CLASSIFYING LIFTS IN THE TRACE-KERNEL EXTENSION

JOINT WORK WITH J. GABE, C. SCHAFHAUSER, A. TIKUISIS, AND S. WHITE

José Carrión TCU December 2, 2019

University of Hawai'i at Mānoa

APPROXIMATE CLASSIFICATION OF MORPHISMS

Ultimate goal: classify *-hom's $A \rightarrow B$

Classify: prove existence and uniqueness theorems.

Uniqueness is up to "approximate" unitary equivalence.

APPROXIMATE CLASSIFICATION OF MORPHISMS

Ultimate goal: classify *-hom's $A \rightarrow B$

Classify: prove existence and uniqueness theorems.

Uniqueness is up to "approximate" unitary equivalence.

Can instead classify *-hom's $A \to B_{\infty}$, where

$$B_{\infty} = \ell^{\infty}(B)/c_0(B).$$

APPROXIMATE CLASSIFICATION OF MORPHISMS

Ultimate goal: classify *-hom's $A \rightarrow B$

Classify: prove existence and uniqueness theorems.

Uniqueness is up to "approximate" unitary equivalence.

Can instead classify *-hom's $A \to B_{\infty}$, where

$$B_{\infty} = \ell^{\infty}(B)/c_0(B).$$

Ultimate goal: classify *-hom's $A \rightarrow B$

Classify in \sim 3 steps, using trace kernel extension:

Ultimate goal: classify *-hom's $A \rightarrow B$

Classify in \sim 3 steps, using trace kernel extension:

1. classify *-hom's $A \to B^{\infty} := \ell^{\infty}(B)/\{(b_n) : ||b_n||_{2,u} \to 0\}$

Ultimate goal: classify *-hom's $A \rightarrow B$

Classify in \sim 3 steps, using trace kernel extension:

- 1. classify *-hom's $A \to B^{\infty} := \ell^{\infty}(B)/\{(b_n) : ||b_n||_{2,u} \to 0\}$
- 2. classify lifts of these *-hom's to B_{∞}

Ultimate goal: classify *-hom's $A \rightarrow B$

Classify in \sim 3 steps, using trace kernel extension:

- 1. classify *-hom's $A \to B^{\infty} := \ell^{\infty}(B) / \{(b_n) : ||b_n||_{2,u} \to 0\}$
- 2. classify lifts of these *-hom's to B_{∞}
- 3. couch classification in terms of invariant; K-theoretic computation involving $J_B := \{(b_n) : ||b_n||_{2,u} \to 0\}$

CLASSIFYING LIFTS

This talk will focus on lifts

Existence and uniqueness results: in terms of $KK(A, B_{\infty})$ and $KK(A, J_B)$. Used in argument:

- nuclearity (either of A or of the maps)
- Z-stability/enough comparison for B
- · stability of J_B and that it's a "tight fit" in B_∞
- · either simplicity of alg's or fullness of maps

CLASSIFYING LIFTS

This talk will focus on lifts

Existence and uniqueness results: in terms of $KK(A, B_{\infty})$ and $KK(A, J_B)$. Used in argument:

- nuclearity (either of A or of the maps)
- Z-stability/enough comparison for B
- · stability of J_B and that it's a "tight fit" in B_∞
- · either simplicity of alg's or fullness of maps

Can classify lifts for more general extensions. (Later.)

CLASSIFYING LIFTS

This talk will focus on lifts

Existence and uniqueness results: in terms of $KK(A, B_{\infty})$ and $KK(A, J_B)$. Used in argument:

- nuclearity (either of A or of the maps)
- Z-stability/enough comparison for B
- · stability † of J_B and that it's a "tight fit" in B_∞
- · either simplicity of alg's or fullness of maps

Can classify lifts for more general extensions. (Later.)

[†] Disclaimer: J_B is actually "separably" stable: $I \subseteq J_B$ separable $\Rightarrow \exists$ separable and stable $I_0 \subseteq J_B$ s.t. $I \subseteq I_0$.

SAMPLE UNIQUENESS RESULT

Think of Voiculescu's Theorem:

If φ, ψ are "ample" lifts (faithful, nondegenerate, and $\varphi(A) \cap \mathcal{K} = \{0\} = \psi(A) \cap \mathcal{K}$), then $\varphi \approx_u \psi$.

SAMPLE UNIQUENESS RESULT

Think of Voiculescu's Theorem:

If φ, ψ are "ample" lifts (faithful, nondegenerate, and $\varphi(A) \cap \mathcal{K} = \{0\} = \psi(A) \cap \mathcal{K}$), then $\varphi \approx_u \psi$.

In fact:

Theorem (Dadarlat-Eilers '01)

Suppose: $\varphi, \psi \colon A \to \mathcal{B}(\mathcal{H})$ are ample lifts of θ .

$$[\varphi, \psi] = 0 \in KK(A, \mathcal{K}) \iff \varphi \approxeq \psi$$

Def.

• (A,B)-Cuntz pair: *-hom's $\varphi^+, \varphi^-: A \to M(B \otimes \mathcal{K})$ with $\operatorname{im}(\varphi^+ - \varphi^-) \subseteq B \otimes \mathcal{K}$

Def.

- (A,B)-Cuntz pair: *-hom's $\varphi^+, \varphi^-: A \to M(B \otimes \mathcal{K})$ with $\operatorname{im}(\varphi^+ \varphi^-) \subseteq B \otimes \mathcal{K}$
- homotopy of Cuntz pairs: an (A, C([0,1], B))-Cuntz pair

Def.

- (A,B)-Cuntz pair: *-hom's $\varphi^+, \varphi^-: A \to M(B \otimes \mathcal{K})$ with $\operatorname{im}(\varphi^+ \varphi^-) \subseteq B \otimes \mathcal{K}$
- homotopy of Cuntz pairs: an (A, C([0,1], B))-Cuntz pair
- · sum of Cuntz pairs: $(\phi^+ \oplus \psi^+, \phi^- \oplus \psi^-)$ where

$$\varphi^{\pm} \oplus \psi^{\pm} := s\varphi^{\pm}(\cdot)s^* + t\psi^{\pm}(\cdot)t^*$$
$$s^*s = 1 = t^*t; \qquad 1 = ss^* + tt^*$$

Def.

- (A,B)-Cuntz pair: *-hom's $\varphi^+, \varphi^-: A \to M(B \otimes \mathcal{K})$ with $\operatorname{im}(\varphi^+ \varphi^-) \subseteq B \otimes \mathcal{K}$
- homotopy of Cuntz pairs: an (A, C([0,1], B))-Cuntz pair
- \cdot sum of Cuntz pairs: $(\phi^+\oplus\psi^+,\phi^-\oplus\psi^-)$ where

$$\varphi^{\pm} \oplus \psi^{\pm} := s\varphi^{\pm}(\cdot)s^* + t\psi^{\pm}(\cdot)t^*$$
$$s^*s = 1 = t^*t; \qquad 1 = ss^* + tt^*$$

• KK(A, B): homotopy classes of (A, B)-Cuntz pairs; Abelian group with sum above.

Def.

- (A,B)-Cuntz pair: *-hom's $\varphi^+, \varphi^-: A \to M(B \otimes \mathcal{K})$ with $\operatorname{im}(\varphi^+ \varphi^-) \subseteq B \otimes \mathcal{K}$
- homotopy of Cuntz pairs: an (A, C([0,1], B))-Cuntz pair
- sum of Cuntz pairs: $(\phi^+\oplus\psi^+,\phi^-\oplus\psi^-)$ where

$$\varphi^{\pm} \oplus \psi^{\pm} := s\varphi^{\pm}(\cdot)s^* + t\psi^{\pm}(\cdot)t^*$$
$$s^*s = 1 = t^*t; \qquad 1 = ss^* + tt^*$$

• KK(A, B): homotopy classes of (A, B)-Cuntz pairs; Abelian group with sum above.

- · zero element: $[\varphi, \varphi]_{KK}$, any $\varphi: A \to M(B \otimes \mathcal{K}) \in KK(A, B)$
- if $\pi: A \to B$ and $p \in \mathcal{K}$ rank-one projection:

$$[\pi]_{\mathit{KK}} := \big[\pi(\,\cdot\,) \otimes p, 0\big]_{\mathit{KK}} \ \in \mathit{KK}(A,B)$$

- zero element: $[\varphi, \varphi]_{KK}$, any $\varphi: A \to M(B \otimes \mathcal{K}) \in KK(A, B)$
- if $\pi: A \to B$ and $p \in \mathcal{K}$ rank-one projection:

$$[\pi]_{\mathit{KK}} := \big[\pi(\,\cdot\,) \otimes p, 0\big]_{\mathit{KK}} \ \in \mathit{KK}(A,B)$$

- · zero element: $[\varphi, \varphi]_{KK}$, any $\varphi: A \to M(B \otimes \mathcal{K}) \in KK(A, B)$
- if $\pi: A \to B$ and $p \in \mathcal{K}$ rank-one projection:

$$[\pi]_{\mathit{KK}} := \big[\pi(\,\cdot\,) \otimes p, 0\big]_{\mathit{KK}} \ \in \mathit{KK}(A,B)$$

- · zero element: $[\varphi, \varphi]_{KK}$, any $\varphi: A \to M(B \otimes \mathcal{K}) \in KK(A, B)$
- if $\pi: A \to B$ and $p \in \mathcal{K}$ rank-one projection:

$$[\pi]_{\mathit{KK}} := \big[\pi(\,\cdot\,) \otimes p, 0\big]_{\mathit{KK}} \ \in \mathit{KK}(A,B)$$

• Consider an extension $0 \to I \xrightarrow{J} E \to D \to 0$ where $I \cong I \otimes \mathcal{K}$. Let $\lambda \colon E \to M(I)$ canonical map.

given
$$\varphi, \psi \colon A \to E$$
, $\operatorname{im}(\varphi - \psi) \subseteq I$,
 $\leadsto [\varphi, \psi]_{KK} := [\lambda \varphi, \lambda \psi]_{KK} \in KK(A, I)$

- · zero element: $[\varphi, \varphi]_{KK}$, any $\varphi: A \to M(B \otimes \mathcal{K}) \in KK(A, B)$
- if $\pi: A \to B$ and $p \in \mathcal{K}$ rank-one projection:

$$[\pi]_{\mathit{KK}} := \big[\pi(\,\cdot\,) \otimes p, 0\big]_{\mathit{KK}} \ \in \mathit{KK}(A,B)$$

• Consider an extension $0 \to I \xrightarrow{J} E \to D \to 0$ where $I \cong I \otimes \mathcal{K}$. Let $\lambda \colon E \to M(I)$ canonical map.

given
$$\varphi, \psi \colon A \to E$$
, $\operatorname{im}(\varphi - \psi) \subseteq I$,
 $\leadsto [\varphi, \psi]_{KK} := [\lambda \varphi, \lambda \psi]_{KK} \in KK(A, I)$

Moreover: j gives KK(A, j): $KK(A, I) \rightarrow KK(A, E)$ and

$$KK(A,j)\Big([\varphi,\psi]_{KK}\Big)=[\varphi]_{KK}-[\psi]_{KK}$$

STABLE UNIQUENESS AND ABSORPTION

Suppose $I \cong I \otimes \mathcal{K}$.

Theorem (Dadarlat-Eilers)

$$\varphi, \psi \colon A \to M(I)$$
 Cuntz pair.

$$[\varphi,\psi]_{KK}=0 \iff \varphi\oplus\sigma\approxeq\psi\oplus\sigma$$

for some $\sigma: A \to M(I)$.

STABLE UNIQUENESS AND ABSORPTION

Suppose $I \cong I \otimes \mathcal{K}$.

Theorem (Dadarlat-Eilers)

$$\varphi, \psi \colon A \to M(I)$$
 Cuntz pair.

$$[\varphi,\psi]_{KK}=0 \iff \varphi\oplus\sigma\approxeq\psi\oplus\sigma$$

for some $\sigma: A \to M(I)$.

For our application: need to get rid of the summand σ . Central notion:

Def.

 $\varphi: A \to M(I)$ is absorbing if $\varphi \oplus \pi \approx_u \varphi$ for all $\pi: A \to M(I)$.

 ${\cal Z}$ is an important ingredient. Here is a glimpse of how it enters the uniqueness argument:

Proposition (CGSTW)

Suppose $I \cong I \otimes \mathcal{K}$ and

 $\varphi, \psi \colon A \to M(I)$ is a Cuntz pair of absorbing *-hom's.

$$[\phi,\psi]_{KK}=0\quad\Rightarrow\quad\phi\otimes 1_{\mathcal{Z}}\approxeq\psi\otimes 1_{\mathcal{Z}}$$

 ${\cal Z}$ is an important ingredient. Here is a glimpse of how it enters the uniqueness argument:

Proposition (CGSTW)

Suppose $I \cong I \otimes \mathcal{K}$ and

 $\varphi, \psi \colon A \to M(I)$ is a Cuntz pair of absorbing *-hom's.

$$[\phi,\psi]_{KK}=0\quad\Rightarrow\quad\phi\otimes 1_{\mathcal{Z}}\approxeq\psi\otimes 1_{\mathcal{Z}}$$

K₁ injectivity

• A (unital) is K_1 -injective if $U(A)/U_0(A) \to K_1(A)$ is injective

 ${\cal Z}$ is an important ingredient. Here is a glimpse of how it enters the uniqueness argument:

Proposition (CGSTW)

Suppose $I \cong I \otimes \mathcal{K}$ and

 $\varphi, \psi \colon A \to M(I)$ is a Cuntz pair of absorbing *-hom's.

$$[\phi,\psi]_{KK}=0\quad\Rightarrow\quad\phi\otimes 1_{\mathcal{Z}}\approxeq\psi\otimes 1_{\mathcal{Z}}$$

K₁ injectivity

- A (unital) is K_1 -injective if $U(A)/U_0(A) \to K_1(A)$ is injective
- Jiang: $A \otimes \mathcal{Z}$ is K_1 -injective

 ${\cal Z}$ is an important ingredient. Here is a glimpse of how it enters the uniqueness argument:

Proposition (CGSTW)

Suppose $I \cong I \otimes \mathcal{K}$ and

 $\varphi, \psi \colon A \to M(I)$ is a Cuntz pair of absorbing *-hom's.

$$[\phi,\psi]_{KK}=0\quad\Rightarrow\quad\phi\otimes 1_{\mathcal{Z}}\approxeq\psi\otimes 1_{\mathcal{Z}}$$

K₁ injectivity

- A (unital) is K_1 -injective if $U(A)/U_0(A) \to K_1(A)$ is injective
- Jiang: $A \otimes \mathcal{Z}$ is K_1 -injective
- Is every unital properly infinite *C**-algebra is *K*₁-injective?

GETTING ABSORPTION

- Voiculescu: any ample $\varphi: A \to \mathcal{B}(H)$ is absorbing
- Kasparov: A or $I \otimes \mathcal{K}$ nuclear \Rightarrow any ample $\varphi \colon A \to \mathcal{B}(H) \subset M(I)$ is absorbing
- Elliott–Kucerovsky/Gabe: general characterization of absorption

GETTING ABSORPTION

- Voiculescu: any ample $\varphi: A \to \mathcal{B}(H)$ is absorbing
- Kasparov: A or $I \otimes \mathcal{K}$ nuclear \Rightarrow any ample $\varphi \colon A \to \mathcal{B}(H) \subset M(I)$ is absorbing
- Elliott–Kucerovsky/Gabe: general characterization of absorption

Proposition (CGSTW)

Suppose $T(B) \neq \emptyset$ is compact, B has strict comp. w.r.t. T(B). Then:

- 1. J_B is (separably) stable
- 2. if $\varphi: A \to B_{\infty}$ is nuclear and $\lambda \varphi: A \to M(J_B)$ is "unitizably" full, then $\lambda \varphi$ is nuclearly absorbing

GETTING ABSORPTION

- Voiculescu: any ample $\varphi: A \to \mathcal{B}(H)$ is absorbing
- Kasparov: A or $I \otimes \mathcal{K}$ nuclear \Rightarrow any ample $\varphi: A \to \mathcal{B}(H) \subset M(I)$ is absorbing
- Elliott–Kucerovsky/Gabe: general characterization of absorption

Proposition (CGSTW)

Suppose $T(B) \neq \emptyset$ is compact, B has strict comp. w.r.t. T(B). Then:

- 1. J_B is (separably) stable
- 2. if $\varphi: A \to B_{\infty}$ is nuclear and $\lambda \varphi: A \to M(J_B)$ is "unitizably" full, then $\lambda \varphi$ is nuclearly absorbing

(φ full: $0 \neq a \in A_+ \Rightarrow \varphi(a)$ not contained in any proper ideal)

MAIN LIFTING THEOREM

Theorem (CGSTW)

- B is \mathbb{Z} -stable, $T(B) \neq \emptyset$ compact, B strict comp. w.r.t. T(B)
- A is nuclear, θ is unitizably full.

MAIN LIFTING THEOREM

Theorem (CGSTW)

- B is \mathcal{Z} -stable, $T(B) \neq \emptyset$ compact, B strict comp. w.r.t. T(B)
- A is nuclear, θ is unitizably full.
- 1. If $\alpha \in KK(A, B_{\infty})$ with $[q]_{KK}\alpha = [\theta]_{KK}$, then \exists unitizably full $\psi \colon A \to B_{\infty}$ with $q\psi = \theta$ and $[\psi]_{KK} = \alpha$.

MAIN LIFTING THEOREM

Theorem (CGSTW)

- B is \mathcal{Z} -stable, $T(B) \neq \emptyset$ compact, B strict comp. w.r.t. T(B)
- A is nuclear, θ is unitizably full.
- 1. If $\alpha \in KK(A, B_{\infty})$ with $[q]_{KK}\alpha = [\theta]_{KK}$, then \exists unitizably full $\psi \colon A \to B_{\infty}$ with $q\psi = \theta$ and $[\psi]_{KK} = \alpha$.
- 2. If φ is another unitizably full lift with $[\varphi, \psi] = 0 \in KK(A, J_B)$, and then $\psi \approx \varphi$.

Theorem

- 1. If $\alpha \in KK(A, B_{\infty})$ with $[q]_{KK}\alpha = [\theta]_{KK}$, then \exists unitizably full $\psi \colon A \to B_{\infty}$ with $q\psi = \theta$ and $[\psi]_{KK} = \alpha$.
- 2. If φ is another unitizably full lift with $[\varphi, \psi] = 0 \in KK(A, J_B)$, and then $\psi \approx \varphi$.

Note that $[\varphi, \psi] = 0$ implies

$$0 = KK(A, j) ([\varphi, \psi]) = [\varphi]_{KK} - [\psi]_{KK} = [\varphi]_{KK} - \alpha.$$

Related to step 3:

If A satisfies UCT, can get uniqueness from $[\varphi]_{KK} = [\psi]_{KK}$ and $\overline{K}_1^{\text{alg}}(\varphi) = \overline{K}_1^{\text{alg}}(\psi)$ instead.

In fact, need stronger uniqueness statement to prove existence.

If ψ is a lift of θ as in (1) and $\kappa \in KK(A, J_B)$, then \exists unitizably full $\varphi \colon A \to B_\infty$ with $q\varphi = \theta = q\psi$ and $[\varphi, \psi] = \kappa$, unique up to \cong .

In fact, need stronger uniqueness statement to prove existence.

If ψ is a lift of θ as in (1) and $\kappa \in KK(A, J_B)$, then \exists unitizably full $\varphi \colon A \to B_\infty$ with $q\varphi = \theta = q\psi$ and $[\varphi, \psi] = \kappa$, unique up to \cong .

Ingredients:

• fullness + conditions on $B \leftrightarrow$ absorption

In fact, need stronger uniqueness statement to prove existence.

```
If \psi is a lift of \theta as in (1) and \kappa \in KK(A, J_B), then \exists unitizably full \varphi \colon A \to B_\infty with q\varphi = \theta = q\psi and [\varphi, \psi] = \kappa, unique up to \cong.
```

Ingredients:

- fullness + conditions on B → absorption
- "well known": ψ absorbing $\leadsto \kappa = [\varphi, \psi]$ for some φ

In fact, need stronger uniqueness statement to prove existence.

```
If \psi is a lift of \theta as in (1) and \kappa \in KK(A, J_B), then \exists unitizably full \varphi \colon A \to B_\infty with q\varphi = \theta = q\psi and [\varphi, \psi] = \kappa, unique up to \cong.
```

Ingredients:

- fullness + conditions on B → absorption
- "well known": ψ absorbing $\rightsquigarrow \kappa = [\varphi, \psi]$ for some φ
- any other such φ' would give $\varphi \otimes 1_{\mathcal{Z}} \cong \varphi' \otimes 1_{\mathcal{Z}}$

In fact, need stronger uniqueness statement to prove existence.

If ψ is a lift of θ as in (1) and $\kappa \in KK(A, J_B)$, then \exists unitizably full $\varphi \colon A \to B_\infty$ with $q\varphi = \theta = q\psi$ and $[\varphi, \psi] = \kappa$, unique up to \cong .

Ingredients:

- fullness + conditions on B → absorption
- "well known": ψ absorbing $\rightsquigarrow \kappa = [\varphi, \psi]$ for some φ
- · any other such φ' would give $\varphi \otimes 1_{\mathcal{Z}} \cong \varphi' \otimes 1_{\mathcal{Z}}$
- \mathcal{Z} -stability of $B \leadsto \varphi \approxeq \varphi'$

Idea: build on Schafhauser's proof of TWW. Very roughly:

• θ gives pullback extension e_{θ} with $[e_{\theta}] = 0 \in Ext(A, J_B)$

- θ gives pullback extension e_{θ} with $[e_{\theta}] = 0 \in Ext(A, J_B)$
- $[e_{\theta}] = 0 \implies e_{\theta} \oplus (trivial \ extension) \sim a \ split \ extension.$

- θ gives pullback extension e_{θ} with $[e_{\theta}] = 0 \in Ext(A, J_B)$
- $[e_{\theta}] = 0 \implies e_{\theta} \oplus (\text{trivial extension}) \sim \text{a split extension}.$
- absorption $\leadsto e_{\theta} \oplus (\text{trivial extension}) \sim e_{\theta}$ $\leadsto e_{\theta} \text{ splits, and } \theta \text{ lifts to } \psi'$

- θ gives pullback extension e_{θ} with $[e_{\theta}] = 0 \in Ext(A, J_B)$
- $[e_{\theta}] = 0 \implies e_{\theta} \oplus (trivial \ extension) \sim a \ split \ extension.$
- absorption $\leadsto e_{\theta} \oplus (\text{trivial extension}) \sim e_{\theta}$ $\leadsto e_{\theta} \text{ splits, and } \theta \text{ lifts to } \psi'$
- use stronger uniqueness to get lift ψ with $[\psi] [\psi'] = \alpha [\psi']$, i.e. $[\psi] = \alpha$.

LOOKING AHEAD

Have lifting theorem for extensions with "trace-kernel features":

This is enough to get absorption when needed. Still need some \mathcal{Z} -stability for classification.