Local embeddability of groups and quasidiagonality

José Carrión

Penn State University

based on joint work with Marius Dadarlat and Caleb Eckhardt

GPOTS Kansas State University May 28, 2014

Quasidiagonality

Quasidiagonality for operators

Quasidiagonality for operators was introduced by Halmos.

- An **operator** $T \in \mathcal{B}(\mathcal{H})$ is **quasidiagonal** if \exists finite rank projections $P_1 \leq P_2 \leq \cdots$ with $P_n \to 1_{\mathcal{H}}$ and $\|P_n T T P_n\| \to 0$.
- If \mathcal{H} is separable, a (separable) **set** $\Omega \subset \mathcal{B}(\mathcal{H})$ is **quasidiagonal** if \exists a sequence (P_n) as above that works simultaneously for all $T \in \Omega$.

Quasidiagonality for C^* -algebras

A **C*-algebra** is **quasidiagonal** if it has a faithful representation as a quasidiagonal set of operators.

Quasidiagonality (cont.)

- Quasidiagonality is a local finite-dimensional approximation property (Voiculescu)
- Connections to BDF and KK-theory, classification theory for nuclear *C**-algebras, AF-embeddability of *C**-algebras, . . .

Our focus: quasidiagonality and group C^* -algebras.

From now on: all groups $(\Gamma, \Lambda, \Delta, \text{ etc.})$ are discrete and countable.

Rosenberg's theorem

Recall:

- $\lambda_s \in \mathcal{B}(\ell^2\Gamma)$: left translation by $s \in \Gamma$.
- $C_{\lambda}^*(\Gamma)$: C^* -algebra generated by $\lambda(\Gamma) \subset \mathcal{B}(\ell^2\Gamma)$.

Theorem (Rosenberg '87)

$$C_{\lambda}^*(\Gamma)$$
 is $QD \Rightarrow \Gamma$ is amenable.

Conjecture (Rosenberg)

$$\Gamma$$
 is amenable \Rightarrow $C_{\lambda}^*(\Gamma)$ is QD.

A result of Bekka

Theorem (Bekka '99)

Suppose Γ is amenable. Then

$$\Gamma \hookrightarrow U\bigg(\prod \mathsf{M}_n(\mathbb{C})\bigg) \quad \Leftrightarrow \quad C_{\lambda}^*(\Gamma) \hookrightarrow \prod \mathsf{M}_n(\mathbb{C}).$$

In particular, Γ amenable and residually finite $\Rightarrow C_{\lambda}^*(\Gamma)$ is QD.

MF groups

Definition

Γ is **MF** if

$$\Gamma \hookrightarrow U\left(\frac{\prod M_{n_k}(\mathbb{C})}{\sum M_{n_k}(\mathbb{C})}\right)$$

for some increasing sequence (n_k) .

(\prod means ℓ^{∞} -direct sum, \sum means c_0 -direct sum.)

Theorem (C-Dadarlat-Eckhardt '13)

Suppose Γ is amenable. Then

$$\Gamma$$
 is $MF \Leftrightarrow C_{\lambda}^*(\Gamma)$ is QD .

That is,

$$\Gamma \hookrightarrow U\big(\prod \mathsf{M}_{n_k} \bigm/ \sum \mathsf{M}_{n_k}\big) \quad \Leftrightarrow \quad C_{\lambda}^*(\Gamma) \hookrightarrow \prod \mathsf{M}_{n_k} \Bigm/ \sum \mathsf{M}_{n_k}$$

Example: topological full groups

Definition

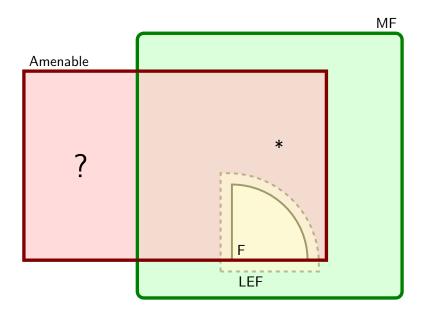
Let $\phi = \text{minimal homeomorphism of the Cantor set } X$.

The topological full group $[[\phi]] := \{\text{all homeomorphisms that are locally equal to some power of } \phi\}.$

- Giordano-Putnam-Skau
- Matui
- Grigorchuk-Medynets: $[[\phi]]$ is **LEF**.
- Juschenko-Monod: $[[\phi]]$ is **amenable**.
- Give first examples of finitely generated, simple, infinite amenable groups.

Using the above:

 $C_{\lambda}^{*}([[\phi]])$ is QD for any Cantor minimal system (X, ϕ) .



*: Abels (C-D-E)

Elementary amenable groups

The class of elementary amenable groups EG

 $\mathsf{EG} = \mathsf{smallest}$ class of groups containing all finite and abelian groups that is closed under taking subgroups, quotients, extensions, and direct limits.

Theorem (Ozawa-Rørdam-Sato '14)

 Γ is elementary amenable \Rightarrow $C_{\lambda}^{*}(\Gamma)$ is QD.

Their result is stronger and covers a class larger than EG.

Local embeddability after Vershik-Gordon

Definition

Let $\mathcal C$ be a class of groups. Say that Γ is *locally embeddable into* $\mathcal C$ (LE $\mathcal C$) if \forall $K \subset\subset \Gamma$ \exists $\Lambda \in \mathcal C$ and a function $\phi \colon \Gamma \to \Lambda$ s.t.

- $\phi(s)\phi(t)=\phi(st) \quad \forall \ s,t\in K; \ \mathsf{and}$
- $\phi|_{\mathcal{K}}$ is injective.

Residually C vs. LEC

Suppose $\mathcal C$ is closed under taking subgroups and finite direct products. Then a finitely presented group is residually $\mathcal C$ iff it is LE $\mathcal C$.

- LEF: Vershik-Gordon '97
- LEA: Gromov '99 ("initially subamenable")

Local embeddability and MF groups

Recall:

 Γ is MF if

$$\Gamma \hookrightarrow U\left(\begin{array}{c} \prod \mathsf{M}_{n_k}(\mathbb{C}) \\ \sum \mathsf{M}_{n_k}(\mathbb{C}) \end{array}\right).$$

Theorem (C)

$$\Gamma$$
 is LEMF \Rightarrow Γ is MF.

MF vs. hyperlinear vs. sofic

Theorem (Rădulescu '00)

 Γ is hyperlinear $\Leftrightarrow \forall \ K \subset \subset \Gamma$, $\varepsilon > 0 \ \exists \ n \in \mathbb{Z}_{>0}$ and $\phi \colon K \to U(n)$ s.t.

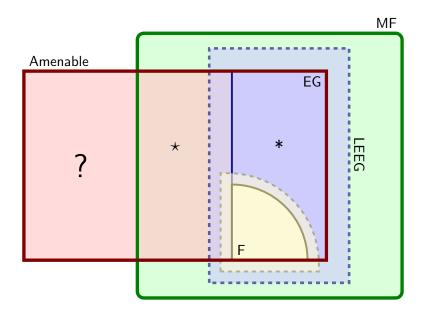
- $\|\phi(e)-1_n\|_{\mathsf{HS}}<\varepsilon\quad\text{if }e\in K;$

Theorem (Elek-Szabó '05)

 Γ is **sofic** \Leftrightarrow ... as above, but with Perm(n) instead of U(n).

Theorem (C)

 Γ is **MF** \Leftrightarrow ... as above but with $\|\cdot\|$ instead of $\|\cdot\|_{HS}$.



*: Abels (C-D-E); *: Grigorchuk, de Cornulier-Guyot-Pitsch (C)