy and the relevance of this equivalence relation. I will also discuss
the notion of cocycle morphisms between group actions and establish
basic properties of these morphism. The naive notion of morphism be-
tween group actions is a morphism of the underlying algebras which
intertwines the action. For technical reasons, this notion of morphism
is too restrictive. Essentially, the intertwining arguments of Lecture
2 suggests one should study morphisms up to (approximately) inner
automorphisms of the codomain, and there are very few inner auto-
morphisms in the category of equivariant morphisms. The notion of
a cocycle morphism relaxes the equivariance condition requiring that
a morphism preserves the group action only up to a 1-cocycle, and
this weaker notion of morphisms leads to an abundance of inner auto-
morphisms. Further, cocycle conjugacy is exactly isomorphism in the
category of group actions and cocycle morphisms.

The definitions of cocycle morphisms and related concepts look a bit
mysterious when they are seen for the first time. The goal of the lecture
will be to present this material at a leisurely pace and show how the
notion arises naturally, and to explain the basic operational construc-
tions such as composition and conjugacy. The lecture will conclude with
equivariant versions of the intertwining arguments from Lecture 2 and
a brief discussion of a strategy for obtaining general equivariant clas-
sification results by incorporating group actions in the material from
the first 8 lectures. Only a few of these modifications have been done,
such as the intertwining arguments, building an equivariant extension
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theory and KK-theory, and very recently, some preliminary results on
a non-stable KK-theory for group actions. Fleshing out equivariant
versions of the various components of the proof of the classification
theorem is a largely unexplored topic which will be important as the
equivariant theory further develops.

Lecture 10: Equivariant Classification II

This final lecture will be devoted to a consequence of Theorem A
which classifies actions of finite groups on C∗-algebras in Theorem A
under the assumption that the group actions satisfy the Rokhlin prop-
erty. The proof is essentially due to Izumi (circa 2004), where the re-
sult was proved in the purely infinite setting. The only modification to
Izumi’s proof is quoting the classification of automorphisms of the alge-
bras in Theorem A (discussed in Lecture 8) in place of the Kirchberg–
Phillips theorem. While the proof is now classical, it is not very well
known. The Rokhlin condition on the actions is fairly restrictive, but
the proof under this strong condition is highly digestible and it high-
lights some of the main techniques in the equivariant classification and
structure theory: the intertwining arguments and a method for averag-
ing non-equivariant classification over Følner sets in the group (or the
whole group in the case here of a finite group). The latter technique is
deeply hidden in most equivariant classification results, but under the
extra orthogonality provided by the Rokhlin property, this step of the
proof can be made very transparent. This also leads to a very definitive
equivariant classification results to end the lecture series.
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