On the classification problem for a class of crossed product C^* -algebras

José R. Carrión

Purdue University

Wabash Extramural Modern Analysis Miniconference IUPUI, October 2–3 2010

An example: the discrete Heisenberg group

The discrete Heisenberg group \mathbb{H}_3 : 3×3 matrices of the form

$$\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}$$

where $x, y, z \in \mathbb{Z}$ (usual matrix multiplication). It is a central extension of \mathbb{Z} by \mathbb{Z}^2 .

 \mathbb{H}_3 is amenable and *residually finite*. Let $L_i:=\mathbb{H}_3(2^i\mathbb{Z})$; then

$$\mathbb{H}_3 \supset L_1 \supset L_2 \supset \cdots$$

is a nested sequence of finite index normal subgroups satisfying

$$\bigcap L_i = \{1\}.$$

A crossed product associated with \mathbb{H}_3

Form the *profinite completion* w.r.t. this sequence:

$$\widetilde{\mathbb{H}}_3 := \varprojlim \mathbb{H}_3/L_i \quad \Big(\subseteq \prod_{i>1} \mathbb{H}_3/L_i\Big).$$

This is a compact, Hausdorff and totally disconnected group.

Our main example this talk:

 \mathbb{H}_3 acts on $\widetilde{\mathbb{H}}_3$ by left multiplication. The crossed product

$$C(\widetilde{\mathbb{H}}_3) \rtimes \mathbb{H}_3$$

is an example of a generalized Bunce-Deddens algebra.

Definition of a generalized Bunce-Deddens algebra

Definition (Orfanos, 2008)

- G = discrete, countable, amenable and residually finite group
- (L_i) = nested sequence of finite index normal subgroups with trivial intersection

Form the profinite completion \tilde{G} just as above. Call $C(\tilde{G}) \rtimes G$ a **generalized Bunce-Deddens algebra** associated with G.

Theorem (Orfanos, 2008)

A generalized Bunce-Deddens algebra

- is simple, separable and nuclear;
- has real rank zero, stable rank one, and a unique trace;
- is quasidiagonal.

Are these algebras classified by their Elliott invariant?

Definition

Elliott invariant for a generalized B-D algebra A:

$$EII(A) = (K_0(A), K_0(A)^+, [1_A]_0, K_1(A)).$$

For generalized B-D algebras A, B:

$$EII(A) \cong EII(B) \stackrel{?}{\Longrightarrow} A \cong B$$

A little background and motivation

Example: Bunce-Deddens algebras

- $G = \mathbb{Z}$: "classical" Bunce-Deddens algebras. Classification was carried out by J. Bunce and J. Deddens (1973).
- Classification using modern tools could be obtained by recalling that a Bunce-Deddens algebra is an inductive limit of C^* -algebras of the form $M_r(\mathbb{C})\otimes C(\mathbb{T})$, and noting that \mathbb{T} has covering dimension 1.

A generalized B-D algebra is an inductive limit in a similar way:

$$C(\tilde{G}) \rtimes G \cong \varinjlim C(G/L_i) \rtimes G \cong \varinjlim M_{r_i}(\mathbb{C}) \otimes C^*(L_i).$$

We will use a version of noncommutative covering dimension due to Kirchberg and Winter: the *decomposition rank*.

The main result

 $\mathcal{G}=$ class of all (discrete) groups G s.t. there exist finitely generated abelian groups N, Q with G a central extension

$$1 \to \textit{N} \to \textit{G} \to \textit{Q} \to 1.$$

(The groups in \mathcal{G} are residually finite.)

Theorem

If $A = C(\tilde{G}_1) \rtimes G_1$ and $B = C(\tilde{G}_2) \rtimes G_2$ are generalized Bunce-Deddens algebras associated to groups G_i in G, then

$$EII(A) \cong EII(B) \Longrightarrow A \cong B.$$

Classification via decomposition rank

General classification result we rely on (Winter, 2005):

Under the "right" conditions (including e.g. simplicity, real rank zero), finite decomposition rank is enough for classification.

Orfanos' results \Rightarrow generalized B-D algebras satisfy the "right" conditions. Therefore, only need:

Proposition

 $G \in \mathcal{G} \Rightarrow C(\tilde{G}) \rtimes G$ has finite decomposition rank.

What happens in our example?

Back to \mathbb{H}_3

$$C(\widetilde{\mathbb{H}}_3) \rtimes \mathbb{H}_3 = \text{inductive limit of } C^*(L_i) \otimes M_{r_i}(\mathbb{C}).$$

Since

$$\operatorname{dr} \left(\varinjlim C^*(L_i) \otimes M_{r_i}(\mathbb{C}) \right) \leq \varliminf \operatorname{dr} C^*(L_i),$$

can focus on $C^*(L_i)$. Motivation: $L_i = \mathbb{H}_3(2^i\mathbb{Z})$ "not that different" from \mathbb{H}_3 .

What do we know about $C^*(\mathbb{H}_3)$?

 $C^*(\mathbb{H}_3) \cong$ sections of continuous field over \mathbb{T} with fibers A_{θ} (Anderson-Paschke '89)

The decomposition rank of a C(X)-algebra

Proposition

Let X be a compact metric space and A a (separable) C(X)-algebra. If dim $X \le I$ and $\sup_X \operatorname{dr} A_X \le k$, then

$$dr A \le (l+1)(k+1) - 1.$$

What is decomposition rank?

A contractive completely positive (c.c.p.) map $\varphi \colon A \to B$ has **order zero** if $\varphi(a)\varphi(b) = 0$ whenever $a, b \ge 0$ with ab = 0.

Definition (Kirchberg-Winter, 2003)

A has **decomposition rank** at most n if there exist

- finite dimensional C^* -algebras F_k ,
- c.c.p. maps $A \xrightarrow{\varphi_k} F_k \xrightarrow{\psi_k} A$ with $\psi_k \circ \varphi_k \to \mathrm{id}_A$ pointwise, and
- a partition $F_k = F_k^{(0)} \oplus \cdots \oplus F_k^{(n)}$ such that $\psi_k|_{F_k^{(i)}}$ has order zero for every $0 \le i \le n$.

C*-algebras with finite decomposition rank

Some examples

- $\operatorname{dr} C(X) = \dim X$ (Winter)
- $dr A = 0 \Leftrightarrow A$ is an AF algebra (Winter)
- dr $A_{\theta} \leq 2n + 1$, where A_{θ} = noncommutative n-torus (uses Phillips' result that every simple NC torus is an A \mathbb{T} algebra)

Proposition

Let G be a central extension

$$1 o extstyle o extstyle o extstyle o extstyle o extstyle o extstyle 1$$

where N and Q are finitely generated abelian groups of ranks n and m, respectively (i.e. $G \in \mathcal{G}$). Then

How this ties in with our example

$C^*(G)$ as a continuous field

G = central extension of N by Q. Then (by Packer-Raeburn, '92):

Have that dr $C^*(Q, \omega) \le (m+1)(2m+2) - 1$ for Q finitely generated abelian of rank $\le m$.

To summarize in a few steps

Classification \rightsquigarrow dr $C^*(G) < \infty$

- Want to classify $C(\tilde{G}) \rtimes G$ (for $G \in \mathcal{G}$).
- Enough to prove $C(\tilde{G}) \rtimes G$ has finite decomposition rank.
- Reduces to proving $C^*(G)$ has finite decomposition rank for every $G \in \mathcal{G}$

$\operatorname{dr} C^*(G) < \infty \rightsquigarrow \operatorname{dr} \operatorname{of} \operatorname{continuous} \operatorname{fields}$

- A = continuous field over a finite dimensional space with fibers of uniformly bounded dr \Rightarrow dr $A < \infty$.
- $C^*(G)$ is the C^* -algebra of a continuous field over a finite dimensional space with fibers of the form $C^*(Q, \omega)$.
- $Q = \text{f.g. abelian of rank} \le m \Rightarrow \text{dr } C^*(Q, \omega) < 2m^2 + 4m + 1$.