AN ABSTRACT APPROACH TO THE CLASSIFICATION OF NUCLEAR C*-ALGEBRAS

JOINT WORK WITH J. GABE, C. SCHAFHAUSER, A. TIKUISIS, AND S. WHITE

José Carrión
TCU
October 22, 2018
Symposium on K-theory and non-commutative topology, San Juan

INTRODUCTION

A GENERAL CLASSIFICATION THEOREM

Theorem ("Many hands")

The class of separable, simple, unital, nuclear and \mathcal{Z}-stable C*-algebras that satisfy the UCT is classified by K-theoretic invariants.

- No traces: Kirchberg-Phillips (1990s).
- We focus only on the case $T(A) \neq \varnothing$.
- Classifying invariant:

$$
\begin{aligned}
& \operatorname{Ell}(A):=\left(K_{0}(A), K_{0}(A)_{+},\left[1_{A}\right]_{0}, K_{1}(A),\right. \\
& \\
& \left.T(A), T(A) \times K_{0}(A) \rightarrow \mathbb{R}\right)
\end{aligned}
$$

Impossible to summarize decades of work in a slide.
Some recent components relevant here:

Classification of "model" algebras

- Gong-Lin-Niu '15: classified C*-algebras with a certain internal tracial approximation structure.
- The class exhausts range of Ell(-).

Realizing the approximations

- Elliott-Gong-Lin-Niu '15: abstract conditions on a C*-algebra \Rightarrow concrete tracial approximations of GLN.
- Tikuisis-White-Winter '17: the abstract conditions are the ones stated in the classification theorem.

AN ABSTRACT APPROACH

We offer an alternate route to classification, in an abstract setting.

While tracial approximations are not used in this approach, the broad roadmap used in that setting will guide us.

AN ABSTRACT APPROACH

We offer an alternate route to classification, in an abstract setting.

While tracial approximations are not used in this approach, the broad roadmap used in that setting will guide us.

We will (mostly) ignore the difficulties that arise from non-separability or the lack of a unit.

CLASSIFICATION OF MORPHISMS

Rough scheme: produce invariant (functor) inv(-) s.t.

- (existence)
$\alpha: \operatorname{inv}(A) \rightarrow \operatorname{inv}(B) \Longrightarrow \exists \varphi: A \rightarrow B$ s.t. $\operatorname{inv}(\varphi)=\alpha ;$
- (uniqueness)
$\varphi, \psi: A \rightarrow B$ and $\operatorname{inv}(\varphi)=\operatorname{inv}(\varphi) \Longrightarrow \varphi \approx_{u} \psi$.
End result: $\operatorname{inv}(A) \cong \operatorname{inv}(B) \Longrightarrow A \cong B$.

CLASSIFICATION OF MORPHISMS

Rough scheme: produce invariant (functor) inv(-) s.t.

- (existence)
$\alpha: \operatorname{inv}(A) \rightarrow \operatorname{inv}(B) \Longrightarrow \exists \varphi: A \rightarrow B$ s.t. $\operatorname{inv}(\varphi)=\alpha ;$
- (uniqueness)
$\varphi, \psi: A \rightarrow B$ and $\operatorname{inv}(\varphi)=\operatorname{inv}(\varphi) \Longrightarrow \varphi \approx_{u} \psi$.
End result: $\operatorname{inv}(A) \cong \operatorname{inv}(B) \Longrightarrow A \cong B$.

Would also want:

- $\operatorname{Ell}(A) \xrightarrow{\sim} \operatorname{Ell}(B)$ yields $\operatorname{inv}(A) \xrightarrow{\sim} \operatorname{inv}(B)$.

FIRST EXAMPLE: AF ALGEBRAS

Existence and uniqueness for morphisms of AF algebras

$A, B=($ unital $) A F$ algebras.

1. $\alpha:\left(K_{0}(A), K_{0}(A)_{+},\left[1_{A}\right]_{0}\right) \rightarrow\left(K_{0}(B), K_{0}(B)_{+},\left[1_{B}\right]_{0}\right)$
$\Longrightarrow \exists *$-hom. $\varphi: A \rightarrow B$ s.t. $\alpha=K_{0}(\varphi)$.
2. $\varphi, \psi: A \rightarrow B$ and $K_{0}(\varphi)=K_{0}(\psi) \Longrightarrow \varphi \approx_{u} \psi$.

FIRST EXAMPLE: AF ALGEBRAS

Existence and uniqueness for morphisms of AF algebras
$A, B=($ unital $) A F$ algebras.

$$
\begin{aligned}
& \text { 1. } \alpha:\left(K_{0}(A), K_{0}(A)_{+},\left[1_{A}\right]_{0}\right) \rightarrow\left(K_{0}(B), K_{0}(B)_{+},\left[1_{B}\right]_{0}\right) \\
& \Longrightarrow \exists * \text {-hom. } \varphi: A \rightarrow B \text { s.t. } \alpha=K_{0}(\varphi) . \\
& \text { 2. } \varphi, \psi: A \rightarrow B \text { and } K_{0}(\varphi)=K_{0}(\psi) \Longrightarrow \quad \varphi \approx_{u} \psi .
\end{aligned}
$$

Classification of AF Algebras

If \exists isomorphism

$$
\alpha:\left(K_{0}(A), K_{0}(A)_{+},\left[1_{A}\right]\right) \rightarrow\left(K_{0}(B), K_{0}(B),\left[1_{B}\right]_{0}\right),
$$

then \exists isomorphism $\varphi: A \rightarrow B$ s.t. $K_{0}(\varphi)=\alpha$.

SECOND EXAMPLE: AT ALGEBRAS

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

SECOND EXAMPLE: AT ALGEBRAS

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

Definition

$$
\bar{K}_{1}^{\mathrm{alg}}(A):=U^{\infty}(A) / C U^{\infty}(A)
$$

$C U^{\infty}(A)$ is the closure of the commutator subgroup of $U^{\infty}(A)$.

SECOND EXAMPLE: AT ALGEBRAS

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital AT algebras. Need refined inv.

Definition

$$
\bar{K}_{1}^{\mathrm{alg}}(A):=U^{\infty}(A) / C U^{\infty}(A)
$$

$C U^{\infty}(A)$ is the closure of the commutator subgroup of $U^{\infty}(A)$.
$\bar{K}_{1}^{\text {alg }}(A)$ came up in Thomsen's work on the role of the relationship between and K-theory and traces in classification theory.

K_{0} and traces

Briefly: $[p]_{0} \in K_{0}(A) \rightsquigarrow$ the affine map $T \mapsto T(p)$ on $T(A)$. Write $\rho_{A}: K_{0}(A) \rightarrow \operatorname{Aff} T(A)$ for this function.

Thomsen-Nielsen provided existence and uniqueness theorems for morphisms in the AT case using

$$
\left(K_{0}(-), \bar{K}_{1}^{\mathrm{alg}}(-), \operatorname{Aff} T(-)\right)
$$

as their invariant.
Examples show that $\varphi \approx_{u} \psi$ might fail if φ and ψ only agree on K_{0}, K_{1}, and traces.

MORE ON $\bar{K}_{1}^{\mathrm{alg}}(\mathrm{A})$

MORE ON $\bar{K}_{1}^{\mathrm{alg}}(A)$

Thomsen's extension

$$
0 \rightarrow \frac{\operatorname{Aff} T(A)}{i m \rho_{A}} \xrightarrow{T h_{A}} \bar{K}_{1}^{\mathrm{alg}}(A) \rightarrow K_{1}(A) \rightarrow 0
$$

$T h_{A}$ is the inverse of an isomorphism

$$
\operatorname{ker}\left(\bar{K}_{1}^{\mathrm{alg}}(A) \rightarrow K_{1}(A)\right) \rightarrow \frac{\operatorname{Aff} T(A)}{\overline{\operatorname{im} \rho_{A}}}
$$

defined using the de la Harpe-Skandalis determinant.

ONE MORE INGREDIENT: TOTAL K-THEORY

Definition

$$
\underline{K}(A)=\bigoplus_{n=0}^{\infty} K_{0}(A ; \mathbb{Z} / n \mathbb{Z}) \oplus K_{1}(A ; \mathbb{Z} / n \mathbb{Z})
$$

Can think of $K_{i}(A ; \mathbb{Z} / n \mathbb{Z})$ as $K_{i}\left(A \otimes D_{n}\right)$, where $K_{0}\left(D_{n}\right)=\mathbb{Z} / n \mathbb{Z}$ and $K_{1}\left(D_{n}\right)=0$.

ONE MORE INGREDIENT: TOTAL K-THEORY

Definition

$$
\underline{K}(A)=\bigoplus_{n=0}^{\infty} K_{0}(A ; \mathbb{Z} / n \mathbb{Z}) \oplus K_{1}(A ; \mathbb{Z} / n \mathbb{Z})
$$

Can think of $K_{i}(A ; \mathbb{Z} / n \mathbb{Z})$ as $K_{i}\left(A \otimes D_{n}\right)$, where $K_{0}\left(D_{n}\right)=\mathbb{Z} / n \mathbb{Z}$ and $K_{1}\left(D_{n}\right)=0$.

Slogan

Can check "closeness" of $K K(\varphi)$ and $K K(\psi)$ by checking that $\underline{K}(\varphi)$ and $\underline{K}(\psi)$ agree on large finite subsets of $\underline{K}(A)$.

THE INVARIANT

Definition

$$
\operatorname{inv}(A):=\left(\underline{K}(A), \quad \bar{K}_{1}^{\mathrm{alg}}(A), \quad \operatorname{Aff} T(A)\right)
$$

THE INVARIANT

Definition

$$
\operatorname{inv}(A):=\left(\underline{K}(A), \quad \bar{K}_{1}^{\mathrm{alg}}(A), \quad \operatorname{Aff} T(A)\right)
$$

A compatible triple $(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}(E)$ consists of

$$
\underline{\alpha}: \underline{K}(A) \rightarrow \underline{K}(E), \quad \beta: \bar{K}_{1}^{\mathrm{alg}}(A) \rightarrow \bar{K}_{1}^{\mathrm{alg}}(E), \quad \gamma: \operatorname{Aff} T(A) \rightarrow \operatorname{Aff} T(E)
$$

such that

$$
\begin{aligned}
& K_{0}(A) \xrightarrow{\rho_{A}} \operatorname{Aff} T(A) \xrightarrow{T h_{A}} \bar{K}_{1}^{\text {alg }}(A) \longrightarrow K_{1}(A) \\
& \downarrow \alpha_{0} \quad \downarrow \gamma \quad \downarrow \beta \quad \alpha_{1} \\
& K_{0}(E) \xrightarrow{\rho_{E}} \operatorname{Aff} T(E) \xrightarrow{\mathrm{Th}_{E}} \bar{K}_{1}^{\mathrm{alg}}(E) \longrightarrow K_{1}(E)
\end{aligned}
$$

commutes.

AN APPROXIMATE UNIQUENESS THEOREM

Define $B_{\infty}:=\prod_{n=1}^{\infty} B / \sum_{n=1}^{\infty} B$.
Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., \mathcal{Z}-stable, strict comparison, $T(B) \neq \varnothing$ \& compact, no unbounded traces
- $\varphi, \psi: A \rightarrow B_{\infty}$ full ${ }^{\dagger}$ nuclear *-hom's

Then:

$$
\operatorname{inv}(\varphi)=\operatorname{inv}(\psi) \quad \Longrightarrow \quad \varphi \approx_{u} \psi
$$

AN APPROXIMATE UNIQUENESS THEOREM

Define $B_{\infty}:=\prod_{n=1}^{\infty} B / \sum_{n=1}^{\infty} B$.
Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., \mathcal{Z}-stable, strict comparison, $T(B) \neq \varnothing$ \& compact, no unbounded traces
- $\varphi, \psi: A \rightarrow B_{\infty}$ full ${ }^{\dagger}$ nuclear *-hom's

Then:

$$
\operatorname{inv}(\varphi)=\operatorname{inv}(\psi) \quad \Longrightarrow \quad \varphi \approx_{u} \psi
$$

${ }^{\dagger}: \varphi(a)$ generates B_{∞} as an ideal $\forall a \neq 0$.

AN APPROXIMATE UNIQUENESS THEOREM

Define $B_{\infty}:=\prod_{n=1}^{\infty} B / \sum_{n=1}^{\infty} B$.

Theorem (C-Gabe-Schafhauser-Tikuisis-White)

- A : sep., exact, UCT
- B : sep., \mathcal{Z}-stable, strict comparison, $T(B) \neq \varnothing$ \& compact, no unbounded traces
- $\varphi, \psi: A \rightarrow B_{\infty}$ full ${ }^{\dagger}$ nuclear *-hom's

Then:

$$
\operatorname{inv}(\varphi)=\operatorname{inv}(\psi) \quad \Longrightarrow \quad \varphi \approx_{u} \psi
$$

${ }^{\dagger}: \varphi(a)$ generates B_{∞} as an ideal $\forall a \neq 0$.

AN APPROXIMATE EXISTENCE THEOREM

Theorem (CGSTW)
A and B as above.
$(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}\left(B_{\infty}\right):$ compatible triple that is "faithful and amenable on traces" ${ }^{\dagger}$ (and unital ${ }^{\ddagger}$ in unital case)
Then: $\quad \exists$ a full nuclear $*$-hom. $\varphi: A \rightarrow B_{\infty}$ s.t.

$$
\operatorname{inv}(\varphi)=(\underline{\alpha}, \beta, \gamma)
$$

(unital in unital case)

AN APPROXIMATE EXISTENCE THEOREM

Theorem (CGSTW)

A and B as above.
$(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}\left(B_{\infty}\right):$ compatible triple that is "faithful
and amenable on traces" ${ }^{\prime \dagger}$ (and unital ${ }^{\ddagger}$ in unital case)
Then: $\quad \exists$ a full nuclear $*$-hom. $\varphi: A \rightarrow B_{\infty}$ s.t.

$$
\operatorname{inv}(\varphi)=(\underline{\alpha}, \beta, \gamma)
$$

(unital in unital case)
${ }^{\dagger}: \gamma^{*}\left(T\left(B_{\infty}\right)\right) \subseteq T(A)$ consists of faithful amenable traces

AN APPROXIMATE EXISTENCE THEOREM

Theorem (CGSTW)

A and B as above.
$(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}\left(B_{\infty}\right):$ compatible triple that is "faithful and amenable on traces" ${ }^{\dagger}$ (and unital ${ }^{\ddagger}$ in unital case)

Then: $\quad \exists$ a full nuclear $*$-hom. $\varphi: A \rightarrow B_{\infty}$ s.t.

$$
\operatorname{inv}(\varphi)=(\underline{\alpha}, \beta, \gamma)
$$

(unital in unital case)
${ }^{\dagger}: \gamma^{*}\left(T\left(B_{\infty}\right)\right) \subseteq T(A)$ consists of faithful amenable traces
$\ddagger: \alpha_{0}\left(\left[1_{A}\right]_{0}\right)=\left[1_{B_{\infty}}\right]_{0}$

AN APPROXIMATE EXISTENCE THEOREM

Theorem (CGSTW)

A and B as above.
$(\underline{\alpha}, \beta, \gamma): \operatorname{inv}(A) \rightarrow \operatorname{inv}\left(B_{\infty}\right):$ compatible triple that is "faithful and amenable on traces" ${ }^{\dagger}$ (and unital ${ }^{\ddagger}$ in unital case)

Then: $\quad \exists$ a full nuclear $*$-hom. $\varphi: A \rightarrow B_{\infty}$ s.t.

$$
\operatorname{inv}(\varphi)=(\underline{\alpha}, \beta, \gamma)
$$

(unital in unital case)
${ }^{\dagger}: \gamma^{*}\left(T\left(B_{\infty}\right)\right) \subseteq T(A)$ consists of faithful amenable traces
${ }^{\ddagger}: \alpha_{0}\left(\left[1_{A}\right]_{0}\right)=\left[1_{B_{\infty}}\right]_{0}$

A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

Γ : amenable group; $\quad \tau$: canonical trace on $C_{r}^{*}(\Gamma)$

- Higson-Kasparov: 「 satisfies Baum-Connes.
- Lück: range of $K_{0}(T)$ is contained in $\mathbb{Q} \cong K_{0}(\mathcal{Q})$.
- Tu: $C_{r}^{*}(\Gamma)$ satisfies UCT.

Not too hard to produce compatible triple inv $\left(C_{r}^{*}(\Gamma)\right) \rightarrow \operatorname{inv}(\mathcal{Q})$ from $K_{0}(T)$.

A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

Γ : amenable group; τ : canonical trace on $C_{r}^{*}(\Gamma)$

- Higson-Kasparov: 「 satisfies Baum-Connes.
- Lück: range of $K_{0}(T)$ is contained in $\mathbb{Q} \cong K_{0}(\mathcal{Q})$.
- Tu: $C_{r}^{*}(\Gamma)$ satisfies UCT.

Not too hard to produce compatible triple inv $\left(C_{r}^{*}(\Gamma)\right) \rightarrow \operatorname{inv}(\mathcal{Q})$ from $K_{0}(T)$.

Punchline:

\exists trace-preserving $C_{r}^{*}(\Gamma) \hookrightarrow \mathcal{Q}$
\Leftrightarrow 「 is amenable

A QUICK APPLICATION (DUE TO C. SCHAFHAUSER)

Γ : amenable group; $\quad \tau$: canonical trace on $C_{\Gamma}^{*}(\Gamma)$

- Higson-Kasparov: 「 satisfies Baum-Connes.
- Lück: range of $K_{0}(T)$ is contained in $\mathbb{Q} \cong K_{0}(\mathcal{Q})$.
- Tu: $C_{r}^{*}(\Gamma)$ satisfies UCT.

Not too hard to produce compatible triple inv $\left(C_{r}^{*}(\Gamma)\right) \rightarrow \operatorname{inv}(\mathcal{Q})$ from $K_{0}(T)$.

Punchline:

\exists trace-preserving $C_{r}^{*}(\Gamma) \hookrightarrow \mathcal{Q}$

$$
\Leftrightarrow\left\ulcorner\text { is amenable } \Leftrightarrow \begin{array}{c}
\exists \text { trace-preserving } \\
L \Gamma \hookrightarrow \mathcal{R}
\end{array}\right.
$$

STRATEGY

THE TRACE-KERNEL EXTENSION

The trace-kernel ideal is

$$
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}: \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\}
$$

THE TRACE-KERNEL EXTENSION

The trace-kernel ideal is

$$
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}: \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\}
$$

$$
\text { where }\|x\|_{2, u}=\sup _{T \in T(B)} T\left(x^{*} x\right)^{1 / 2}
$$

THE TRACE-KERNEL EXTENSION

The trace-kernel ideal is

$$
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}: \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\},
$$

$$
\text { where }\|x\|_{2, u}=\sup _{T \in T(B)} T\left(x^{*} x\right)^{1 / 2}
$$

The trace-kernel extension is

$$
0 \rightarrow J_{B} \rightarrow B_{\infty} \rightarrow B^{\infty} \rightarrow 0
$$

THE TRACE-KERNEL EXTENSION

The trace-kernel ideal is

$$
J_{B}:=\left\{\left(x_{n}\right) \in B_{\infty}: \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2, u}=0\right\}
$$

$$
\text { where }\|x\|_{2, u}=\sup _{T \in T(B)} T\left(x^{*} x\right)^{1 / 2}
$$

The trace-kernel extension is

$$
0 \rightarrow J_{B} \rightarrow B_{\infty} \rightarrow B^{\infty} \rightarrow 0 .
$$

Analogy with TAF case: $B^{\infty} \sim$ "tracially large corner" $J_{B} \sim$ "tracially small corner"

APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

$$
\begin{gathered}
A \\
0 \longrightarrow J_{B} \longrightarrow B_{\infty} \longrightarrow B^{\infty} \longrightarrow 0
\end{gathered}
$$

APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

1. Classify morphisms into B^{∞}

APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

1. Classify morphisms into B^{∞}
2. Classify lifts of morphisms to B_{∞}

APPROXIMATE CLASSIFICATION OF MORPHISMS: MAJOR STEPS

1. Classify morphisms into B^{∞}
2. Classify lifts of morphisms to B_{∞}
3. Adjust the K-theory, exploiting J_{B}

TECHNIQUES, STEP BY STEP

CLASSIFICATION INTO B^{∞}

Think of B^{∞} as a $\|_{1}$ factor-a tracial ultrapower of $\pi_{T}(B)^{\prime \prime}$.

CLASSIFICATION INTO B^{∞}

Think of B^{∞} as a $\|_{1}$ factor-a tracial ultrapower of $\pi_{T}(B)^{\prime \prime}$. (It's not.)

We rely on very recent work of Castillejos, Evington, Tikuisis, White \& Winter on complemented partitions of unity (CPoU) to deal with B^{∞}.

We rely on very recent work of Castillejos, Evington, Tikuisis, White \& Winter on complemented partitions of unity (CPoU) to deal with B^{∞}.

Theorem

- A: separable, exact
- B: CPoU, $T(B) \neq \varnothing$ \& compact, no unbounded traces
- $\varphi, \psi: A \rightarrow B^{\infty}$ nuclear $*$-hom's
ψ and φ agree on traces $\Longrightarrow \psi \sim_{u} \varphi$.

We rely on very recent work of Castillejos, Evington, Tikuisis, White \& Winter on complemented partitions of unity (CPOU) to deal with B^{∞}.

Theorem

- A: separable, exact
- B: CPoU, $T(B) \neq \varnothing$ \& compact, no unbounded traces
- $\varphi, \psi: A \rightarrow B^{\infty}$ nuclear $*$-hom's
ψ and φ agree on traces $\Longrightarrow \psi \sim_{u} \varphi$.
Moreover:

$$
f: T\left(B^{\infty}\right) \rightarrow T_{\text {amen }}(A) \Longrightarrow \exists \text { nuclear } \theta: A \rightarrow B^{\infty} \text { s.t. } T(\theta)=f
$$

CLASSIFICATION OF LIFTS

Adapt Schafhauser's approach to the TWW theorem: think in terms of extensions, KK-theory.

CLASSIFICATION OF LIFTS

Adapt Schafhauser's approach to the TWW theorem: think in terms of extensions, KK-theory.

Theorem (Existence for lifts)

$\theta: A \rightarrow B^{\infty}$ full nuclear $*$-hom and $k \in K K_{\text {nuc }}\left(A, B_{\infty}\right)$
$\Longrightarrow \exists$ full nuclear lift $\varphi: A \rightarrow B_{\infty}$ of θ s.t. $[\varphi]_{K K_{\text {nuc }}}=K$.

CLASSIFICATION OF LIFTS

Adapt Schafhauser's approach to the TWW theorem: think in terms of extensions, KK-theory.

Theorem (Existence for lifts)

$\theta: A \rightarrow B^{\infty}$ full nuclear $*$-hom and $k \in K K_{\text {nuc }}\left(A, B_{\infty}\right)$
$\Longrightarrow \exists$ full nuclear lift $\varphi: A \rightarrow B_{\infty}$ of θ s.t. $[\varphi]_{K K_{\text {nuc }}}=\kappa$.
(Very) roughly:

- θ determines a pullback extension e_{θ} whose class in Ext ${ }_{\text {nuc }}\left(A, J_{B}\right)$ vanishes.

CLASSIFICATION OF LIFTS

Adapt Schafhauser's approach to the TWW theorem: think in terms of extensions, KK-theory.

Theorem (Existence for lifts)

$\theta: A \rightarrow B^{\infty}$ full nuclear $*$-hom and $k \in K K_{\text {nuc }}\left(A, B_{\infty}\right)$
$\Longrightarrow \exists$ full nuclear lift $\varphi: A \rightarrow B_{\infty}$ of θ s.t. $[\varphi]_{K K_{\text {nuc }}}=\kappa$.
(Very) roughly:

- θ determines a pullback extension e_{θ} whose class in Ext $_{\text {nuc }}\left(A, J_{B}\right)$ vanishes.
- $\left[e_{\theta}\right]=0 \Longrightarrow e_{\theta} \oplus$ (trivial extension $) \approx$ a split extension.

CLASSIFICATION OF LIFTS

Adapt Schafhauser's approach to the TWW theorem: think in terms of extensions, KK-theory.

Theorem (Existence for lifts)

$\theta: A \rightarrow B^{\infty}$ full nuclear $*$-hom and $k \in K K_{\text {nuc }}\left(A, B_{\infty}\right)$
$\Longrightarrow \exists$ full nuclear lift $\varphi: A \rightarrow B_{\infty}$ of θ s.t. $[\varphi]_{K K_{\text {nuc }}}=\kappa$.
(Very) roughly:

- θ determines a pullback extension e_{θ} whose class in Ext $_{\text {nuc }}\left(A, J_{B}\right)$ vanishes.
- $\left[e_{\theta}\right]=0 \Longrightarrow e_{\theta} \oplus$ (trivial extension) \approx a split extension.
- Weyl-von Neumann type absorption theorems
$\Longrightarrow e_{\theta} \oplus$ (trivial extension) $\approx e_{\theta}$.

What if we have two lifts φ and ψ of θ ?

Want to guarantee (a strong form of) uniqueness with a condition that can be verified by comparing invariants.

Think of Voiculescu's Theorem:

If φ, ψ are "admissible" (faithful, nondegenerate, and $\varphi(A) \cap \mathcal{K}=\{0\}=\psi(A) \cap \mathcal{K})$, then $\varphi \approx_{u} \psi$.

Think of Voiculescu's Theorem:

If φ, ψ are "admissible" (faithful, nondegenerate, and $\varphi(A) \cap \mathcal{K}=\{0\}=\psi(A) \cap \mathcal{K})$, then $\varphi \approx_{u} \psi$.

More can be said:

Theorem (Dadarlat-Eilers '01)

Suppose: A is sep.; $\varphi, \psi: A \rightarrow \mathcal{B}(\mathcal{H})$ are admissible lifts of θ.
Then:
$[\varphi, \psi]=0 \in K K(A, \mathcal{K}) \Longrightarrow \varphi \approx_{u} \psi$ via unitaries in $\mathcal{K}+\mathbb{C} 1_{\mathcal{H}}$.

Theorem (Uniqueness for lifts)

A: sep., exact;
B: sep., \mathcal{Z}-stable, strict comparison, $T(B) \neq \varnothing \&$ compact; φ, ψ : full nuclear lifts of θ.
$[\varphi, \psi]=0 \in K L_{\text {nuc }}\left(A, J_{B}\right) \quad \Longrightarrow \quad \varphi \approx_{u} \psi$ via unitaries in $\widetilde{J_{B}}$.

ADJUSTING K-THEORY: ROTATION MAPS

Need to get a handle on $[\varphi, \psi] \in K L_{\text {nuc }}\left(A, J_{B}\right)$.
For instance, when does it vanish?

ADJUSTING K-THEORY: ROTATION MAPS

Need to get a handle on $[\varphi, \psi] \in K L_{\text {nuc }}\left(A, J_{B}\right)$.
For instance, when does it vanish?

We'll answer this in terms of $\underline{K}(-)$ and $\bar{K}_{1}^{\mathrm{alg}}(-)$.
\exists morphism

$$
\begin{aligned}
j_{*}: K L_{\text {nuc }}\left(A, J_{B}\right) & \rightarrow \operatorname{Hom}_{\wedge}\left(\underline{K}(A), \underline{K}\left(B_{\infty}\right)\right) \\
{[\varphi, \psi] } & \mapsto \underline{K}(\varphi)-\underline{K}(\psi)
\end{aligned}
$$

induced by $j: J_{B} \rightarrow B_{\infty}$.
\exists morphism

$$
\begin{aligned}
j_{*}: K L_{\text {nuc }}\left(A, J_{B}\right) & \rightarrow \operatorname{Hom}_{\wedge}\left(\underline{K}(A), \underline{K}\left(B_{\infty}\right)\right) \\
{[\varphi, \psi] } & \mapsto \underline{K}(\varphi)-\underline{K}(\psi)
\end{aligned}
$$

induced by $j: J_{B} \rightarrow B_{\infty}$.
Subtle obstruction: even if $\varphi(u) \sim_{h} \psi(u)$ is true for $u \in U(A)$, the path ξ connecting them might have nonzero "winding number".
\exists morphism

$$
\begin{aligned}
j_{*}: K L_{\text {nuc }}\left(A, J_{B}\right) & \rightarrow \operatorname{Hom}_{\wedge}\left(\underline{K}(A), \underline{K}\left(B_{\infty}\right)\right) \\
{[\varphi, \psi] } & \mapsto \underline{K}(\varphi)-\underline{K}(\psi)
\end{aligned}
$$

induced by $j: J_{B} \rightarrow B_{\infty}$.
Subtle obstruction: even if $\varphi(u) \sim_{h} \psi(u)$ is true for $u \in U(A)$, the path ξ connecting them might have nonzero "winding number".

This leads to a rotation map $R_{\varphi, \psi}$ which (roughly) assigns the function

$$
T \mapsto \frac{1}{2 \pi i} \int_{0}^{1} T\left(\frac{d \xi(t)}{d t} \xi(t)^{-1}\right) d t
$$

on $T\left(B_{\infty}\right)$ to $[u]_{1} \in K_{1}(A)$.

Can define an abstract rotation map R on $\operatorname{ker} j_{*} \subseteq K L_{\text {nuc }}(A, J)$.

Can define an abstract rotation map R on $\operatorname{ker} j_{*} \subseteq K L_{\text {nuc }}(A, J)$.

When φ \& ψ agree on $\underline{K}(A)$ and traces, we can (explicitly) relate $R([\varphi, \psi])$ and $\bar{K}_{1}^{\text {alg }}(\varphi)-\bar{K}_{1}^{\text {alg }}(\psi)$.

Can define an abstract rotation map R on $\operatorname{ker} j_{*} \subseteq K L_{\text {nuc }}(A, /)$.

When φ \& ψ agree on $\underline{K}(A)$ and traces, we can (explicitly) relate $R([\varphi, \psi])$ and $\bar{K}_{1}^{\text {alg }}(\varphi)-\bar{K}_{1}^{\mathrm{alg}}(\psi)$.

Punchline: assuming $\underline{K}(\varphi)=\underline{K}(\psi)$,
$\bar{K}_{1}^{\mathrm{alg}}(\varphi)-\bar{K}_{1}^{\mathrm{alg}}(\psi)=0 \quad \Longrightarrow \quad R([\varphi, \psi])=0 \quad \Longrightarrow \quad[\varphi, \psi]=0$.
This let us use the classification theorem for lifts.

A NON-UNITAL APPLICATION

NON-UNITAL CLASSIFICATION

Let

$$
E l l^{+}(A)=\left(K_{0}(A), K_{0}(A)_{+}, \Sigma_{A}, K_{1}(A), T^{+}(A), r_{A}^{+}\right)
$$

Theorem

Suppose A and B are non-unital, simple, separable, nuclear, \mathcal{Z}-stable C^{*}-algebras satisfying the UCT, with $T^{+}(A) \neq \varnothing \neq T^{+}(B)$.
Any isomorphism Ell ${ }^{+}(A) \xrightarrow{\sim}$ Ell $^{+}(B)$ lifts to an isomorphism $A \xrightarrow{\sim} B$.

THANK YOU!

