G-odometers and Classification of C*-algebras

José R. Carrión

Purdue University

AMS Fall Central Sectional Meeting University of Nebraska-Lincoln, October 14–16 2011

One picture: addition with carry over

Space: $X = \prod_{i=1}^{\infty} \{0, 1\}$; action: +1 with carry over:

$$(1 \ 1 \ 0 \ 0 \ \cdots) \stackrel{+1}{\longmapsto} (0 \ 0 \ 1 \ 0 \ \cdots) \stackrel{+1}{\longmapsto} (1 \ 0 \ 1 \ 0 \ \cdots)$$

Connection with 2-adic integers

Associate such sequences with formal sums:

$$(1 \ 1 \ 0 \ 0 \ \cdots) \longleftrightarrow 1 \cdot 2^{0} + 1 \cdot 2^{1} + 0 \cdot 2^{2} + 0 \cdot 2^{3} + \cdots$$
$$(0 \ 0 \ 1 \ 0 \ \cdots) \longleftrightarrow 0 \cdot 2^{0} + 0 \cdot 2^{1} + 1 \cdot 2^{2} + 0 \cdot 2^{3} + \cdots$$

Action \leftrightarrow (formal) addition of 1.

One picture: addition with carry over

Space: $X = \prod_{i=1}^{\infty} \{0, 1\}$; action: +1 with carry over:

$$(1 \ 1 \ 0 \ 0 \ \cdots) \stackrel{+1}{\longmapsto} (0 \ 0 \ 1 \ 0 \ \cdots) \stackrel{+1}{\longmapsto} (1 \ 0 \ 1 \ 0 \ \cdots)$$

Connection with 2-adic integers

Associate such sequences with formal sums:

$$(1 \ 1 \ 0 \ 0 \ \cdots) \longleftrightarrow 1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 0 \cdot 2^3 + \cdots$$
$$(0 \ 0 \ 1 \ 0 \ \cdots) \longleftrightarrow 0 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot 2^3 + \cdots$$

Action \leftrightarrow (formal) addition of 1.

Odometers (cont.)

Regard partial sums as elements of $\mathbb{Z}/2^{i}\mathbb{Z}$:

$$\begin{split} 1\cdot 2^0 &= 1\in \mathbb{Z}/2\mathbb{Z}, \quad 1\cdot 2^0 + 1\cdot 2^1 = 3\in \mathbb{Z}/4\mathbb{Z}, \\ 1\cdot 2^0 + 1\cdot 2^1 + 0\cdot 2^2 = 3\in \mathbb{Z}/8\mathbb{Z}, \quad \text{etc.} \end{split}$$

Associate $(1 \ 1 \ 0 \ \cdots) \in X$ with $(1, 3, 3, \ldots) \in \varprojlim \mathbb{Z}/2^{i}\mathbb{Z}$.

Alternate picture: inverse limits and (left) translation

Space:

$$\varprojlim \mathbb{Z}/2^{i}\mathbb{Z} = \left\{ (s_{i}) \in \prod_{i=1}^{\infty} \mathbb{Z}/2^{i}\mathbb{Z} \ \Big| \ s_{i} = s_{i+1} \mod 2^{i} \right\}$$

Action: coordinate-wise addition of (1, 1, ...).

An example: the discrete Heisenberg group

The discrete Heisenberg group $\mathbb{H}_3{:}\; 3{\times}3$ matrices of the form

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

where $x, y, z \in \mathbb{Z}$ (usual matrix multiplication). It is a central extension of \mathbb{Z} by \mathbb{Z}^2 .

 \mathbb{H}_3 is amenable and *residually finite*. Let $L_i := \mathbb{H}_3(2^i\mathbb{Z})$; then

 $\mathbb{H}_3 \supset L_1 \supset L_2 \supset \cdots$

is a nested sequence of finite index normal subgroups satisfying

$$\bigcap_{i>1} L_i = \{1\}.$$

An example: the discrete Heisenberg group

The discrete Heisenberg group $\mathbb{H}_3{:}\; 3{\times}3$ matrices of the form

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

where $x, y, z \in \mathbb{Z}$ (usual matrix multiplication). It is a central extension of \mathbb{Z} by \mathbb{Z}^2 .

 \mathbb{H}_3 is amenable and *residually finite*. Let $L_i := \mathbb{H}_3(2^i\mathbb{Z})$; then

$$\mathbb{H}_3 \supset L_1 \supset L_2 \supset \cdots$$

is a nested sequence of finite index normal subgroups satisfying

$$\bigcap_{i\geq 1}L_i=\{1\}.$$

Form the profinite completion w.r.t. this sequence:

$$\widetilde{\mathbb{H}}_3 := \varprojlim \mathbb{H}_3/L_i \quad \left(\subseteq \prod_{i\geq 1} \mathbb{H}_3/L_i\right).$$

This is a compact, Hausdorff and totally disconnected group.

Our main example this talk: \mathbb{H}_3 acts on $\widetilde{\mathbb{H}}_3$ by left multiplication. The crossed product $\mathcal{C}(\widetilde{\mathbb{H}}_3) \rtimes \mathbb{H}_3$

is an example of a generalized Bunce-Deddens algebra.

Form the profinite completion w.r.t. this sequence:

$$\widetilde{\mathbb{H}}_3 := \varprojlim \mathbb{H}_3/L_i \quad \left(\subseteq \prod_{i\geq 1} \mathbb{H}_3/L_i\right).$$

This is a compact, Hausdorff and totally disconnected group.

Our main example this talk: \mathbb{H}_3 acts on $\widetilde{\mathbb{H}}_3$ by left multiplication. The crossed product $C(\widetilde{\mathbb{H}}_3) \rtimes \mathbb{H}_3$

is an example of a generalized Bunce-Deddens algebra.

Definition (Orfanos, 2008)

- G = discrete, countable, amenable and residually finite group
- (L_i) = nested sequence of finite index normal subgroups with trivial intersection

Form the profinite completion \tilde{G} just as above. Call $C(\tilde{G}) \rtimes G$ a **generalized Bunce-Deddens algebra** associated with G.

Theorem (Orfanos, 2008)

A generalized Bunce-Deddens algebra

- is simple, separable and nuclear;
- has real rank zero, stable rank one, and a unique trace;
- is quasidiagonal.

Definition (Orfanos, 2008)

- G = discrete, countable, amenable and residually finite group
- (L_i) = nested sequence of finite index normal subgroups with trivial intersection

Form the profinite completion \tilde{G} just as above. Call $C(\tilde{G}) \rtimes G$ a **generalized Bunce-Deddens algebra** associated with G.

Theorem (Orfanos, 2008)

A generalized Bunce-Deddens algebra

- is simple, separable and nuclear;
- has real rank zero, stable rank one, and a unique trace;
- is quasidiagonal.

Definition

Elliott invariant for a generalized B-D algebra A:

$$\mathsf{EII}(A) = ig(\mathsf{K}_0(A), \mathsf{K}_0(A)^+, [1_A]_0, \mathsf{K}_1(A) ig).$$

For generalized B-D algebras A, B:

$$\mathsf{EII}(A) \cong \mathsf{EII}(B) \stackrel{?}{\Longrightarrow} A \cong B$$

Definition

Elliott invariant for a generalized B-D algebra A:

$$\mathsf{EII}(A) = (K_0(A), K_0(A)^+, [1_A]_0, K_1(A)).$$

For generalized B-D algebras A, B:

$$\operatorname{Ell}(A) \cong \operatorname{Ell}(B) \stackrel{?}{\Longrightarrow} A \cong B$$

Example: Bunce-Deddens algebras

- G = ℤ: "classical" Bunce-Deddens algebras. Classification was carried out by J. Bunce and J. Deddens (1973).
- Classification using modern tools could be obtained by recalling that a Bunce-Deddens algebra is an inductive limit of C^* -algebras of the form $M_r(\mathbb{C}) \otimes C(\mathbb{T})$, and noting that \mathbb{T} has covering dimension 1.

A generalized B-D algebra is an inductive limit in a similar way:

 $C(\tilde{G}) \rtimes G \cong \varinjlim C(G/L_i) \rtimes G \cong \varinjlim M_{r_i}(\mathbb{C}) \otimes C^*(L_i).$

We will use a version of noncommutative covering dimension due to Kirchberg and Winter: the *decomposition rank*.

Example: Bunce-Deddens algebras

- G = ℤ: "classical" Bunce-Deddens algebras. Classification was carried out by J. Bunce and J. Deddens (1973).
- Classification using modern tools could be obtained by recalling that a Bunce-Deddens algebra is an inductive limit of C^* -algebras of the form $M_r(\mathbb{C}) \otimes C(\mathbb{T})$, and noting that \mathbb{T} has covering dimension 1.

A generalized B-D algebra is an inductive limit in a similar way:

$$C(\tilde{G}) \rtimes G \cong \varinjlim C(G/L_i) \rtimes G \cong \varinjlim M_{r_i}(\mathbb{C}) \otimes C^*(L_i).$$

We will use a version of noncommutative covering dimension due to Kirchberg and Winter: the *decomposition rank*.

G = class of all (discrete) groups G s.t. there exist finitely generated abelian groups N, Q with G a central extension

$$1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1.$$

(The groups in \mathcal{G} are residually finite.)

Theorem

If $A = C(\tilde{G}_1) \rtimes G_1$ and $B = C(\tilde{G}_2) \rtimes G_2$ are generalized Bunce-Deddens algebras associated to groups G_i in \mathcal{G} , then

 $\mathsf{EII}(A) \cong \mathsf{EII}(B) \Longrightarrow A \cong B.$

G = class of all (discrete) groups G s.t. there exist finitely generated abelian groups N, Q with G a central extension

$$1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1.$$

(The groups in \mathcal{G} are residually finite.)

Theorem

If $A = C(\tilde{G}_1) \rtimes G_1$ and $B = C(\tilde{G}_2) \rtimes G_2$ are generalized Bunce-Deddens algebras associated to groups G_i in \mathcal{G} , then

$$\operatorname{Ell}(A) \cong \operatorname{Ell}(B) \Longrightarrow A \cong B.$$

General classification result we rely on (Winter, 2005):

Under the "right" conditions (including e.g. simplicity, real rank zero), finite decomposition rank is enough for classification.

Orfanos' results \Rightarrow generalized B-D algebras satisfy the "right" conditions. Therefore, only need:

Proposition

 $G \in \mathcal{G} \Rightarrow C(\tilde{G}) \rtimes G$ has finite decomposition rank.

General classification result we rely on (Winter, 2005):

Under the "right" conditions (including e.g. simplicity, real rank zero), finite decomposition rank is enough for classification.

Orfanos' results \Rightarrow generalized B-D algebras satisfy the "right" conditions. Therefore, only need:

Proposition

 $G \in \mathcal{G} \Rightarrow C(\tilde{G}) \rtimes G$ has finite decomposition rank.

What happens in our example?

Back to \mathbb{H}_3

$$C(\widetilde{\mathbb{H}}_3) \rtimes \mathbb{H}_3 =$$
inductive limit of $C^*(L_i) \otimes M_{r_i}(\mathbb{C})$.

Since

$$dr\left(\varinjlim C^*(L_i)\otimes M_{r_i}(\mathbb{C})\right)\leq \varinjlim dr C^*(L_i),$$

can focus on $C^*(L_i)$. Motivation: $L_i = \mathbb{H}_3(2^i\mathbb{Z})$ "not that different" from \mathbb{H}_3 .

What do we know about $C^*(\mathbb{H}_3)$?

 $C^*(\mathbb{H}_3) \cong$ sections of continuous field over \mathbb{T} with fibers A_{θ} (Anderson-Paschke '89

What happens in our example?

Back to \mathbb{H}_3

$$C(\widetilde{\mathbb{H}}_3) \rtimes \mathbb{H}_3 =$$
inductive limit of $C^*(L_i) \otimes M_{r_i}(\mathbb{C})$.

Since

$$dr\left(\varinjlim C^*(L_i)\otimes M_{r_i}(\mathbb{C})\right)\leq \varinjlim dr C^*(L_i),$$

can focus on $C^*(L_i)$. Motivation: $L_i = \mathbb{H}_3(2^i\mathbb{Z})$ "not that different" from \mathbb{H}_3 .

What do we know about $C^*(\mathbb{H}_3)$?

 $C^*(\mathbb{H}_3) \cong$ sections of continuous field over \mathbb{T} with fibers A_{θ} (Anderson-Paschke '89

What happens in our example?

Back to \mathbb{H}_3

$$C(\widetilde{\mathbb{H}}_3) \rtimes \mathbb{H}_3 =$$
inductive limit of $C^*(L_i) \otimes M_{r_i}(\mathbb{C})$.

Since

$$\operatorname{dr}\left(\varinjlim C^*(L_i)\otimes M_{r_i}(\mathbb{C})\right)\leq \varinjlim \operatorname{dr} C^*(L_i),$$

can focus on $C^*(L_i)$. Motivation: $L_i = \mathbb{H}_3(2^i\mathbb{Z})$ "not that different" from \mathbb{H}_3 .

What do we know about $C^*(\mathbb{H}_3)$?

 $C^*(\mathbb{H}_3) \cong$ sections of continuous field over \mathbb{T} with fibers A_{θ} (Anderson-Paschke '89)

Proposition

Let X be a compact metric space and A a (separable) C(X)-algebra. If dim $X \leq I$ and sup_x dr $A_x \leq k$, then

dr $A \leq (l+1)(k+1) - 1$.

Proposition

Let X be a compact metric space and A a (separable) C(X)-algebra. If dim $X \leq I$ and sup_x dr $A_x \leq k$, then

dr $A \leq (l+1)(k+1) - 1$.

Proposition

Let X be a compact metric space and A a (separable) C(X)-algebra. If dim $X \leq I$ and sup_x dr $A_x \leq k$, then

dr $A \leq (l+1)(k+1) - 1$.

Proposition

Let X be a compact metric space and A a (separable) C(X)-algebra. If dim $X \leq I$ and sup_x dr $A_x \leq k$, then

dr
$$A \leq (l+1)(k+1) - 1$$
.

A contractive completely positive (c.c.p.) map $\varphi \colon A \to B$ has order zero if $\varphi(a)\varphi(b) = 0$ whenever $a, b \ge 0$ with ab = 0.

Definition (Kirchberg-Winter, 2003)

A has **decomposition rank** at most *n* if there exist

- finite dimensional C^* -algebras F_k ,
- c.c.p. maps $A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A$ with $\psi_k \circ \varphi_k \to id_A$ pointwise, and
- a partition $F_k = F_k^{(0)} \oplus \cdots \oplus F_k^{(n)}$ such that $\psi_k|_{F_k^{(i)}}$ has order zero for every $0 \le i \le n$.

A contractive completely positive (c.c.p.) map $\varphi \colon A \to B$ has order zero if $\varphi(a)\varphi(b) = 0$ whenever $a, b \ge 0$ with ab = 0.

Definition (Kirchberg-Winter, 2003)

A has **decomposition rank** at most n if there exist

- finite dimensional C^* -algebras F_k ,
- c.c.p. maps $A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A$ with $\psi_k \circ \varphi_k \to id_A$ pointwise, and
- a partition $F_k = F_k^{(0)} \oplus \cdots \oplus F_k^{(n)}$ such that $\psi_k|_{F_k^{(i)}}$ has order zero for every $0 \le i \le n$.

Some examples

- dr $C(X) = \dim X$ (Winter)
- dr $A = 0 \Leftrightarrow A$ is an AF algebra (Winter)
- dr A_θ ≤ 2n + 1, where A_θ = noncommutative n-torus (uses Phillips' result that every simple NC torus is an AT algebra)

Proposition

Let G be a central extension

$$1 \to N \to G \to Q \to 1$$

where N and Q are finitely generated abelian groups of ranks n and m, respectively (i.e. $G \in G$). Then

dr $C^*(G) \le (n+1)(2m^2 + 4m + 1) - 1.$

Some examples

- dr $C(X) = \dim X$ (Winter)
- dr $A = 0 \Leftrightarrow A$ is an AF algebra (Winter)
- dr A_θ ≤ 2n + 1, where A_θ = noncommutative n-torus (uses Phillips' result that every simple NC torus is an AT algebra)

Propositior

Let G be a central extension

$$1 \to N \to G \to Q \to 1$$

where N and Q are finitely generated abelian groups of ranks n and m, respectively (i.e. $G \in G$). Then

dr $C^*(G) \le (n+1)(2m^2 + 4m + 1) - 1.$

Some examples

- dr $C(X) = \dim X$ (Winter)
- dr $A = 0 \Leftrightarrow A$ is an AF algebra (Winter)
- dr A_θ ≤ 2n + 1, where A_θ = noncommutative n-torus (uses Phillips' result that every simple NC torus is an AT algebra)

Proposition

Let G be a central extension

$$1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$$

where N and Q are finitely generated abelian groups of ranks n and m, respectively (i.e. $G \in G$). Then

dr $C^*(G) \le (n+1)(2m^2+4m+1)-1.$

Some examples

- dr $C(X) = \dim X$ (Winter)
- dr $A = 0 \Leftrightarrow A$ is an AF algebra (Winter)
- dr A_θ ≤ 2n + 1, where A_θ = noncommutative n-torus (uses Phillips' result that every simple NC torus is an AT algebra)

Proposition

Let G be a central extension

$$1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$$

where N and Q are finitely generated abelian groups of ranks n and m, respectively (i.e. $G \in G$). Then

dr
$$C^*(G) \le (n+1)(2m^2+4m+1)-1$$
.

Have that dr $C^*(Q, \omega) \leq (m+1)(2m+2) - 1$ for Q finitely generated abelian of rank $\leq m$.

Have that dr $C^*(Q, \omega) \leq (m+1)(2m+2) - 1$ for Q finitely generated abelian of rank $\leq m$.

Have that dr $C^*(Q, \omega) \leq (m+1)(2m+2) - 1$ for Q finitely generated abelian of rank $\leq m$.

- Want to classify $C(\tilde{G}) \rtimes G$ (for $G \in \mathcal{G}$).
- Enough to prove $C(\tilde{G}) \rtimes G$ has finite decomposition rank.
- Reduces to proving $C^*(G)$ has finite decomposition rank for every $G \in \mathcal{G}$

- A = continuous field over a finite dimensional space with fibers of uniformly bounded dr ⇒ dr A < ∞.
- C*(G) is the C*-algebra of a continuous field over a finite dimensional space with fibers of the form C*(Q, ω).
- $Q = \text{f.g. abelian of rank} \le m \Rightarrow \text{dr } C^*(Q, \omega) < 2m^2 + 4m + 1.$

To summarize in a few steps

Classification \rightsquigarrow dr $C^*(G) < \infty$

- Want to classify $C(\tilde{G}) \rtimes G$ (for $G \in \mathcal{G}$).
- Enough to prove $C(\tilde{G}) \rtimes G$ has finite decomposition rank.
- Reduces to proving $C^*(G)$ has finite decomposition rank for every $G \in \mathcal{G}$

- A = continuous field over a finite dimensional space with fibers of uniformly bounded dr ⇒ dr A < ∞.
- C*(G) is the C*-algebra of a continuous field over a finite dimensional space with fibers of the form C*(Q, ω).
- $Q = \text{f.g. abelian of rank} \le m \Rightarrow \text{dr } C^*(Q, \omega) < 2m^2 + 4m + 1.$

To summarize in a few steps

Classification \rightsquigarrow dr $C^*(G) < \infty$

- Want to classify $C(\tilde{G}) \rtimes G$ (for $G \in \mathcal{G}$).
- Enough to prove $C(\tilde{G}) \rtimes G$ has finite decomposition rank.
- Reduces to proving C^{*}(G) has finite decomposition rank for every G ∈ G

- A = continuous field over a finite dimensional space with fibers of uniformly bounded dr ⇒ dr A < ∞.
- C*(G) is the C*-algebra of a continuous field over a finite dimensional space with fibers of the form C*(Q, ω).
- $Q = \text{f.g. abelian of rank} \le m \Rightarrow \text{dr } C^*(Q, \omega) < 2m^2 + 4m + 1.$

- Want to classify $C(\tilde{G}) \rtimes G$ (for $G \in \mathcal{G}$).
- Enough to prove $C(\tilde{G}) \rtimes G$ has finite decomposition rank.
- Reduces to proving C*(G) has finite decomposition rank for every G ∈ G

- A = continuous field over a finite dimensional space with fibers of uniformly bounded dr \Rightarrow dr $A < \infty$.
- C*(G) is the C*-algebra of a continuous field over a finite dimensional space with fibers of the form C*(Q, ω).
- $Q = \text{f.g. abelian of rank} \le m \Rightarrow \text{dr } C^*(Q, \omega) < 2m^2 + 4m + 1.$

- Want to classify $C(\tilde{G}) \rtimes G$ (for $G \in \mathcal{G}$).
- Enough to prove $C(\tilde{G}) \rtimes G$ has finite decomposition rank.
- Reduces to proving C*(G) has finite decomposition rank for every G ∈ G

dr $C^*(G) < \infty \rightsquigarrow$ dr of continuous fields

- A = continuous field over a finite dimensional space with fibers of uniformly bounded dr \Rightarrow dr $A < \infty$.
- C*(G) is the C*-algebra of a continuous field over a finite dimensional space with fibers of the form C*(Q, ω).

• $Q = \text{f.g. abelian of rank} \le m \Rightarrow \text{dr } C^*(Q, \omega) < 2m^2 + 4m + 1.$

- Want to classify $C(\tilde{G}) \rtimes G$ (for $G \in \mathcal{G}$).
- Enough to prove $C(\tilde{G}) \rtimes G$ has finite decomposition rank.
- Reduces to proving C*(G) has finite decomposition rank for every G ∈ G

- A = continuous field over a finite dimensional space with fibers of uniformly bounded dr \Rightarrow dr $A < \infty$.
- C*(G) is the C*-algebra of a continuous field over a finite dimensional space with fibers of the form C*(Q, ω).
- Q = f.g. abelian of rank $\leq m \Rightarrow dr C^*(Q, \omega) < 2m^2 + 4m + 1$.