Quasi-homomorphisms and Surface Groups

José R. Carrión (joint work with Marius Dadarlat)

Purdue University

GPOTS University of Houston May 30, 2012

Some motivation

• Idea: obtain numerical invariants by pushing-forward *K*-theory elements via *approximately* multiplicative maps.

$$\pi \colon B \to M_n(\mathbb{C}) \quad \rightsquigarrow \quad \pi_{\sharp} \colon K_0(B) \to \mathbb{Z}$$

 Connes-Gromov-Moscovici: push-forward equivariant index of elliptic operators over M by quasi-representations of π₁(M). Applications to Novikov conjecture.

Why approximately multiplicative?

Proposition (Dadarlat)

Suppose G satisfies Baum-Connes and is torsion-free. If $\pi: C^*(G) \to M_n(\mathbb{C})$ is a (unital) representation, then the induced map π_* on K_0 equals $n \cdot \iota_*$ where $\iota =$ trivial rep. of G.

A = unital C^* -algebra (with a tracial state au)

Definition

Let $\mathcal{F} \subset G$ be finite, $\varepsilon > 0$. $\pi \colon G \to U(A)$ is an $(\mathcal{F}, \varepsilon)$ -homomorphism if $\forall s, t \in \mathcal{F}$: • $\pi(1) = 1_A$ • $\|\pi(st) - \pi(s)\pi(t)\| < \varepsilon$

- Quasi-homomorphism: \mathcal{F} , ε not necessarily specified.
- May extend a quasi-hom. π of G to a unital, linear, approximately multiplicative contraction on l¹(G) (in the obvious way).

Let $\pi \colon G \to U(A)$ be a quasi-homomorphism. (Extend to $\ell^1(G)$.)

How to push-forward $x \in K_0(\ell^1(G))$

- choose idempotents e_0, e_1 in matrices over $\ell^1(G)$ s.t. $x = [e_0] [e_1]$.
- π multiplicative enough ⇒ π(e_i) ≈ idempotent in matrices over A
 - $\Rightarrow \pi(e_i)$ may be perturbed to idempotent f_i over A
- define $\pi_{\sharp}(x) = [f_0] [f_1] \in K_0(A)$.

To obtain numerical invariants, apply trace $\tau \in T(A)$.

Example: Almost commuting unitaries

Suppose $u, v \in U(n)$ and $||uvu^{-1}v^{-1} - 1_n||$ is small.

• Associate a quasi-homomorphism $\pi\colon \mathbb{Z}^2 o U(n)$ s.t.

 $s \mapsto u, \quad t \mapsto v, \quad st \mapsto uv$

- $\mathcal{K}_0(\ell^1(\mathbb{Z}^2)) \cong \mathcal{K}_0(\mathcal{C}(\mathbb{T}^2)) = \mathbb{Z}[1] \oplus \mathbb{Z}\beta.$ ($\beta = \mathsf{Bott element})$
- $||[u, v] 1_n||$ small enough $\Rightarrow \pi$ multiplicative enough so that $\kappa(u, v) := \operatorname{Tr} \pi_{\mathfrak{k}}(\beta) \in \mathbb{Z}$

is defined.

Theorem (Exel-Loring '91)

If $\|[u,v] - 1_n\|$ is small enough, then

$$\kappa(u,v) = \frac{1}{2\pi i} \operatorname{Tr} \log([u,v]).$$

Can we generalize Exel-Loring? In what context?

$$\begin{split} M &= \text{closed, connected, orientable surface} \\ &\Rightarrow M \text{ is an } m\text{-holed torus (for some } m \in \mathbb{N}) \\ G &:= \pi_1(M). \text{ Known that:} \\ & G &= \left\langle s_1, t_1, \dots, s_m, t_m : \prod_{i=1}^m [s_i, t_i] \right\rangle \\ & \left(\left[s_i, t_i \right] := s_i t_i s_i^{-1} t_i^{-1} \right) \\ A &= \text{unital } C^*\text{-algebra with a tracial state } \tau \end{split}$$

Fix a quasi-homomorphism $\pi: G \to U(A)$.

The analogue of the invariant $\kappa(u, v)$

The (Lafforgue version of the) assembly map μ is an isomorphism in this case.

Theorem (C-Dadarlat)

Fix a genus $m \in \mathbb{N}$. There exist $\varepsilon > 0$ and a finite subset $\mathcal{F} \subset G$ s.t. the following holds:

If A is a unital C*-algebra, $\tau \in T(A)$ and $\pi: G \to U(A)$ is any $(\mathcal{F}, \varepsilon)$ -homomorphism, then

$$\tau(\pi_{\sharp}(\mu[M])) = \frac{1}{2\pi i} \tau\left(\log\left(\prod_{i=1}^{m} [\pi(s_i), \pi(t_i)]\right)\right)$$

Remark

 $\forall \ \varepsilon > 0$, finite $\mathcal{F} \subset G \ \exists \ \delta > 0$ s.t. given A and $u_1, v_1, \ldots, u_m, v_m \in U(A)$ satisfying

$$\left|\prod_{i=1}^m [u_i, v_i] - 1\right\| < \delta,$$

then there is an $(\mathcal{F}, \varepsilon)$ -homomorphism $\pi \colon G \to U(A)$ with $\pi(s_i) = u_i$ and $\pi(t_i) = v_i$.

Example: NC tori

$$A_{\theta} := C^*(u, v \mid u, v \text{ are unitaries s.t. } vu = e^{2\pi i \theta} uv).$$

 θ is small enough $\Rightarrow \exists$ quasi-homomorphism $\pi \colon \mathbb{Z}^2 \to U(A_{\theta})$ s.t. $\pi(s) = u, \ \pi(t) = v$ and

$$\tau(\pi_{\sharp}(\beta)) = \frac{1}{2\pi i} \tau(\log[u, v]) = -\theta.$$

Recall the formula:

$$\tau(\pi_{\sharp}(\mu[M])) = \frac{1}{2\pi i} \tau\left(\log\left(\prod_{i=1}^{m} [\pi(s_i), \pi(t_i)]\right)\right)$$

The assembly map $\mu \colon K_0(M) \to K_0(\ell^1(G))$ is implemented by the *Mishchenko line bundle* ℓ :

$$\begin{array}{ccc} \mathsf{K}_0(\mathsf{C}(\mathsf{M})\otimes\ell^1(\mathsf{G})) & \mathsf{K}\mathsf{K}(\mathsf{C}(\mathsf{M}),\mathbb{C}) & \mathsf{K}\mathsf{K}(\mathbb{C},\ell^1(\mathsf{G})) \\ & & & \\ & & & \\ \psi & & & \\ & & & \\ \ell & \times & \mathsf{K}_0(\mathsf{M}) \xrightarrow{\mu} \mathsf{K}_0(\ell^1(\mathsf{G})) \end{array} \end{array}$$

The context for the formula (cont.)

Special case of a Theorem of Dadarlat:

```
	auig(\pi_{\sharp}(\mu[M])ig) = \langle \mathsf{ch}_{	au}(\ell_{\pi}), [M] 
angle
```

Hilbert A-module bundles

ℓ ∈ K₀(C(M) ⊗ ℓ¹(G)) ⇒ push-forward ℓ_π ∈ K₀(C(M) ⊗ A)
K₀(C(M) ⊗ A) = Grothendieck group of isomorphisms classes of f.g.p. *Hilbert A-module bundles*

Hilbert *A*-module bundle $\mathcal{E} \rightarrow M$

- $\mathcal{E} \to M$: fibers \cong Hilbert *A*-modules
- $\mathcal{E} = f.g.p. \Rightarrow \mathcal{E}$ has (unique) smooth structure; curvature Ω
- For the proof of the theorem, we construct bundle $\mathcal{E}_{\pi} \to M$ s.t. $[\mathcal{E}_{\pi}] = \ell_{\pi}$.
- Construction is explicit enough that we may apply Chern-Weil theory, using $ch_{\tau}(\ell_{\pi}) = \tau(i\Omega/2\pi) \in \Omega^{2}(M, \mathbb{C})$, to get

$$\langle \mathsf{ch}_{\tau}(\ell_{\pi}), [M]
angle = \int_{M} \tau\left(rac{i\Omega}{2\pi}
ight) \stackrel{...}{=} rac{1}{2\pi i} \tau\left(\log\left(\prod_{i=1}^{m} [\pi(s_{i}), \pi(t_{i})]
ight)
ight).$$

Simplicial complexes and evaluation of the integral

- To construct \mathcal{E}_{π} and deal with $\int_{M} \tau(i\Omega/2\pi)$ we work with a triangulation of M.
- Edges in simplicial complex \rightsquigarrow elements of $\pi_1(M)$

Evaluation of the integral (cont.)

On a 2-simplex $\sigma = \langle i, j, k \rangle \dots$

- $s_{ij} :=$ element of G corresp. to edge ij
- have "cocycle condition": $s_{ij}s_{jk} = s_{ik}$
- π quasi-homomorphism $\Rightarrow \pi(s_{ij})\pi(s_{jk}) \approx \pi(s_{ik})$

• in the
$$\mathbb{T}^2$$
 case:
 $\pi(t)\pi(s)=vupprox uv=\pi(ts)$

Let $\xi_{\sigma} = \text{segment } \pi(s_{ij})\pi(s_{jk}) \rightsquigarrow \pi(s_{ik}) \text{ in } \mathsf{GL}_{\infty}(A)$. Then

$$\int_{\mathcal{M}} \tau(\Omega) = \sum_{\sigma} (-1)^{\mathbf{o}(\sigma)} \tilde{\Delta}_{\tau}(\xi_{\sigma}).$$

where $ilde{\Delta}_{ au} =$ de la Harpe-Skandalis determinant.

- Interested in how a quasi-hom π acts on $K_0(\ell^1(G))$, where G = surface group
- $K_0(\ell^1(G)) \cong \mathbb{Z} \oplus \mathbb{Z} \mu[M]$
- Push-forward $\mu[M]$ via π and apply trace $\tau : \tau(\pi_{\sharp}(\mu[M]))$
- Push-forward ℓ , apply ch_{τ} etc. : $\langle ch_{\tau}(\ell_{\pi}), [M] \rangle$.

Dadarlat: red invariant = blue invariant.

• Use Chern-Weil theory for Hilbert A-module bundles to deal with $ch_{\tau}(\ell_{\pi})$.