Order zero approximations of nuclear C^* -algebras

José Carrión

TCU

joint work with N. Brown and S. White

Great Plains Operator Theory Symposium University of Illinois at Urbana-Champaign May 23, 2016

Theorem/definition (Choi-Effros, Kirchberg)

A C^{*}-algebra A is nuclear iff \exists f.d. algebras F_i and c.c.p. maps

Explore refinements to CPAP arising from imposing conditions on the ψ_i 's or the ϕ_i 's.

Quasidiagonality

A is QD if \exists asymp. multiplicative and asymp. isometric c.c.p. maps $\theta_i \colon A \to F_i$.

For example:

 $C_0(0,1] \otimes A$ (Voiculescu); $C^*(\Gamma)$ for any discrete amenable group Γ (Tikuisis-White-Winter)

Quasidiagonality

A is QD if \exists asymp. multiplicative and asymp. isometric c.c.p. maps $\theta_i \colon A \to F_i$.

For example:

 $C_0(0,1] \otimes A$ (Voiculescu); $C^*(\Gamma)$ for any discrete amenable group Γ (Tikuisis-White-Winter)

Quasidiagonality

A is QD if \exists asymp. multiplicative and asymp. isometric c.c.p. maps $\theta_i \colon A \to F_i$.

For example:

 $C_0(0,1] \otimes A$ (Voiculescu); $C^*(\Gamma)$ for any discrete amenable group Γ (Tikuisis-White-Winter)

Theorem (Blackadar-Kirchberg)

A is nuclear and quasidiagonal iff \exists f.d. algebras F_i and c.c.p. maps

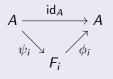
s.t.

$$||(\phi_i \circ \psi_i)(a) - a|| \to 0$$

• the ψ_i are asymp. multiplicative

Definition (Winter-Zacharias)

 $\dim_{nuc}(A) \leq n$ if \exists f.d. algebras F_i and c.p. maps

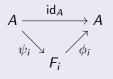


$$||(\phi_i \circ \psi_i)(a) - a|| \to 0$$

each φ_i "decomposes" into n + 1
c.c.p. order zero maps
(order zero: a ⊥ b ⇒ θ(a) ⊥ θ(b))

Definition (Winter-Zacharias)

 $\dim_{nuc}(A) \leq n$ if \exists f.d. algebras F_i and c.p. maps

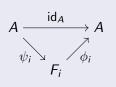


$$||(\phi_i \circ \psi_i)(a) - a|| \to 0$$

each φ_i "decomposes" into n + 1
c.c.p. order zero maps
(order zero: a ⊥ b ⇒ θ(a) ⊥ θ(b))

Definition (Winter-Zacharias)

 $\dim_{nuc}(A) \leq n$ if \exists f.d. algebras F_i and c.p. maps



$$||(\phi_i \circ \psi_i)(a) - a|| \to 0$$

each φ_i "decomposes" into n + 1
c.c.p. order zero maps
(order zero: a ⊥ b ⇒ θ(a) ⊥ θ(b))

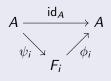
Theorem (Many hands; see TWW)

For unital, simple, separable C*-algebras satisfying the UCT: finite nuclear dimension \Rightarrow classifiability.

Theorem A (Brown-C-White)

A is nuclear iff \exists f.d. algebras F_i and c.c.p. maps

s.t.

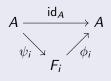


1 $\|(\phi_i \circ \psi_i)(a) - a\| \to 0$ 2 $\phi_i = \sum_{\text{finite}} \text{c.c.p. order zero maps}$ 3 the ψ_i are asymp. order zero: $a, b \ge 0, ab = 0 \Rightarrow \|\psi_i(a)\psi_i(b)\| \to 0$

Theorem A (Brown-C-White)

A is nuclear iff \exists f.d. algebras F_i and c.c.p. maps

s.t.

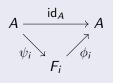


1 $\|(\phi_i \circ \psi_i)(a) - a\| \to 0$ 2 $\phi_i = \sum_{\text{finite}} \text{c.c.p. order zero maps}$ 3 the ψ_i are asymp. order zero: $a, b \ge 0, ab = 0 \Rightarrow \|\psi_i(a)\psi_i(b)\| \to 0$

Theorem A (Brown-C-White)

A is nuclear iff \exists f.d. algebras F_i and c.c.p. maps

s.t.



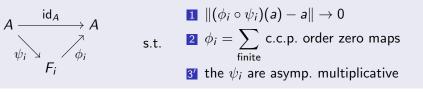
1 $\|(\phi_i \circ \psi_i)(a) - a\| \to 0$ 2 $\phi_i = \sum_{\text{finite}} \text{c.c.p. order zero maps}$ 3 the ψ_i are asymp. order zero: $a, b \ge 0, ab = 0 \Rightarrow \|\psi_i(a)\psi_i(b)\| \to 0$

• Was known for dim_{nuc}(A) < ∞ (Winter-Zacharias).

For nuclear A, approximations satisfying 1 and 2 were known to exist (Hirshberg-Kirchberg-White).

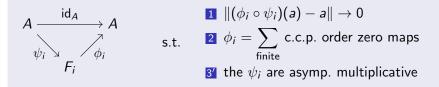
Theorem B (Brown-C-White)

Suppose A is nuclear. Then A is QD and $T(A) = T_{qd}(A)$ iff \exists f.d. algebras F_i and c.c.p. maps



Theorem B (Brown-C-White)

Suppose A is nuclear. Then A is QD and $T(A) = T_{qd}(A)$ iff \exists f.d. algebras F_i and c.c.p. maps



Deep result (Tikuisis-White-Winter): $T(A) = T_{qd}(A)$ if A is separable, unital, nuclear, QD and satisfies the UCT.

Theorem $B \Rightarrow$ Theorem A...

... by factoring through the cone in "an order zero way": $A \rightarrow CA \rightarrow A$.

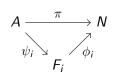
Reduce Thm. B to a σ -weak version

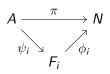
Want a " σ -weak" version of the factorization for $\iota: A \hookrightarrow A^{**}$ instead of id_A . That is, want ϕ_i and ψ_i satisfying $\phi_i \circ \psi_i \to \iota$ pt.- σ -weakly (and s.t. the other conditions hold unchanged).

Decompose proof accordingly.

 $A^{**} = A^{**}_{\inf} \oplus A^{**}_{\inf}$

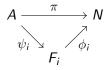
Strategy (cont.)





Properly ∞ case

Combine Blackadar and Kirchberg's NF algebras and techniques from Haagerup's proof of injective \Rightarrow hyperfinite in the prop. ∞ case.



Properly ∞ case

Combine Blackadar and Kirchberg's NF algebras and techniques from Haagerup's proof of injective \Rightarrow hyperfinite in the prop. ∞ case.

Finite case

Can reduce to $N = \pi_{\tau}(A)''$. Use that τ is qd. Use that two *-hom's from A to a finite vN algebra M are (σ -strong*) approx. u-equiv. if they agree on all normal traces on M.