Quasi-representations, almost flat bundles and K-theory

José R. Carrión
Penn State University
joint work with Marius Dadarlat
Concentration week
Texas A\& M University August 5, 2013

Some motivation

- Idea: obtain numerical invariants by pushing-forward K-theory elements via approximately multiplicative maps.

$$
\pi: B \rightarrow M_{n}(\mathbb{C}) \quad \rightsquigarrow \quad \pi_{\sharp}: K_{0}(B) \rightarrow \mathbb{Z}
$$

(e.g., $\left.B=\ell^{1} \Gamma \operatorname{cor}^{*}(\Gamma)\right)$

- Connes-Gromov-Moscovici used quasi-representations in connection to Novikov conjecture.

Some motivation

- Idea: obtain numerical invariants by pushing-forward K-theory elements via approximately multiplicative maps.

$$
\pi: B \rightarrow M_{n}(\mathbb{C}) \quad \rightsquigarrow \quad \pi_{\sharp}: K_{0}(B) \rightarrow \mathbb{Z}
$$

(e.g., $\left.B=\ell^{1} \Gamma \operatorname{or} C^{*}(\Gamma)\right)$

- Connes-Gromov-Moscovici used quasi-representations in connection to Novikov conjecture.

Why approximately multiplicative?

Proposition (Dadarlat)

Suppose Γ satisfies Baum-Connes and is torsion-free. If $\pi: C^{*}(\Gamma) \rightarrow M_{n}(\mathbb{C})$
is a (unital) representation, then the induced map π_{*} on K_{0} equals $n \cdot \iota_{*}$ where $\iota=$ trivial rep. of Γ.

Definition of a quasi-representation

$$
A=\text { unital } C^{*} \text {-algebra (with a tracial state } \tau \text {) }
$$

Definition

Let $\mathcal{F} \subset \Gamma$ be finite, $\varepsilon>0$.
$\pi: \Gamma \rightarrow U(A)$ is an $(\mathcal{F}, \varepsilon)$-representation if $\forall s, t \in \mathcal{F}$:

- $\pi(1)=1_{A}$
- $\left\|\pi\left(s^{-1}\right)-\pi(s)^{*}\right\|<\varepsilon$
- $\|\pi(s t)-\pi(s) \pi(t)\|<\varepsilon$

Definition of a quasi-representation

$$
A=\text { unital } C^{*} \text {-algebra (with a tracial state } \tau \text {) }
$$

Definition

Let $\mathcal{F} \subset \Gamma$ be finite, $\varepsilon>0$. $\pi: \Gamma \rightarrow U(A)$ is an $(\mathcal{F}, \varepsilon)$-representation if $\forall s, t \in \mathcal{F}$:

- $\pi(1)=1_{A}$
- $\left\|\pi\left(s^{-1}\right)-\pi(s)^{*}\right\|<\varepsilon$
- $\|\pi(s t)-\pi(s) \pi(t)\|<\varepsilon$
- Quasi-representation: \mathcal{F}, ε not necessarily specified.
- May extend a quasi-rep π of Γ to a unital, linear, approximately multiplicative contraction on $\ell^{1}(\Gamma)$ (in the obvious way).

Pushing-forward using quasi-representations

Let $\pi: \Gamma \rightarrow U(A)$ be a quasi-representation. (Extend to $\ell^{1}(\Gamma)$.)
How to push-forward $x \in K_{0}\left(\ell^{1}(\Gamma)\right)$

- choose idempotents e_{0}, e_{1} in matrices over $\ell^{1}(\Gamma)$ s.t. $x=\left[e_{0}\right]-\left[e_{1}\right]$.
- π multiplicative enough $\Rightarrow \pi\left(e_{i}\right) \approx$ idempotent in matrices over A $\Rightarrow \pi\left(e_{i}\right)$ may be perturbed to idempotent f_{i} over A
- define $\pi_{\sharp}(x)=\left[f_{0}\right]-\left[f_{1}\right] \in K_{0}(A)$.

Existence of quasi-representations

Proposition (C-Dadarlat)

Suppose that

- $\Gamma=$ discrete countable group with the Haagerup property
- $B \Gamma=$ finite simplicial complex
- all the elements of $K^{0}(B \Gamma)$ are almost flat.

If $h: K_{0}\left(C^{*}(\Gamma)\right) \rightarrow \mathbb{Z}$ is a group homomorphism and $\mathcal{F} \subset K_{0}\left(C^{*}(\Gamma)\right)$ is finite, then there are $m \in \mathbb{N}$ and quasi-rep's $\pi^{+}, \pi^{-}: \Gamma \rightarrow U(m)$ s.t.

$$
h(y)=\pi_{\sharp}^{+}(y)-\pi_{\sharp}^{-}(y) \quad \forall y \in \mathcal{F} .
$$

Example: Almost commuting unitaries

Suppose $u, v \in U(n)$ and $\left\|u v u^{-1} v^{-1}-1_{n}\right\|$ is small.

- Associate a quasi-representation $\pi: \mathbb{Z}^{2} \rightarrow U(n)$ s.t.

$$
s \mapsto u, \quad t \mapsto v, \quad s t \mapsto u v
$$

- $K_{0}\left(\ell^{1}\left(\mathbb{Z}^{2}\right)\right) \cong K_{0}\left(C\left(\mathbb{T}^{2}\right)\right)=\mathbb{Z}[1] \oplus \mathbb{Z} \beta . \quad(\beta=$ Bott element $)$
- $\left\|[u, v]-1_{n}\right\|$ small enough $\Rightarrow \pi$ multiplicative enough so that

$$
\kappa(u, v):=\operatorname{Tr} \pi_{\sharp}(\beta) \in \mathbb{Z}
$$

is defined.

Example: Almost commuting unitaries

Suppose $u, v \in U(n)$ and $\left\|u v u^{-1} v^{-1}-1_{n}\right\|$ is small.

- Associate a quasi-representation $\pi: \mathbb{Z}^{2} \rightarrow U(n)$ s.t.

$$
s \mapsto u, \quad t \mapsto v, \quad s t \mapsto u v
$$

- $K_{0}\left(\ell^{1}\left(\mathbb{Z}^{2}\right)\right) \cong K_{0}\left(C\left(\mathbb{T}^{2}\right)\right)=\mathbb{Z}[1] \oplus \mathbb{Z} \beta$.
($\beta=$ Bott element)
- $\left\|[u, v]-1_{n}\right\|$ small enough $\Rightarrow \pi$ multiplicative enough so that

$$
\kappa(u, v):=\operatorname{Tr} \pi_{\sharp}(\beta) \in \mathbb{Z}
$$

is defined.

Theorem (Exel-Loring '91)

If $\left\|[u, v]-1_{n}\right\|$ is small enough, then

$$
\kappa(u, v)=\frac{1}{2 \pi i} \operatorname{Tr} \log ([u, v])
$$

Setup for main result

Can we generalize Exel-Loring? In what context?

Setup for main result

Can we generalize Exel-Loring? In what context?

$$
\begin{aligned}
& M=g \text {-holed torus (for some } g \in \mathbb{N} \text {) } \\
& \Gamma:=\pi_{1}(M) . \text { Known that: } \\
& \qquad \Gamma=\left\langle s_{1}, t_{1}, \ldots, s_{g}, t_{g}: \prod_{i=1}^{g}\left[s_{i}, t_{i}\right]\right\rangle \\
& \qquad\left(\left[s_{i}, t_{i}\right]:=s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right)
\end{aligned}
$$

$A=$ unital C^{*}-algebra with a tracial state τ

Fix a quasi-representation $\pi: \Gamma \rightarrow U(A)$.

The analogue of the invariant $\kappa(u, v)$

$$
K_{0}(M) \xrightarrow{\mu} K_{0}\left(\ell^{1}(\Gamma)\right)
$$

(Lafforgue's ℓ^{1}-version of) the assembly map μ is an isomorphism in this case.

The analogue of the invariant $\kappa(u, v)$

$$
\begin{array}{ccc}
{[M]} & & \mathbb{Z} \oplus \mathbb{Z} \mu[M] \\
\Pi & \\
K_{0}(M) \\
\\
\\
& K_{0}\left(\ell^{1}(\Gamma)\right)
\end{array}
$$

(Lafforgue's ℓ^{1}-version of) the assembly map μ is an isomorphism in this case.

The analogue of the invariant $\kappa(u, v)$

$$
\begin{aligned}
& {[M] \quad \mathbb{Z} \oplus \mathbb{Z} \mu[M]}
\end{aligned}
$$

(Lafforgue's ℓ^{1}-version of) the assembly map μ is an isomorphism in this case.

The analogue of the invariant $\kappa(u, v)$

$$
\begin{aligned}
& {[M] \quad \mathbb{Z} \oplus \mathbb{Z} \mu[M]} \\
& \stackrel{\oplus}{\square} K_{0}(M) \xrightarrow{\mu} K_{0}\left(\ell^{1}(\Gamma)\right) \quad \ni \quad \mu[M] \\
& \downarrow \pi_{\sharp} \\
& K_{0}(A)
\end{aligned}
$$

(Lafforgue's ℓ^{1}-version of) the assembly map μ is an isomorphism in this case.

The analogue of the invariant $\kappa(u, v)$

$$
\begin{aligned}
& {[M] \quad \mathbb{Z} \oplus \mathbb{Z} \mu[M]}
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow \pi_{\sharp} \\
& K_{0}(A) \\
& \downarrow \tau \\
& \mathbb{R}
\end{aligned}
$$

(Lafforgue's ℓ^{1}-version of) the assembly map μ is an isomorphism in this case.

The analogue of the invariant $\kappa(u, v)$

$$
\begin{aligned}
& {[M] \quad \mathbb{Z} \oplus \mathbb{Z} \mu[M]}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\downarrow \pi_{\sharp} \\
K_{0}(A) \\
\downarrow \tau
\end{array} \downarrow \\
& \mathbb{R} \quad \ni \tau\left(\pi_{\sharp}(\mu[M])\right)
\end{aligned}
$$

(Lafforgue's ℓ^{1}-version of) the assembly map μ is an isomorphism in this case.

Main result

Theorem (C-Dadarlat)

Fix a genus $g \in \mathbb{N}$. There exist $\varepsilon>0$ and a finite subset $\mathcal{F} \subset \Gamma$ s.t. the following holds:

If A is a unital C^{*}-algebra, $\tau \in T(A)$ and
$\pi: \Gamma \rightarrow U(A)$ is any $(\mathcal{F}, \varepsilon)$-representation, then

$$
\tau\left(\pi_{\sharp}(\mu[M])\right)=\frac{1}{2 \pi i} \tau\left(\log \left(\prod_{i=1}^{g}\left[\pi\left(s_{i}\right), \pi\left(t_{i}\right)\right]\right)\right) .
$$

Main result

Theorem (C-Dadarlat)

Fix a genus $g \in \mathbb{N}$. There exist $\varepsilon>0$ and a finite subset $\mathcal{F} \subset \Gamma$ s.t. the following holds:

If A is a unital C^{*}-algebra, $\tau \in T(A)$ and
$\pi: \Gamma \rightarrow U(A)$ is any $(\mathcal{F}, \varepsilon)$-representation, then

$$
\tau\left(\pi_{\sharp}(\mu[M])\right)=\frac{1}{2 \pi i} \tau\left(\log \left(\prod_{i=1}^{g}\left[\pi\left(s_{i}\right), \pi\left(t_{i}\right)\right]\right)\right) .
$$

Remark

$\forall \varepsilon>0$, finite $\mathcal{F} \subset \Gamma \exists \delta>0$ s.t. given A and $u_{1}, v_{1}, \ldots, u_{g}, v_{g} \in U(A)$ satisfying

$$
\left\|\prod_{i=1}^{g}\left[u_{i}, v_{i}\right]-1\right\|<\delta
$$

then there is an $(\mathcal{F}, \varepsilon)$-representation $\pi: \Gamma \rightarrow U(A)$ with $\pi\left(s_{i}\right)=u_{i}$ and $\pi\left(t_{i}\right)=v_{i}$.

Remark

$\forall \varepsilon>0$, finite $\mathcal{F} \subset \Gamma \exists \delta>0$ s.t.
given A and $u_{1}, v_{1}, \ldots, u_{g}, v_{g} \in U(A)$ satisfying

$$
\left\|\prod_{i=1}^{g}\left[u_{i}, v_{i}\right]-1\right\|<\delta
$$

then there is an $(\mathcal{F}, \varepsilon)$-representation $\pi: \Gamma \rightarrow U(A)$ with $\pi\left(s_{i}\right)=u_{i}$ and $\pi\left(t_{i}\right)=v_{i}$.

Example: NC tori

$A_{\theta}:=C^{*}\left(u, v \mid u, v\right.$ are unitaries s.t. $\left.v u=e^{2 \pi i \theta} u v\right)$.
θ is small enough $\Rightarrow \exists$ quasi-representation $\pi: \mathbb{Z}^{2} \rightarrow U\left(A_{\theta}\right)$ s.t. $\pi(s)=u$, $\pi(t)=v$ and

$$
\tau\left(\pi_{\sharp}(\beta)\right)=\frac{1}{2 \pi i} \tau(\log [u, v])=-\theta .
$$

The context for the formula

Recall the formula:

$$
\tau\left(\pi_{\sharp}(\mu[M])\right)=\frac{1}{2 \pi i} \tau\left(\log \left(\prod_{i=1}^{g}\left[\pi\left(s_{i}\right), \pi\left(t_{i}\right)\right]\right)\right)
$$

The assembly map $\mu: K_{0}(M) \rightarrow K_{0}\left(\ell^{1}(\Gamma)\right)$ is implemented by the Mishchenko line bundle ℓ :

$$
K_{0}\left(C(M) \otimes \ell^{1}(\Gamma)\right)
$$

\uplus
ℓ

The context for the formula

Recall the formula:

$$
\tau\left(\pi_{\sharp}(\mu[M])\right)=\frac{1}{2 \pi i} \tau\left(\log \left(\prod_{i=1}^{g}\left[\pi\left(s_{i}\right), \pi\left(t_{i}\right)\right]\right)\right)
$$

The assembly map $\mu: K_{0}(M) \rightarrow K_{0}\left(\ell^{1}(\Gamma)\right)$ is implemented by the Mishchenko line bundle ℓ :

$$
\begin{array}{cc}
K_{0}\left(C(M) \otimes \ell^{1}(\Gamma)\right) \\
\stackrel{U}{U} & \\
\ell & \times \\
K_{0}(M) \xrightarrow{\mu} K_{0}\left(\ell^{1}(\Gamma)\right)
\end{array}
$$

The context for the formula

Recall the formula:

$$
\tau\left(\pi_{\sharp}(\mu[M])\right)=\frac{1}{2 \pi i} \tau\left(\log \left(\prod_{i=1}^{g}\left[\pi\left(s_{i}\right), \pi\left(t_{i}\right)\right]\right)\right)
$$

The assembly map $\mu: K_{0}(M) \rightarrow K_{0}\left(\ell^{1}(\Gamma)\right)$ is implemented by the Mishchenko line bundle ℓ :

$$
\begin{array}{cccc}
K_{0}\left(C(M) \otimes \ell^{1}(\Gamma)\right) & K K(C(M), \mathbb{C}) & K K\left(\mathbb{C}, \ell^{1}(\Gamma)\right) \\
\stackrel{\|}{l}) \\
\ell & \times & K_{0}(M) \xrightarrow{\mu} \xrightarrow{\|} K_{0}\left(\ell^{1}(\Gamma)\right)
\end{array}
$$

The context for the formula (cont.)

$$
\begin{aligned}
& {[M] \longmapsto \mu[M]} \\
& K_{0}(M) \xrightarrow{\mu} K_{0}\left(\ell^{1}(\Gamma)\right) \\
& \downarrow \pi_{\sharp} \\
& K_{0}(A) \\
& \downarrow \text { + } \\
& \mathbb{R} \quad \tau\left(\pi_{\sharp}(\mu[M])\right)
\end{aligned}
$$

The context for the formula (cont.)

$$
\begin{aligned}
& {[M] \longmapsto \mu[M]} \\
& K_{0}\left(C(M) \otimes \ell^{1}(\Gamma)\right) \quad \ni \quad \ell \quad K_{0}(M) \xrightarrow{\mu} K_{0}\left(\ell^{1}(\Gamma)\right) \\
& \downarrow \pi_{\sharp} \\
& K_{0}(A) \\
& \downarrow \text { + } \\
& \mathbb{R} \quad \tau\left(\pi_{\sharp}(\mu[M])\right)
\end{aligned}
$$

The context for the formula (cont.)

$$
\begin{aligned}
& {[M] \longmapsto \mu[M]}
\end{aligned}
$$

The context for the formula (cont.)

$$
\begin{aligned}
& {[M] \longmapsto \mu[M]}
\end{aligned}
$$

The context for the formula (cont.)

$$
\begin{aligned}
& {[M] \longmapsto \mu[M]}
\end{aligned}
$$

The context for the formula (cont.)

$$
\begin{aligned}
& {[M] \longmapsto \mu[M]} \\
& K_{0}\left(C(M) \otimes \ell^{1}(\Gamma)\right) \quad \ni \quad \ell \quad \times \quad K_{0}(M) \xrightarrow{\mu} K_{0}\left(\ell^{1}(\Gamma)\right)
\end{aligned}
$$

$$
\begin{aligned}
& H^{\text {even }}(M) \quad \ni \operatorname{ch}_{\tau}\left(\ell_{\pi}\right) \times H_{\text {even }}(M) \longrightarrow \mathbb{R} \quad \tau\left(\pi_{\sharp}(\mu[M])\right) \\
& \left\langle\mathrm{ch}_{\tau}\left(\ell_{\pi}\right),[M]\right\rangle
\end{aligned}
$$

Special case of a Theorem of Dadarlat:

$$
\tau\left(\pi_{\sharp}(\mu[M])\right)=\left\langle\mathrm{ch}_{\tau}\left(\ell_{\pi}\right),[M]\right\rangle
$$

Hilbert A-module bundles

- $\ell \in K_{0}\left(C(M) \otimes \ell^{1}(\Gamma)\right) \Rightarrow$ push-forward $\ell_{\pi} \in K_{0}(C(M) \otimes A)$
- $K_{0}(C(M) \otimes A)=$ Grothendieck group of isomorphisms classes of f.g.p. Hilbert A-module bundles

Hilbert A-module bundle $E \rightarrow M$

- $E \rightarrow M$: fibers \cong Hilbert A-modules
- $E=$ f.g.p. $\Rightarrow E$ has (unique) smooth structure; curvature Ω

Hilbert A-module bundles

- $\ell \in K_{0}\left(C(M) \otimes \ell^{1}(\Gamma)\right) \Rightarrow$ push-forward $\ell_{\pi} \in K_{0}(C(M) \otimes A)$
- $K_{0}(C(M) \otimes A)=$ Grothendieck group of isomorphisms classes of f.g.p. Hilbert A-module bundles

Hilbert A-module bundle $E \rightarrow M$

- $E \rightarrow M$: fibers \cong Hilbert A-modules
- $E=$ f.g.p. $\Rightarrow E$ has (unique) smooth structure; curvature Ω
- For the proof of the theorem, we construct bundle $E_{\pi} \rightarrow M$ s.t. $\left[E_{\pi}\right]=\ell_{\pi}$.
- Construction is explicit enough that we may apply Chern-Weil theory, using $\operatorname{ch}_{\tau}\left(\ell_{\pi}\right)=\tau(i \Omega / 2 \pi) \in \Omega^{2}(M, \mathbb{C})$, to get

$$
\left\langle\operatorname{ch}_{\tau}\left(\ell_{\pi}\right),[M]\right\rangle=\int_{M} \tau\left(\frac{i \Omega}{2 \pi}\right) .
$$

Simplicial complexes and evaluation of the integral

- To construct E_{π} and deal with $\int_{M} \tau(i \Omega / 2 \pi)$ we work with a triangulation of M.
- Edges in simplicial complex \rightsquigarrow elements of $\Gamma=\pi_{1}(M)$

Simplicial complexes and evaluation of the integral

- To construct E_{π} and deal with $\int_{M} \tau(i \Omega / 2 \pi)$ we work with a triangulation of M.
- Edges in simplicial complex \rightsquigarrow elements of $\Gamma=\pi_{1}(M)$

$$
g=1 \text { case: } \mathbb{T}^{2}
$$

Simplicial complexes and evaluation of the integral

- To construct E_{π} and deal with $\int_{M} \tau(i \Omega / 2 \pi)$ we work with a triangulation of M.
- Edges in simplicial complex \rightsquigarrow elements of $\Gamma=\pi_{1}(M)$

$$
g=1 \text { case: } \mathbb{T}^{2}
$$

Simplicial complexes and evaluation of the integral

- To construct E_{π} and deal with $\int_{M} \tau(i \Omega / 2 \pi)$ we work with a triangulation of M.
- Edges in simplicial complex \rightsquigarrow elements of $\Gamma=\pi_{1}(M)$

$$
g=1 \text { case: } \mathbb{T}^{2}
$$

Simplicial complexes and evaluation of the integral

- To construct E_{π} and deal with $\int_{M} \tau(i \Omega / 2 \pi)$ we work with a triangulation of M.
- Edges in simplicial complex \rightsquigarrow elements of $\Gamma=\pi_{1}(M)$

$$
g=1 \text { case: } \mathbb{T}^{2}
$$

Evaluation of the integral (cont.)

On a 2-simplex $\sigma=\langle i, j, k\rangle \ldots$

- $s_{i j}:=$ element of Γ corresp. to edge $i j$
- have "cocycle condition": $s_{i j} s_{j k}=s_{i k}$
- π quasi-representation

$$
\Rightarrow \pi\left(s_{i j}\right) \pi\left(s_{j k}\right) \approx \pi\left(s_{i k}\right)
$$

- in the \mathbb{T}^{2} case:

$$
\pi(t) \pi(s)=v u \approx u v=\pi(t s)
$$

Evaluation of the integral (cont.)

On a 2-simplex $\sigma=\langle i, j, k\rangle \ldots$

- $s_{i j}:=$ element of Γ corresp. to edge $i j$
- have "cocycle condition": $s_{i j} s_{j k}=s_{i k}$
- π quasi-representation

$$
\Rightarrow \pi\left(s_{i j}\right) \pi\left(s_{j k}\right) \approx \pi\left(s_{i k}\right)
$$

- in the \mathbb{T}^{2} case:

$$
\pi(t) \pi(s)=v u \approx u v=\pi(t s)
$$

Let $\xi_{\sigma}=$ segment $\pi\left(s_{i j}\right) \pi\left(s_{j k}\right) \rightsquigarrow \pi\left(s_{i k}\right)$ in $\mathrm{GL}_{\infty}(A)$. Then

$$
\int_{M} \tau(\Omega)=\quad \tilde{\Delta}_{\tau}\left(\xi_{\sigma}\right)
$$

where $\tilde{\Delta}_{\tau}=$ de la Harpe-Skandalis determinant.

Evaluation of the integral (cont.)

On a 2-simplex $\sigma=\langle i, j, k\rangle \ldots$

- $s_{i j}:=$ element of Γ corresp. to edge $i j$
- have "cocycle condition": $s_{i j} s_{j k}=s_{i k}$
- π quasi-representation

$$
\Rightarrow \pi\left(s_{i j}\right) \pi\left(s_{j k}\right) \approx \pi\left(s_{i k}\right)
$$

- in the \mathbb{T}^{2} case:

$$
\pi(t) \pi(s)=v u \approx u v=\pi(t s)
$$

Let $\xi_{\sigma}=$ segment $\pi\left(s_{i j}\right) \pi\left(s_{j k}\right) \rightsquigarrow \pi\left(s_{i k}\right)$ in $\mathrm{GL}_{\infty}(A)$. Then

$$
\int_{M} \tau(\Omega)=\sum_{\sigma} \quad \tilde{\Delta}_{\tau}\left(\xi_{\sigma}\right)
$$

where $\tilde{\Delta}_{\tau}=$ de la Harpe-Skandalis determinant.

Evaluation of the integral (cont.)

On a 2-simplex $\sigma=\langle i, j, k\rangle \ldots$

- $s_{i j}:=$ element of Γ corresp. to edge $i j$
- have "cocycle condition": $s_{i j} s_{j k}=s_{i k}$
- π quasi-representation

$$
\Rightarrow \pi\left(s_{i j}\right) \pi\left(s_{j k}\right) \approx \pi\left(s_{i k}\right)
$$

- in the \mathbb{T}^{2} case:

$$
\pi(t) \pi(s)=v u \approx u v=\pi(t s)
$$

Let $\xi_{\sigma}=$ segment $\pi\left(s_{i j}\right) \pi\left(s_{j k}\right) \rightsquigarrow \pi\left(s_{i k}\right)$ in $\mathrm{GL}_{\infty}(A)$. Then

$$
\int_{M} \tau(\Omega)=\sum_{\sigma}(-1)^{\mathbf{o}(\sigma)} \tilde{\Delta}_{\tau}\left(\xi_{\sigma}\right)
$$

where $\tilde{\Delta}_{\tau}=$ de la Harpe-Skandalis determinant.

To summarize

- Interested in how a quasi-rep π acts on $K_{0}\left(\ell^{1}(\Gamma)\right)$, where $\Gamma=$ surface group
- $K_{0}\left(\ell^{1}(\Gamma)\right) \cong \mathbb{Z} \oplus \mathbb{Z} \mu[M]$

To summarize

- Interested in how a quasi-rep π acts on $K_{0}\left(\ell^{1}(\Gamma)\right)$, where $\Gamma=$ surface group
- $K_{0}\left(\ell^{1}(\Gamma)\right) \cong \mathbb{Z} \oplus \mathbb{Z} \mu[M]$
- Push-forward $\mu[M]$ via π and apply trace $\tau: \tau\left(\pi_{\sharp}(\mu[M])\right)$
- Push-forward ℓ, apply ch_{τ} etc. : $\left\langle\mathrm{ch}_{\tau}\left(\ell_{\pi}\right),[M]\right\rangle$.

To summarize

- Interested in how a quasi-rep π acts on $K_{0}\left(\ell^{1}(\Gamma)\right)$, where Γ = surface group
- $K_{0}\left(\ell^{1}(\Gamma)\right) \cong \mathbb{Z} \oplus \mathbb{Z} \mu[M]$
- Push-forward $\mu[M]$ via π and apply trace $\tau: \tau\left(\pi_{\sharp}(\mu[M])\right)$
- Push-forward ℓ, apply ch_{τ} etc. : $\left\langle\mathrm{ch}_{\tau}\left(\ell_{\pi}\right),[M]\right\rangle$.

Dadarlat: red invariant $=$ blue invariant.

To summarize

- Interested in how a quasi-rep π acts on $K_{0}\left(\ell^{1}(\Gamma)\right)$, where $\Gamma=$ surface group
- $K_{0}\left(\ell^{1}(\Gamma)\right) \cong \mathbb{Z} \oplus \mathbb{Z} \mu[M]$
- Push-forward $\mu[M]$ via π and apply trace $\tau: \tau\left(\pi_{\sharp}(\mu[M])\right)$
- Push-forward ℓ, apply ch_{τ} etc. : $\left\langle\mathrm{ch}_{\tau}\left(\ell_{\pi}\right),[M]\right\rangle$.

Dadarlat: red invariant $=$ blue invariant.

- Use Chern-Weil theory for Hilbert A-module bundles to deal with $\mathrm{ch}_{\tau}\left(\ell_{\pi}\right)$.

