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introduction



a general classification theorem

Theorem (“Many hands”)
The class of separable, simple, unital, nuclear and Z-stable
C∗-algebras that satisfy the UCT is classified by K-theoretic
invariants.

• No traces: Kirchberg-Phillips (1990s).
• We focus only on the case T(A) ̸= ∅.
• Classifying invariant:

Ell(A) :=
(
K0(A), K0(A)+, [1A]0, K1(A),

T(A), T(A)× K0(A) → R
)
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Impossible to summarize decades of work in a slide.
Some recent components relevant here:

Classification of “model” algebras

• Gong-Lin-Niu ’15: classified C∗-algebras with a certain
internal tracial approximation structure.

• The class exhausts range of Ell(−).

Realizing the approximations

• Elliott-Gong-Lin-Niu ’15: abstract conditions on a
C∗-algebra ⇒ concrete tracial approximations of GLN.

• Tikuisis-White-Winter ’17: the abstract conditions are the
ones stated in the classification theorem.
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an abstract approach

We offer an alternate route to classification, in an abstract
setting.

While tracial approximations are not used in this approach, the
broad roadmap used in that setting will guide us.

We will (mostly) ignore the difficulties that arise from
non-separability or the lack of a unit.
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classification of morphisms

Rough scheme: produce invariant (functor) inv(−) s.t.

• (existence)
α : inv(A) → inv(B) =⇒ ∃ φ : A → B s.t. inv(φ) = α;

• (uniqueness)
φ,ψ : A → B and inv(φ) = inv(φ) =⇒ φ ≈u ψ.

End result: inv(A) ∼= inv(B) =⇒ A ∼= B.

Would also want:

• Ell(A) ∼−→ Ell(B) yields inv(A) ∼−→ inv(B).
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first example: af algebras

Existence and uniqueness for morphisms of AF algebras
A, B = (unital) AF algebras.

1. α : (K0(A), K0(A)+, [1A]0) →
(
K0(B), K0(B)+, [1B]0

)
=⇒ ∃ ∗-hom. φ : A → B s.t. α = K0(φ).

2. φ,ψ : A → B and K0(φ) = K0(ψ) =⇒ φ ≈u ψ.

Classification of AF Algebras
If ∃ isomorphism

α : (K0(A), K0(A)+, [1A]) → (K0(B), K0(B), [1B]0),
then ∃ isomorphism φ : A → B s.t. K0(φ) = α.
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second example: aT algebras

Thomsen-Nielsen (early 90s): different proof of Elliott’s
classification of simple unital AT algebras. Need refined inv.

Definition

Kalg1 (A) := U∞(A)/CU∞(A)

CU∞(A) is the closure of the commutator subgroup of U∞(A).

Kalg1 (A) came up in Thomsen’s work on the role of the
relationship between and K-theory and traces in classification
theory.

K0 and traces
Briefly: [p]0 ∈ K0(A)⇝ the affine map τ 7→ τ(p) on T(A).
Write ρA : K0(A) → Aff T(A) for this function.
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Thomsen-Nielsen provided existence and uniqueness
theorems for morphisms in the AT case using(

K0(−), Kalg1 (−), Aff T(−)
)

as their invariant.

Examples show that φ ≈u ψ might fail if φ and ψ only agree on
K0, K1, and traces.
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more on Kalg1 (A)

Thomsen’s extension

0 → Aff T(A)
imρA

ThA−−−→ Kalg1 (A) → K1(A) → 0

ThA is the inverse of an isomorphism

ker
(
Kalg1 (A) → K1(A)

)
→ Aff T(A)

imρA

defined using the de la Harpe-Skandalis determinant.
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one more ingredient: total k-theory

Definition
K(A) =

⊕∞
n=0 K0(A;Z/nZ)⊕ K1(A;Z/nZ)

Can think of Ki(A;Z/nZ) as Ki(A⊗ Dn),
where K0(Dn) = Z/nZ and K1(Dn) = 0.

Slogan
Can check “closeness” of KK(φ) and KK(ψ) by checking that
K(φ) and K(ψ) agree on large finite subsets of K(A).
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the invariant

Definition

inv(A) :=
(
K(A), Kalg1 (A), Aff T(A)

)

A compatible triple (α,β, γ) : inv(A) → inv(E) consists of

α : K(A) → K(E), β : Kalg1 (A) → Kalg1 (E), γ : Aff T(A) → Aff T(E)

such that

K0(A) Aff T(A) Kalg1 (A) K1(A)

K0(E) Aff T(E) Kalg1 (E) K1(E)

ρA

α0

ThA

γ β α1

ρE ThE

commutes.
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an approximate uniqueness theorem

Define B∞ :=
∏∞

n=1 B/
∑∞

n=1 B.

Theorem (C-Gabe-SchaǕhauser-Tikuisis-White)

• A : sep., exact, UCT
• B : sep., Z-stable, strict comparison, T(B) ̸= ∅ & compact,
no unbounded traces

• φ,ψ : A → B∞ full † nuclear ∗-hom’s

Then:
inv(φ) = inv(ψ) =⇒ φ ≈u ψ

† : φ(a) generates B∞ as an ideal ∀a ̸= 0.
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an approximate existence theorem

Theorem (CGSTW)
A and B as above.
(α,β, γ) : inv(A) → inv(B∞) : compatible triple that is “faithful
and amenable on traces”† (and unital‡ in unital case)

Then: ∃ a full nuclear ∗-hom. φ : A → B∞ s.t.
inv(φ) = (α,β, γ)

(unital in unital case)

† : γ∗
(
T(B∞)

)
⊆ T(A) consists of faithful amenable traces

‡ : α0
(
[1A]0

)
= [1B∞ ]0
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a quick application (due to c. schafhauser)

Γ : amenable group; τ : canonical trace on C∗r (Γ)

• Higson-Kasparov: Γ satisfies Baum-Connes.
• Lück: range of K0(τ) is contained in Q ∼= K0(Q).
• Tu: C∗r (Γ) satisfies UCT.

Not too hard to produce compatible triple inv
(
C∗r (Γ)

)
→ inv(Q)

from K0(τ).

Punchline:

∃ trace-preserving
C∗r (Γ) ↪→ Q

⇔ Γ is amenable ⇔ ∃ trace-preserving
LΓ ↪→ R
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strategy



the trace-kernel extension

The trace-kernel ideal is

JB :=
{
(xn) ∈ B∞ : lim

n→∞
∥xn∥2,u = 0

}
,

where ∥x∥2,u = sup
τ∈T(B)

τ(x∗x)1/2.

The trace-kernel extension is

0 → JB → B∞ → B∞ → 0.

Analogy with TAF case: B∞ ∼ “tracially large corner”
JB ∼ “tracially small corner”
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Approximate classification of morphisms: major steps

A

0 JB B∞ B∞ 0

1. Classify morphisms into B∞

2. Classify liǕts of morphisms to B∞

3. Adjust the K-theory, exploiting JB
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techniques, step by step



classification into B∞

Think of B∞ as a II1 factor—a tracial ultrapower of πτ(B)′′.

(It’s not.)
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We rely on very recent work of Castillejos, Evington, Tikuisis,
White & Winter on complemented partitions of unity (CPoU) to
deal with B∞.

Theorem

• A: separable, exact
• B: CPoU, T(B) ̸= ∅ & compact, no unbounded traces
• φ,ψ : A → B∞ nuclear ∗-hom’s

ψ and φ agree on traces =⇒ ψ ∼u φ.

Moreover:
f : T(B∞) → Tamen(A) =⇒ ∃ nuclear θ : A → B∞ s.t. T(θ) = f
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classification of lifts

Adapt SchaǕhauser’s approach to the TWW theorem:
think in terms of extensions, KK-theory.

Theorem (Existence for liǕts)
θ : A → B∞ full nuclear ∗-hom and κ ∈ KKnuc(A,B∞)

=⇒ ∃ full nuclear liǏt φ : A → B∞ of θ s.t. [φ]KKnuc = κ.

(Very) roughly:

• θ determines a pullback extension eθ whose class in
Extnuc(A, JB) vanishes.

• [eθ] = 0 =⇒ eθ⊕(trivial extension) ≈ a split extension.
• Weyl-von Neumann type absorption theorems
=⇒ eθ⊕(trivial extension) ≈ eθ.

18
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What if we have two liǕts φ and ψ of θ?

A

0 JB B∞ B∞ 0

θ
φψ

Want to guarantee (a strong form of) uniqueness with a
condition that can be verified by comparing invariants.
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Think of Voiculescu’s Theorem:

A

0 K B(H) Q(H) 0

θ

φψ

If φ,ψ are “admissible” (faithful, nondegenerate, and
φ(A) ∩ K = {0} = ψ(A) ∩ K), then φ ≈u ψ.

More can be said:
Theorem (Dadarlat-Eilers ’01)
Suppose: A is sep.; φ,ψ : A → B(H) are admissible liǏts of θ.

Then:

[φ,ψ] = 0 ∈ KK(A,K) =⇒ φ ≈u ψ via unitaries in K + C1H .
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A

0 JB B∞ B∞ 0

θ
φψ

Theorem (Uniqueness for liǕts)
A: sep., exact;
B: sep., Z-stable, strict comparison, T(B) ̸= ∅ & compact;
φ,ψ: full nuclear liǏts of θ.

[φ,ψ] = 0 ∈ KLnuc(A, JB) =⇒ φ ≈u ψ via unitaries in J̃B .

21



adjusting k-theory: rotation maps

Need to get a handle on [φ,ψ] ∈ KLnuc(A, JB).
For instance, when does it vanish?

We’ll answer this in terms of K(−) and Kalg1 (−).
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∃ morphism
j∗ : KLnuc(A, JB) → HomΛ

(
K(A), K(B∞)

)
[φ,ψ] 7→ K(φ)− K(ψ)

induced by j : JB → B∞.

Subtle obstruction: even if φ(u) ∼h ψ(u) is true for u ∈ U(A),
the path ξ connecting them might have nonzero “winding
number”.

This leads to a rotation map Rφ,ψ which (roughly) assigns the
function

τ 7→ 1
2πi

∫ 1

0
τ
(dξ(t)

dt ξ(t)−1
)
dt

on T(B∞) to [u]1 ∈ K1(A).
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Can define an abstract rotation map R on ker j∗ ⊆ KLnuc(A, J).

When φ & ψ agree on K(A) and traces, we can (explicitly) relate
R
(
[φ,ψ]

)
and Kalg1 (φ)− Kalg1 (ψ).

Punchline: assuming K(φ) = K(ψ),

Kalg1 (φ)−Kalg1 (ψ) = 0 =⇒ R
(
[φ,ψ]

)
= 0 =⇒ [φ,ψ] = 0.

This let us use the classification theorem for liǕts.
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a non-unital application



non-unital classification

Let
Ell+(A) =

(
K0(A), K0(A)+, ΣA, K1(A), T+(A), r+A

)
Theorem
Suppose A and B are non-unital, simple, separable, nuclear,
Z-stable C∗-algebras satisfying the UCT, with
T+(A) ̸= ∅ ̸= T+(B).

Any isomorphism Ell+(A) ∼−→ Ell+(B) liǏts to an isomorphism
A ∼−→ B.
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Thank you!
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