
Some extremely brief notes on the Leray spectral sequence

Intro. As a motivating example, consider the long exact homology sequence. We know

that if we have a short exact sequence of chain complexes

0 → C∗ → D∗ → E∗ → 0,

then this gives rise to a long exact sequence of homology groups

→ Hi(C∗) → Hi(D∗) → Hi(E∗)
∂∗→ Hi−1(C∗) → .

While we may learn the proof of this, including the definition of the boundary map ∂∗ in

beginning algebraic topology and while this may be useful to know from time to time, we

are often happy just to know that there is an exact homology sequence. Also, in many cases

the long exact sequence might not be very useful because the interactions from one group

to the next might be fairly complicated. However, in especially nice circumstances, we will

have reason to know that certain homology groups vanish, or we might be able to compute

some of the maps here or there, and then we can derive some consequences. For example, if

we have reason to know that H∗(D∗) = 0, then we learn that H∗(E∗) ∼= H∗−1(C∗).

Similarly, to preserve sanity, it is usually worth treating spectral sequences as “black

boxes” without looking much under the hood. While the exact details do sometimes come

in handy to specialists, spectral sequences can be remarkably useful even without knowing

much about how they work.

What spectral sequences look like. In long exact sequence above, we have homology

groups Hi(C∗) (of course there are other ways to get exact sequences). So there is one index

- the degree of the homology groups. (In a sense, long exact sequences coming from short

exact sequences of chain complexes can be thought to have also a Z3 grading that indexes the

three chain complexes). Spectral sequences have three indices. The objects look like Er
p,q,

which can be groups, modules, etc. (there is also a cohomological version with cohomological

indexing, but we’ll stick with homology in these notes). We usually picture these as living at

the lattice points (p, q) in a plane labeled r, which we think of representing the rth stage of a

certain process. Usually we only consider r ≥ 1 or perhaps r ≥ r0 for some fixed r0. At stage

r, there are also maps dr : Er
p,q → Er

p−r,q+r−1. These satisfy d2
r = 0 when the composition

makes sense. At each stage, the group Er+1
p,q is the homology of the previous stage, i.e.

Er+1
p,q = ker(dr : Er

p,q → Er
p−r,q+r−1)/im(dr : Er

p+r,q−r+1 → Er
p−r,q+r−1).

Finding dr+1 in terms of what has come before is much more complicated, and this is often

one of the biggest difficulties in trying to use spectral sequences. We won’t go into this here.

In reasonable situations, eventually things settle down and for each fixed (p, q), the

groups Er
p,q become fixed for all r past a certain point. This happens, for example, in

“first quadrant” spectral sequences for which all terms vanish unless p, q ≥ 0. In this case,
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eventually all arrows that would come into or go out of a fixed (p, q) eventually become

trivial and so the homology stabilizes. When this happens, we start referring to the groups

as E∞
p,q.

The general mantra of spectral sequences is that we’d like to have terms at the E1 or E2

stage that we somehow understand and wind up with E∞ that relate to something we’d like

to compute (though it is possible sometimes to run the knowledge the other way and deduce

things about the E1s from the E∞s we wind up with). How to recover the thing we want

to compute from E∞ is a little complicated. The word hiding the difficulty at that point

is “abutment.” We say that the spectral sequence abuts to F∗ if we can, roughly speaking,

recover F∗ from the E∞
p,q. Before going into more detail about how this is done, we give some

examples of the kinds of things spectral sequences are good for.

Examples of spectral sequences. In a sense there is really only one spectral sequence,

just as there is only one concept of a long exact sequence (although each object may originate

in a variety of settings), but there are many different named uses. Here are a few examples.

1. Leray-Serre spectral sequence. Given a fibration F ↪→ X → B with trivial monodromy

on the homology of the fibers, E2
p,q = Hp(B; Hq(F )) and the spectral sequence abuts

to H∗(X). (If there is monodromy, this still works but replacing E2
p,q = Hp(B; Hq(F ))

with E2
p,q = Hp(B;Hq(F )), where Hq(F ) is a local system on B). There is also a

cohomology version.

2. Atiyah-Hirzebruch spectral sequence. If F∗ is a generalized homology theory (such as

K-homology, bordism, etc.), then there is a spectral sequence with E2
p,q = Hp(X; Fq(pt))

that abuts to F∗(X). There is also a generalized cohomology version.

3. Hypercohomology spectral sequences. If S∗ is a complex of sheaves on X, the hy-

percohomology sequence with Ep,q
2 = Hp(X;H∗(S∗)) that abuts to H∗(X;S∗), where

H∗(S∗) is the derived cohomology sheaf and H∗ is hypercohomolgy.

4. A special example of the hypercohomology spectral sequence is the Hodge-De Rham

spectral sequence on a complex manifold: Ep,q
2 = Hp(X; Ωq), where Ωq is the complex

of holomorphic q-forms, which abuts to H∗(X; C).

5. Adams spectral sequence. E2
t,q = Extt

A(Hq(X); Zp), which abuts to πs
∗(X)/non-p-torsion,

where A is the mod-p Steenrod algebra.

6. Spectral sequences also crop up when trying to generalize the universal coefficient or

Künneth theorems to rings that are not PIDs.

A little more detail. One of the most common ways to generate spectral sequences

algebraically (and some of the above examples can be seen this way) is to start off with a

chain complex C∗ and introduce a filtration F ∗C∗. Each F pC∗ is a subcomplex of C∗. There

are increasing and decreasing filtrations. We will focus on the increasing ones for which

F p−1C∗ ⊂ F pC∗ for all p. To make things work out one also often assumes that the filtration
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is bounded, i.e. F pC∗ = 0 for sufficiently small p and F pC∗ = C∗ for sufficiently large p. It

is also common to assume that C∗ is a bounded complex.

Notice that this filtration induces a filtration on homology by F pH∗(C∗) = im(H∗(F
pC∗) →

H∗(C∗)).

With such niceness assumptions as above (and even sometimes without them), the general

theory then says that there is a spectral sequence with E1
p,q = Hp+q(F

pC∗/F
p−1C∗) and d1

given by the boundary map of the long exact sequence of the triple (F pC∗, F
p−1C∗, F

p−2C∗).

The E∞ terms of this spectral sequence are isomorphic to F pHp+q(C∗)/F
p−1Hp+q(C∗).

Since F pH∗(C∗) = H∗(C∗) for large enough p and it is 0 for small enough p, this tells

us that to reconstruct H∗(C∗) given the E∞ is just a collection of extension problems.

However, if C∗ is a complex of vector spaces, then the extension problems are trivial and

Hi(C∗) ∼= ⊕p+q=iE
∞
p,q.

The Leray-Serre spectral sequence. Suppose we have a filtration (or a fiber bunder)

F ↪→ X
π→ B. We assume B is a finite dimensional CW complex. We filter the singular

chain complex C∗(X) by letting F p(C∗(X)) = C∗(π
−1(Bp)), where Bp is the p-skeleton of B.

Then F pC∗(X)/F p−1(C∗(X)) is the quotient chain complex C∗(π
−1(Bp))/C∗(π

−1(Bp−1)) ∼=
C∗(π

−1(Bp), π−1(Bp−1)). By excision, the homology of this complex is the direct sum

⊕epH∗(π
−1(e), π−1(∂ep))

over the p-cells ep of B. But since ep is contractible, the fibration over it is trivial and

so homotopy equivalent to ep × F . So, H∗(π
−1(ep), π−1(∂ep)) ∼= H∗(e

p × F, ∂ep × F ) ∼=
H∗(D

p × F, Sp−1 × F ), which by the Künneth theorem is just H∗−p(F ), which we can also

interpret as Hp(D
p, Sp−1; H∗−p(F )).

So for the spectral sequence, we have E1
p,q = Hp+q(F

pC∗/F
p−1C∗) ∼= ⊕epHp(D

p, Sp−1; Hq(F )).

The map d1 takes this to ⊕ep−1Hp−1(D
p−1, Sp−2; Hq(F )) by the boundary map of the long

exact sequence of the triple (Bp, Bp−1, Bp−2). But this is precisely a description of the

boundary map of the CW-chain complex of B with coefficients in Hq(F ) (note, however,

that these coefficients can be twisted by the monodromy of the fibration if it is non-trivial).

Thus taking homology to get to E2
p,q yields E2

p,q = Hp(B;Hq(F )).

The spectral sequence abuts to a filtration of C∗(X).

Some easy examples of applications. The easiest applications come when most of the

terms E2
p,q vanish. For example, consider a fibration Sm ↪→ X → Sn. The only nontrivial

E2
p,q will be Zs when (p, q) is (0, 0), (0, m), (n, 0), or (n,m). Unless (0, m) = (n− r, r−1) for

some r, the E2 stage will be equal to the E∞ stage, and we learn that H∗(X) is trivial except

for Zs in dimensions 0, m, n, m+n (or a Z2 in dimension m if m = n). If (0, m) = (n−r, r+1)

for some r, then there are other possibilities. For example, in the Hopf fibration of S3, we

have a map d2 : E2
2,0 → E2

0,1, and since we know the homology of S3 already, we must have

d2 is an isomorphism (which is not necessarily easy to show directly). For S2× S1, we must

have d2 = 0.

Note in general that if H∗(B) = 0 for ∗ > p and H∗(F ) = 0 for ∗ > q, then H∗(X) = 0

for ∗ > p + q and Hp+q(X) = Hp(B;Hq(F )).
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Euler characteristics. Another nice application is that if B is simply connected

(or there is no fiber monodromy on homology) and all homology groups are finite rank,

then χ(X) = χ(B)χ(F ). Proof: Work with rational coefficients. For E2, look at χ2 =∑
p,q(−1)p+qbp,q

2 , where bp,q
r is the Betti number of Er

p,q. For fixed q, we have
∑

p(−1)p+qbp,q
2 =

(−1)qχ(B)bq
F , where bq

F is the qth Betti number of F . So χ2 = χ(B)χ(F ). Next, we notice

that χr is independent of r. Let dr
p,q be the boundary map with Er

p,q the domain. Then

Er
p,q
∼= ker(dr

p,q)⊕ im(dr
p,q)

∼= im(dr
p+r,q−r+1)⊕ Ep,q

r+1 ⊕ im(dr
p,q)

So

χr =
∑
p,q

(−1)p+qbp,q
r

∼=
∑
p,q

(−1)p+q(dim(im(dr
p+r,q−r+1)) + bp,q

r+1 + dim(im(dr
p,q)))

∼= χr+1 +
∑
p,q

(−1)p+q(dim(im(dr
p+r,q−r+1)) + dim(im(dr

p,q)))

∼= χr+1,

since it is easy to check that the terms on the right cancel in pairs.

On the other hand, at the abutment stage,

χ(X) =
∑

i

(−1)i dim(Hi(X))

=
∑

i

(−1)i
∑

p+q=i

dim(E∞
p,q)

=
∑
p,q

(−1)p+qbp,q
∞

= χ∞ = χr = χ(B)χ(F ).
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