On groups with quasidiagonal C^* -algebras

José R. Carrión

Purdue University

joint work with Marius Dadarlat and Caleb Eckhardt

Wabash Mini-conference, IUPUI September 15, 2012

Quasidiagonality for operators

Quasidiagonality for operators was introduced by Halmos.

- An operator $T \in \mathcal{B}(\mathcal{H})$ is quasidiagonal if \exists finite rank projections $P_1 \leq P_2 \leq \cdots$ with $P_n \to 1_{\mathcal{H}}$ and $||P_nT TP_n|| \to 0$.
- (Equivalently, T = D + K where K is compact and D is block-diagonal.)
- If *H* is separable, a (separable) set Ω ⊂ B(*H*) is quasidiagonal if ∃ a sequence (*P_n*) as above that works simultaneously for all *T* ∈ Ω.

Quasidiagonality for C^* -algebras

A **C*-algebra** is **quasidiagonal** if it has a faithful representation as a quasidiagonal set of operators.

- Quasidiagonality is a *local finite-dimensional approximation property* (Voiculescu)
- Connections to BDF and KK-theory, classification theory for nuclear C*-algebras, AF-embeddability of C*-algebras, ...

Our focus: quasidiagonality and group C^* -algebras.

From now on: all groups (Γ , Λ , Δ , etc.) are discrete and countable.

Rosenberg's theorem

Recall:

•
$$\lambda_s \in \mathcal{B}(\ell^2 \Gamma) =$$
 left translation by $s \in \Gamma$.

•
$$C^*_{\lambda}(\Gamma) = C^*$$
-algebra generated by $\lambda(\Gamma) \subset \mathcal{B}(\ell^2 \Gamma)$.

When is $C^*_{\lambda}(\Gamma)$ quasidiagonal? Same as asking for which Γ is $\lambda(\Gamma)$ a QD set.

Theorem (Rosenberg '87)

If \exists a sequence of projections $(P_n)\subset \mathcal{K}(\ell^2\Gamma)$ such that

$$\|P_n\lambda_s-\lambda_sP_n\|\to 0$$

 $\forall s \in \Gamma$, then Γ is amenable. In particular, for $C^*_{\lambda}(\Gamma)$ to be QD, Γ must be amenable. For finite $F \subset \Gamma$, let

$$C_F = \inf_{\substack{P \in \mathcal{K}(\ell^2 \Gamma) \\ 0 \neq P = P^* = P^2}} \max_{s \in F} \|P\lambda_s - \lambda_s P\|.$$

Note: $C^*_{\lambda}(\Gamma)$ quasidiagonal $\Rightarrow C_F = 0$ for all finite $F \subset \Gamma$.

Alternate formulation of Rosenberg's theorem

 Γ not amenable $\Rightarrow C_F > 0$ for some $F \subset \Gamma$.

A "quantitative" version of Rosenberg's theorem

Paradoxical decompositions

Recall: Γ is not amenable iff \exists disjoint $X_1, \ldots, X_n, Y_1, \ldots, Y_m \subset \Gamma$ and $s_1 = 1, \ldots, s_n, t_1 = 1, \ldots, t_m \in \Gamma$ s.t.

$$\left(\bigsqcup_{i=1}^{n} X_{i}\right) \sqcup \left(\bigsqcup_{j=1}^{m} Y_{j}\right) = \Gamma = \bigsqcup_{i=1}^{n} s_{i} X_{i} = \bigsqcup_{j=1}^{m} t_{j} Y_{j}$$

Theorem (C-Dadarlat-Eckhardt)

Suppose Γ has a paradoxical decomposition as above. Then

$$C_F \geq rac{1}{n+m-2} \; ,$$

where $F = \{s_1, ..., s_n, t_1, ..., t_n\}$.

For example, $\langle a, b \rangle = \mathbb{F}_2 \subseteq \Gamma \Rightarrow C_F \ge 1/2$ for $F = \{a, b\}$.

 Γ amenable \Rightarrow $C^*_{\lambda}(\Gamma)$ quasidiagonal ?

There are several results in this direction. For example:

Theorem (Bekka '90)

Suppose Γ is amenable. Then

$$\Gamma \hookrightarrow U\bigg(\prod M_n(\mathbb{C})\bigg) \quad \Leftrightarrow \quad C^*_\lambda(\Gamma) \hookrightarrow \prod M_n(\mathbb{C}).$$

(That is, Γ is MAP \Leftrightarrow $C^*_{\lambda}(\Gamma)$ is RFD.)

In particular, Γ amenable MAP $\Rightarrow C_{\lambda}^{*}(\Gamma)$ is QD.

MF groups

Definition

 Γ is **MF** if

$$\Gamma \hookrightarrow U\left(\ \frac{\prod M_{n_k}(\mathbb{C})}{\sum M_{n_k}(\mathbb{C})} \
ight)$$

for some increasing sequence (n_k) .

(\prod means $\ell^\infty\text{-direct}$ sum, \sum means $\mathit{c}_0\text{-direct}$ sum.)

Theorem (C-Dadarlat-Eckhardt)

Suppose Γ is amenable. Then

$$\Gamma \hookrightarrow U\left(\begin{array}{c} \prod \mathsf{M}_{n_k}(\mathbb{C}) \\ \sum \mathsf{M}_{n_k}(\mathbb{C}) \end{array}
ight) \quad \Leftrightarrow \quad C^*_{\lambda}(\Gamma) \hookrightarrow \frac{\prod \mathsf{M}_{n_k}(\mathbb{C})}{\sum \mathsf{M}_{n_k}(\mathbb{C})}.$$

(That is, Γ is $MF \Leftrightarrow C^*_{\lambda}(\Gamma)$ is QD.)

José R. Carrión (Purdue University) On groups with quasidiagonal C*-algebras Wabash Mini-Conference 2012 8 / 13

Definition (Gordon-Vershik)

 Γ is *locally embeddable into the class of finite groups* (**LEF**) if \forall finite $F \subset \Gamma \exists$ a finite group Λ and a function $\phi \colon \Gamma \to \Lambda$ s.t. $\phi|_F$ is injective and multiplicative.

Every (locally) residually finite group is LEF.

Proposition

$\Gamma \text{ is } \mathsf{LEF} \Rightarrow \Gamma \text{ is } \mathsf{MF}.$

Proposition: MF \supseteq LEF

Abels ('79) constructed a finitely presented solvable group Γ that is not residually finite. This group is not LEF. However, Γ is MF.

Example: topological full groups ($\subset LEF \subset MF$)

Definition

Let ϕ = minimal homeomorphism of the Cantor set X. The *topological full group* [[ϕ]] := {all homeomorphisms that are locally equal to some power of ϕ }.

- Giordano-Putnam-Skau: two CMS (X, ϕ) and (X, ψ) are flip conjugate $\Leftrightarrow [[\phi]] \cong [[\psi]]$.
- *Matui:* $[[\phi]]'$ is simple; $[[\phi]]$ is f.g. $\Leftrightarrow (X, \phi)$ is a minimal subshift.
- Grigorchuk-Medynets: $[[\phi]]$ is LEF.
- Juschenko-Monod: $[[\phi]]$ is amenable.
- Used to provide first examples of finitely generated, simple, infinite amenable groups.

Using the above:

 $C^*_{\lambda}(\llbracket[\phi]\rrbracket)$ is QD for any Cantor minimal system (X, ϕ) .

Definition (Hadwin '87)

A C*-algebra A is strongly quasidiagonal if A/I is QD $\forall I \lhd A$.

Example

Every irrational rotation algebra (in fact every NC torus) is strongly QD.

Theorem (Kirchberg-Winter '04)

A has finite decomposition rank \Rightarrow A is strongly QD.

(Decomposition rank: a NC analog of covering dimension, important in the classification theory of nuclear C^* -algebras.)

Theorem (C)

If $1 \to \Delta \to \Gamma \to \Lambda \to 1$ is an exact sequence of groups s.t.

- $\Delta \leq Z(\Gamma)$ is f.g., and
- Λ is f.g. abelian

Then $C^*_{\lambda}(\Gamma)$ has finite decomposition rank, so it is strongly QD.

For example:

 C^* (integer Heisenberg group) is strongly QD.

On the other hand:

 $C^*(\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z})$ is *not* strongly QD (it is QD, however)

This follows from a more general result.

Theorem (C-Dadarlat-Eckhardt)

Let $A = unital C^*$ -algebra, $\Gamma = amenable$ group. If

• $\exists x \in A$, rep's π_0, π_1 of A with $\pi_0(x) = 0$, $\pi_1(x) = 1$, and

• $\mathbb{Z} \hookrightarrow \Gamma$,

then $A^{\otimes \Gamma} \rtimes_{\beta} \Gamma$ is not strongly QD.

 $(\beta = Bernoulli \text{ action of } \Gamma \text{ on } A^{\otimes \Gamma})$

This applies to $C^*_{\lambda}(\Delta \wr \Gamma)$ if e.g.

- \exists non-trivial finite dim'l rep. of Δ , or
- Δ has a finite conjugacy class

(assuming $\mathbb{Z} \hookrightarrow \Gamma$.)