Determinants, rotation maps, and classification of morphisms

José Carrión

TCU

joint work (in progress) with J. Gabe, A. Tikuisis, C. Schafhauser, and S. White

> Texas A&M February 23, 2018

First example: AF algebras

Existence and uniqueness for morphisms of AF algebras

A, B = AF algebras.

- **1** (Existence.) If $\alpha \colon K_0(A) \to K_0(B)$ is a group hom. s.t. $\alpha(\Sigma A) = \alpha(\Sigma B)$, then $\exists *$ -hom. $\phi \colon A \to B$ s.t. $\alpha = K_0(\phi)$.
- 2 (Uniqueness.) If $\phi, \psi \colon A \to B$ are *-hom's s.t. $K_0(\phi) = K_0(\psi)$, then $\phi \approx_u \psi$.

Classification of AF Algebras

If \exists isomorphism $\alpha \colon K_0(A) \to K_0(B)$ s.t. $\alpha(\Sigma A) = \Sigma B$, then *exists* isomorphism $\phi \colon A \to B$ s.t. $K_0(\phi) = \alpha$.

A similar scheme for $A\mathbb{T}$ algebras

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital $A\mathbb{T}$ algebras. Invariant used to classify morphisms is refined.

Definition

$$\overline{K}_1^{\mathrm{alg}}(A) := U^{\infty}(A)/CU^{\infty}(A)$$

where $CU^{\infty}(A)$ is the closure of the commutator subgroup of $U^{\infty}(A)$.

A similar scheme for $A\mathbb{T}$ algebras

Thomsen-Nielsen (early 90s): different proof of Elliott's classification of simple unital $A\mathbb{T}$ algebras. Invariant used to classify morphisms is refined.

Definition

$$\overline{K}_1^{\mathrm{alg}}(A) := U^{\infty}(A)/CU^{\infty}(A)$$

where $CU^{\infty}(A)$ is the closure of the commutator subgroup of $U^{\infty}(A)$.

 $\overline{K}_1^{\mathrm{alg}}(A)$ came up in Thomsen's work on the role of the relationship between and K-theory and traces in classification theory.

K_0 and traces

Briefly: $[p]_0 \in K_0(A) \rightsquigarrow \text{ affine map } \tau \mapsto \tau(p) \text{ on } T(A)$.

Write $\rho_A \colon K_0(A) \to \text{Aff } T(A)$ for this function.

A similar scheme for $A\mathbb{T}$ algebras (cont.)

Theorem (Thomsen-Nielsen)

1 (Existence) We can realize any* triple

$$\alpha \colon K_0(A) \to K_0(B), \quad \beta \colon \overline{K}_1^{\mathrm{alg}}(A) \to \overline{K}_1^{\mathrm{alg}}(B), \quad \gamma \colon T(B) \to T(A)$$

that is *compatible* using a *-hom $\phi: A \to B$.

2 (Uniqueness) If $\phi, \psi \colon A \to B$ induce the same maps on $K_0(A)$, $\overline{K}_1^{\mathrm{alg}}(A)$, and T(B), then $\phi \approx_u \psi$.

Using this, an isomorphism $Ell(A) \cong Ell(B)$ is shown to lift to an isomorphism $A \to B$ via an intertwining argument.

A similar scheme for $A\mathbb{T}$ algebras (cont.)

Theorem (Thomsen-Nielsen)

1 (Existence) We can realize any* triple

$$\alpha \colon K_0(A) \to K_0(B), \quad \beta \colon \overline{K}_1^{\mathrm{alg}}(A) \to \overline{K}_1^{\mathrm{alg}}(B), \quad \gamma \colon T(B) \to T(A)$$

that is *compatible* using a *-hom $\phi: A \to B$.

2 (Uniqueness) If $\phi, \psi \colon A \to B$ induce the same maps on $K_0(A)$, $\overline{K}_1^{\mathrm{alg}}(A)$, and T(B), then $\phi \approx_u \psi$.

Using this, an isomorphism $EII(A) \cong EII(B)$ is shown to lift to an isomorphism $A \to B$ via an intertwining argument.

Examples show that to conclude $\phi \approx_u \psi$ it is not enough that ϕ and ψ agree on K_0 , K_1 , and traces.

More on $\overline{K}_1^{\mathrm{alg}}(A)$

Thomsen's extension

$$0 \to \frac{\mathsf{Aff} \ T(A)}{\overline{\mathsf{im} \ \rho_A}} \xrightarrow{\mathsf{Th}_A} \overline{K}_1^{\mathrm{alg}}(A) \to K_1(A) \to 0$$

More on $\overline{K}_1^{\mathrm{alg}}(A)$

Thomsen's extension

$$0 o rac{\operatorname{Aff} \ T(A)}{\overline{\operatorname{im} \
ho_A}} \stackrel{\operatorname{\mathsf{Th}}_A}{\longrightarrow} \overline{K}_1^{\operatorname{alg}}(A) o K_1(A) o 0$$

To define Th_A we need the de la Harpe-Skandalis determinant: we'll use it to define a map

$$\ker\left(\overline{K}_1^{\mathrm{alg}}(A) o K_1(A)\right) o rac{\mathsf{Aff}\ T(A)}{\overline{\mathsf{im}\,
ho_A}}$$

dIH-S determinants and Th_A

dIH-S determinant

Given piecewise smooth path ξ in $U^{\infty}(A)$ with $\xi(0)=1$, define $\Delta(\xi)\in {\rm Aff}\ {\cal T}(A)$ by

$$\Delta(\xi)(\tau) = \frac{1}{2\pi i} \int_0^1 \tau \bigg(\xi'(t) \xi(t)^* \bigg) dt, \qquad \tau \in T(A).$$

Facts: $\Delta(\cdot)$ is invariant under f.e.p. homotopy, and $\Delta(\xi_1\xi_2) = \Delta(\xi_1) + \Delta(\xi_2)$.

dIH-S determinants and Th_A

dIH-S determinant

Given piecewise smooth path ξ in $U^{\infty}(A)$ with $\xi(0)=1$, define $\Delta(\xi)\in \mathrm{Aff}\ T(A)$ by

$$\Delta(\xi)(\tau) = \frac{1}{2\pi i} \int_0^1 \tau \Big(\xi'(t)\xi(t)^*\Big) dt, \qquad \tau \in T(A).$$

Facts: $\Delta(\cdot)$ is invariant under f.e.p. homotopy, and $\Delta(\xi_1\xi_2) = \Delta(\xi_1) + \Delta(\xi_2)$.

Use Δ to define a homomorphism

$$U_0^{\infty}(A)
ightarrow rac{\mathsf{Aff}\ T(A)}{\Delta(\pi_1 U^{\infty}(A))} = rac{\mathsf{Aff}\ T(A)}{
ho_A(K_0(A))}$$

Thomsen: the kernel consists of the closure of commutators.

dIH-S determinants and Th_A (cont.)

End result: an isomorphism

$$\ker\left(\overline{K}_1^{\mathrm{alg}}(A) o K_1(A)
ight) o rac{\mathsf{Aff}\; T(A)}{\overline{\mathsf{im}\;
ho_A}}$$

The inverse is Th_A .

Get the extension

$$0 \to \frac{\mathsf{Aff} \ T(A)}{\overline{\mathsf{im} \ a_A}} \xrightarrow{\mathsf{Th}_A} \overline{K}_1^{\mathrm{alg}}(A) \to K_1(A) \to 0$$

A lot of this applies to larger classes of C^* -algebras with nice internal approximations

An abundance of projections obscures these issues (Blackadar-Kumjian-Rørdam, Thomsen).

Theorem (Lin)

A: simple unital with tracial rank ≤ 1 . Then

A is tracially AF
$$\Leftrightarrow$$
 $\overline{\text{im } \rho_A} = \text{Aff } T(A) \Leftrightarrow CU(A) = U_0(A).$

A lot of this applies to larger classes of C^* -algebras with nice internal approximations

An abundance of projections obscures these issues (Blackadar-Kumjian-Rørdam, Thomsen).

Theorem (Lin)

A: simple unital with tracial rank ≤ 1 . Then

A is tracially AF
$$\Leftrightarrow$$
 $\overline{\text{im }\rho_A} = \text{Aff } T(A) \Leftrightarrow CU(A) = U_0(A).$

Lin used similar scheme (with ever more refined invariants, including $\overline{K}_1^{\mathrm{alg}}(\,\cdot\,)$) for the classification of morphisms between simple sep. nuclear unital UCT C^* -algebras of TR< 1.

Gong-Lin-Niu: generalized tracial rank ≤ 1 .

Towards existence in an abstract setting

Towards existence in an abstract setting

Q-stable approximate existence (EGLN+TWW; CGSTW)

A: sep., simple, nuclear, UCT

B: simple, unital, nuclear, finite, Q-stable Suppose*

$$\alpha \in KK(A,B), \quad \beta \colon \overline{K}_1^{\mathrm{alg}}(A) \to \overline{K}_1^{\mathrm{alg}}(B), \text{ and } \quad \gamma \colon T(B) \to T(A)$$
 are compatible: i.e. we have commutative diagram

$$K_0(A) \xrightarrow{\rho_A} Aff T(A) \xrightarrow{\mathsf{Th}_A} \overline{K}_1^{\mathrm{alg}}(A) \longrightarrow K_1(A)$$

$$\downarrow^{\alpha_0} \qquad \qquad \downarrow^{\gamma^*} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{\alpha_1}$$
 $K_0(B) \xrightarrow{\rho_B} Aff T(B) \xrightarrow{\mathsf{Th}_B} \overline{K}_1^{\mathrm{alg}}(B) \longrightarrow K_1(B)$

Then there exists a *-homomorphism $\phi \colon A \to B_{\omega}$ satisfying

$$\mathsf{KK}(\phi) = [\iota_B]\alpha, \quad \overline{\mathsf{K}}_1^{\mathrm{alg}}(\phi) = \overline{\mathsf{K}}_1^{\mathrm{alg}}(\iota_\beta)\beta, \quad \mathsf{and} \quad \mathsf{T}(\phi) = \gamma \mathsf{T}(\iota_B).$$