On the classification problem for a class of crossed product C^{*}-algebras

José R. Carrión
Purdue University

Wabash Extramural Modern Analysis Miniconference IUPUI, October 2-3 2010

An example: the discrete Heisenberg group

The discrete Heisenberg group $\mathbb{H}_{3}: 3 \times 3$ matrices of the form

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

where $x, y, z \in \mathbb{Z}$ (usual matrix multiplication). It is a central extension of \mathbb{Z} by \mathbb{Z}^{2}.
\mathbb{H}_{3} is amenable and residually finite. Let $L_{i}:=\mathbb{H}_{3}\left(2^{i} \mathbb{Z}\right)$; then

$$
\mathbb{H}_{3} \supset L_{1} \supset L_{2} \supset \cdots
$$

is a nested sequence of finite index normal subgroups satisfying

$$
\bigcap L_{i}=\{1\} .
$$

A crossed product associated with \mathbb{H}_{3}

Form the profinite completion w.r.t. this sequence:

$$
\widetilde{\mathbb{H}}_{3}:=\lim _{\leftarrow} \mathbb{H}_{3} / L_{i} \quad\left(\subseteq \prod_{i \geq 1} \mathbb{H}_{3} / L_{i}\right)
$$

This is a compact, Hausdorff and totally disconnected group.

Our main example this talk:

\mathbb{H}_{3} acts on $\widetilde{\mathbb{H}}_{3}$ by left multiplication. The crossed product

$$
C\left(\widetilde{\mathbb{H}}_{3}\right) \rtimes \mathbb{H}_{3}
$$

is an example of a generalized Bunce-Deddens algebra.

Definition of a generalized Bunce-Deddens algebra

Definition (Orfanos, 2008)

$G=$ discrete, countable, amenable and residually finite group
$\left(L_{i}\right)=$ nested sequence of finite index normal subgroups with trivial intersection
Form the profinite completion \tilde{G} just as above. Call $C(\tilde{G}) \rtimes G$ a generalized Bunce-Deddens algebra associated with G.

Theorem (Orfanos, 2008)

A generalized Bunce-Deddens algebra

- is simple, separable and nuclear;
- has real rank zero, stable rank one, and a unique trace;
- is quasidiagonal.

Are these algebras classified by their Elliott invariant?

Definition

Elliott invariant for a generalized B-D algebra A :

$$
\operatorname{Ell}(A)=\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right]_{0}, K_{1}(A)\right) .
$$

For generalized B-D algebras A, B :

$$
\operatorname{Elll}(A) \cong \operatorname{Ell}(B) \stackrel{?}{\Longrightarrow} A \cong B
$$

A little background and motivation

Example: Bunce-Deddens algebras

- $G=\mathbb{Z}$: "classical" Bunce-Deddens algebras. Classification was carried out by J. Bunce and J. Deddens (1973).
- Classification using modern tools could be obtained by recalling that a Bunce-Deddens algebra is an inductive limit of C^{*}-algebras of the form $M_{r}(\mathbb{C}) \otimes C(\mathbb{T})$, and noting that \mathbb{T} has covering dimension 1.

A generalized B-D algebra is an inductive limit in a similar way:

$$
C(\tilde{G}) \rtimes G \cong \underset{\longrightarrow}{\lim } C\left(G / L_{i}\right) \rtimes G \cong M_{r_{i}}(\mathbb{C}) \otimes C^{*}\left(L_{i}\right) .
$$

We will use a version of noncommutative covering dimension due to Kirchberg and Winter: the decomposition rank.

The main result

$\mathcal{G}=$ class of all (discrete) groups G s.t. there exist finitely generated abelian groups N, Q with G a central extension

$$
1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1
$$

(The groups in \mathcal{G} are residually finite.)

Theorem

If $A=C\left(\tilde{G}_{1}\right) \rtimes G_{1}$ and $B=C\left(\tilde{G}_{2}\right) \rtimes G_{2}$ are generalized Bunce-Deddens algebras associated to groups G_{i} in \mathcal{G}, then

$$
\operatorname{Ell}(A) \cong \mathrm{Ell}(B) \Longrightarrow A \cong B
$$

Classification via decomposition rank

General classification result we rely on (Winter, 2005):
Under the "right" conditions (including e.g. simplicity, real rank zero), finite decomposition rank is enough for classification.

Orfanos' results \Rightarrow generalized B-D algebras satisfy the "right" conditions. Therefore, only need:

Proposition

$G \in \mathcal{G} \Rightarrow C(\tilde{G}) \rtimes G$ has finite decomposition rank.

What happens in our example?

Back to \mathbb{H}_{3}

$C\left(\widetilde{\mathbb{H}}_{3}\right) \rtimes \mathbb{H}_{3}=$ inductive limit of $C^{*}\left(L_{i}\right) \otimes M_{r_{i}}(\mathbb{C})$.
Since

$$
\operatorname{dr}\left(\lim _{\longrightarrow} C^{*}\left(L_{i}\right) \otimes M_{r_{i}}(\mathbb{C})\right) \leq \underline{\lim } \operatorname{dr} C^{*}\left(L_{i}\right),
$$

can focus on $C^{*}\left(L_{i}\right)$. Motivation: $L_{i}=\mathbb{H}_{3}\left(2^{i} \mathbb{Z}\right)$ "not that different" from \mathbb{H}_{3}.

What do we know about $C^{*}\left(\mathbb{H}_{3}\right)$?

$C^{*}\left(\mathbb{H}_{3}\right) \cong$ sections of continuous field over \mathbb{T} with fibers A_{θ} (Anderson-Paschke '89)

The decomposition rank of a $C(X)$-algebra

Proposition

Let X be a compact metric space and A a (separable) $C(X)$-algebra. If $\operatorname{dim} X \leq I$ and $\sup _{x} \operatorname{dr} A_{x} \leq k$, then

$$
\operatorname{dr} A \leq(I+1)(k+1)-1 .
$$

What is decomposition rank?

A contractive completely positive (c.c.p.) map $\varphi: A \rightarrow B$ has order zero if $\varphi(a) \varphi(b)=0$ whenever $a, b \geq 0$ with $a b=0$.

Definition (Kirchberg-Winter, 2003)

A has decomposition rank at most n if there exist

- finite dimensional C^{*}-algebras F_{k},
- c.c.p. maps $A \xrightarrow{\varphi_{k}} F_{k} \xrightarrow{\psi_{k}} A$ with $\psi_{k} \circ \varphi_{k} \rightarrow \mathrm{id}_{A}$ pointwise, and
- a partition $F_{k}=F_{k}^{(0)} \oplus \cdots \oplus F_{k}^{(n)}$ such that $\left.\psi_{k}\right|_{F_{k}^{(i)}}$ has order zero for every $0 \leq i \leq n$.

C*-algebras with finite decomposition rank

Some examples

- $\operatorname{dr} C(X)=\operatorname{dim} X \quad$ (Winter)
- $\operatorname{dr} A=0 \Leftrightarrow A$ is an AF algebra (Winter)
- $\operatorname{dr} A_{\theta} \leq 2 n+1$, where $A_{\theta}=$ noncommutative n-torus (uses Phillips' result that every simple NC torus is an AT algebra)

Proposition

Let G be a central extension

$$
1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1
$$

where N and Q are finitely generated abelian groups of ranks n and m, respectively (i.e. $G \in \mathcal{G}$). Then

How this ties in with our example

$C^{*}(G)$ as a continuous field
$G=$ central extension of N by Q. Then (by Packer-Raeburn, '92):

twisted group algebra
(e.g., $\left.C^{*}\left(\mathbb{Z}^{m}, \omega\right)=A_{\theta}\right)$

Have that $\operatorname{dr} C^{*}(Q, \omega) \leq(m+1)(2 m+2)-1$ for Q finitely generated abelian of rank $\leq m$.

To summarize in a few steps

Classification $\rightsquigarrow \operatorname{dr} C^{*}(G)<\infty$

- Want to classify $C(\tilde{G}) \rtimes G$ (for $G \in \mathcal{G})$.
- Enough to prove $C(\tilde{G}) \rtimes G$ has finite decomposition rank.
- Reduces to proving $C^{*}(G)$ has finite decomposition rank for every $G \in \mathcal{G}$

$\mathrm{dr} C^{*}(G)<\infty \rightsquigarrow \mathrm{dr}$ of continuous fields

- $A=$ continuous field over a finite dimensional space with fibers of uniformly bounded $\mathrm{dr} \Rightarrow \mathrm{dr} A<\infty$.
- $C^{*}(G)$ is the C^{*}-algebra of a continuous field over a finite dimensional space with fibers of the form $C^{*}(Q, \omega)$.
- $Q=$ f.g. abelian of rank $\leq m \Rightarrow \operatorname{dr} C^{*}(Q, \omega)<2 m^{2}+4 m+1$.

