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Abstract

We study intersection homology with general perversities that assign integers to
stratum components with none of the classical constraints of Goresky and MacPherson.
We extend Goresky and MacPherson’s axiomatic treatment of Deligne sheaves, and use
these to obtain Poincaré and Lefschetz duality results for these general perversities.
We also produce versions of both the sheaf-theoretic and the piecewise linear chain-
theoretic intersection pairings that carry no restrictions on the input perversities.
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1 Introduction

Intersection homology theory is an important tool for the topological study of stratified

spaces, which include algebraic and analytic varieties and certain quotients of manifolds by

group actions. The original motivation for its development was to extend an appropriate

version of Poincaré duality to such spaces, and other related properties have followed, in-

cluding versions of the Kähler package for singular varieties. The theory breaks into families

indexed by a parameter, the perversity, which is often limited to a fairly strict range of pos-

sibilities. However, as intersection homology with more general perversities has become an

increasingly indispensable tool, it is imperative to recast as many as possible of the founda-

tional properties of intersection homology theory in this light. We here construct a version

of the Deligne sheaf machinery in this constext, as well as revisiting the geometric PL chain

intersection pairing of Goresky and MacPherson.

More precisely, recall that a perversity parameter for intersection homology is a function

that assigns a number to each stratum (or stratum component) of a stratified pseudomanifold

X. In the original work of Goresky and MacPherson [28], these perversities were assumed

to satisfy very restrictive conditions: A Goresky-MacPherson perversity p̄ assigns the same

number to all stratum components of codimension k, so it can be thought of as a function

p̄ : Z≥2 → Z, and it must satisfy

p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1 and p̄(2) = 0.

These conditions were necessary in order to prove some of the earliest important properties

of intersection homology groups I p̄H∗(X), including the simultaneous possession of Poincaré

duality and topological invariance (independence of the stratification of X).

A number of authors have considered variants of intersection homology that allow more

general notions of perversity, including Beilinson, Bernstein, and Deligne [5]; MacPherson

[40]; King [38]; Cappell and Shaneson [11]; Habegger and Saper [32]; the author [20, 22, 24];

Saralegi [48]; and Hausel, Mazzeo, and Hunsicker [34, 36, 35]. In many of these works, per-

versities are still required to satisfy at least some of the prior conditions, though completely

arbitrary perversities appear as far back as 1982 in the work of Beilinson, Bernstein, and

Deligne on perverse sheaves, and they occur more recently in work of the author [24] and

Saralegi [48]. These general perversities are functions

p̄ : {Connected components of singular strata of X} → Z

without any restrictions whatsoever. These papers also enlarge the class of pseudomanifolds

considered by allowing strata of codimension one. While the topological invariance of in-

tersection homology is lost for these more general perversities, all other standard properties
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of intersection homology remain true, including Poincaré duality, at least with the proper

choice of intersection homology theory.

While general perversities appeared within the realm of perverse sheaves from the begin-

ning, let us describe in a bit more detail some of the recent applications of general perversities

within intersection homology proper:

In [48], Saralegi proved a de Rham theorem for these general perversities, i.e. that inte-

gration induces a linear duality isomorphism between the cohomology of p̄-perverse liftable

intersection differential forms and chain-theoretic perversity t̄− p̄ “relative” intersection ho-

mology with real coefficients (see [48] for precise details). Non-traditional perversities also

appear in an analytic setting in the works of Hausel, Hunsicker, and Mazzeo [34, 36, 35],

in which they demonstrate that groups of L2 harmonic forms on a manifold with fibered

boundary can be identified with cohomology spaces associated to intersection cohomology

groups of varying perversities for a canonical compactification of the manifold.

In [24], we used general perversity intersection homology as a critical tool in proving a

Künneth theorem for intersection homology. We showed that for any two given perversities p̄,

q̄ on two stratified pseudomanifolds X, Y , there is a family of general perversities (generically

denoted Q) on the product pseudomanifold X × Y such that the intersection chain complex

IQC∗(X × Y ) is quasi-isomorphic to I p̄C∗(X)⊗ I q̄C∗(Y ). Even when p̄ and q̄ are Goresky-

MacPherson perversities, Q in general will not be, and so general perversities play a critical

role even in the effort to study more classical forms of intersection homology. Without this

tool, Cohen, Goresky, and Ji [16] were able to obtain only a much more limited intersection

homology Künneth theorem. Together with James McClure and Scott Wilson, the author

is currently working on a variety of applications of this Künneth result, including an effort

to understand an intersection cohomology theory founded on cochains and cup products.

Such an effort was not possible previously because the usual front face/back face approach

to cup products (see [44, Section 48]) is not well-behaved on intersection chains. However,

the author’s general perversity Künneth theorem provides a way to define the cup product

via the Hom dual of the composition

I r̄Hc
∗(X)→ IQHc

∗(X ×X)
∼=→ I p̄Hc

∗(X)⊗ I q̄Hc
∗(X),

where the first map is induced by the geometric diagonal inclusion and the righthand quasi-

isomorphism is the Künneth theorem of [24]. See [24, 27] for more details.

Thus general perversities have become increasingly useful, and, as such, it is desirable to

have a consistent theory of general perversity intersection homology, unified across the var-

ious existing flavors of intersection homology theory. Recall that Goresky and MacPherson

originally defined intersection homology using simplicial chains on piecewise linear spaces,

but in [29] they formulated an equivalent purely sheaf-theoretic approach. Sheaf theory has

the advantages of applying on more general spaces and of possessing a powerful toolbox,

though perhaps the disadvantage of being further removed from geometric intuition. The

geometric chain approach was extended by King [38] to include singular simplices, as well

as non-Goresky-MacPherson perversities. However, it was shown in [20] that, when con-

sidering King’s perversities, singular chains are not quite the right theory to match with
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the tools coming from sheaf theory. Thus a modification, the stratified coefficient system,

was introduced in [20], and this is the version of general perversity singular intersection ho-

mology pursued in [20] and [24]; this approach turns out to be equivalent to the “relative”

intersection homology introduced by Saralegi in [48].

Our first goal here is to demonstrate how to generalizes the Deligne sheaf construction

of Goresky-MacPherson [29] in order to provide hypercohomology groups that agree with

the generalized intersection homology of the author and Saralegi. We also generalize the

axiomatic characterization that made the Deligne sheaf so useful in classical intersection

homology and use this to prove duality and pairing results. We further demonstrate that

this generalized Deligne construction is equivalent to a certain intermediate extension in the

language of perverse sheaves.

At the other end of the spectrum, we expand also the geometric ramifications of general

perversities by extending some of the earliest Goresky-MacPherson results in the realm of

piecewise-linear chain complexes by extending the PL intersection pairing to arbitrary pairs

of perversities.

While some of our sheaf theoretic results may be implicit (or, in some cases, explicit)

in developments from the category perverse sheaves, such an approach involves employment

of considerably more abstract categorical formalisms. We hope that our more geometrically

explicit constructions will be more approachable and better adapted to future applications.

We also hope that, ultimately, having several approaches to general perversity intersection

homology, coming with trade-offs between their varying levels of geometrical explicitness and

their abstract generality, will provide scientific utility.

We proceed as follows.

Section 2 contains background and notation.

In Section 3, we observe that the classical Deligne sheaf construction is insufficient to pro-

vide a complete sheaf-theoretic approach to intersection homology with general perversities.

To remedy this problem, we introduce a generalization of the sheaf truncation functor to re-

place the classical sheaf truncation functor in the Deligne construction. We then show that

general perversity intersection homology possesses an axiomatic characterization founded

upon the properties of this generalized Deligne sheaf.

In Section 4, we show that our generalized Deligne sheaves are constructible and that

this implies a general perversity version of the Poincaré-Verdier-Goresky-MacPherson duality

theorem on stratified pseudomanifolds. The full statement of the theorem can be found

below as Theorem 4.3. We here state the special case over an orientable pseudomanifold

without boundary and for a constant coefficient sheaf whose stalks are the field F . In

the statement, Q∗ denotes our generalized Deligne sheaf, D denotes the Verdier dualizing

functor, U1 = X −Xn−1, and t̄ is the top perversity, t̄(Z) = codim(Z)− 2.

Theorem 1.1. Let X be an orientable n-dimensional stratified pseudomanifold, and let p̄

and q̄ be general perversities such that p̄ + q̄ = t̄. Then DXQ∗p̄[−n] ∼= Q∗q̄(DU1F [−n]) in the

derived category of sheaves on X.

This implies a more familiar-looking statement, which forms the third item of Corollary

4.4:
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Corollary 1.2. If X is closed and orientable and p̄, q̄ are general perversities with p̄+ q̄ = t̄,

then

I q̄Hn−i(X; Q0) ∼= Hom(I p̄Hi(X; Q0),Q).

This includes the original duality result of Goresky and MacPherson as a special case.

The subscript 0 on the Q coefficients reflects the use of a stratified coefficient system; see

Section 2.

While the preceding statements might be somewhat expected considering the theorems

of Goresky and MacPherson, their generalization to our current setting does have some

nice consequences, including a simple proof of the following Lefschetz duality theorem for

pseudomanifolds with boundary.

Corollary 1.3. If X is a compact and orientable stratified pseudomanifold with boundary

and p̄, q̄ are general perversities with p̄+ q̄ = t̄, then

I q̄Hn−i(X; Q0) ∼= Hom(I p̄Hi(X, ∂X; Q0),Q).

This corollary follows from Corollary 4.4 and the discussion of Lefschetz duality that

follows it in Section 4.1

In Section 4.3, we explore the sheaf-theoretic intersection homology pairings. The fol-

lowing theorem appears below as Theorem 4.6 and is much more general than the classical

result (see [29, 7]), in which no pairing morphism m can exist at all if p̄+ q̄ 6≤ t̄.

Theorem 1.4. Given a pairing of local systems m1 : E ⊗ F → G on X −Xn−1 and general

perversities such that p̄(Z) + q̄(Z) ≤ r̄(Z) for all singular strata Z, then in the bounded

derived category Db(X), there is a unique morphism m : Q∗p̄(E∗)
L
⊗ Q∗q̄(F) → Q∗r̄(G) that

restricts to m1 on X − Xn−1. Furthermore, if r̄ ≤ t̄ and G = O, the orientation sheaf of

X −Xn−1, then there exists a pairing m : Q∗p̄(E∗)
L
⊗Q∗q̄(F) → D∗X [−n] that restricts to m1

on X −Xn−1, where D∗X [−n] is the shift of the Verdier dualizing complex on X.

Finally, in Section 5, we return to the geometry of simplicial chains on PL spaces. In

Theorem 5.4 we provide a generalization of the original Goresky-MacPherson intersection

pairing. We state here a nice special case, assuming X is compact and orientable:

1 This intersection homology Lefschetz duality is currently being utilized by the author and Hunsicker
in their study of intersection homology versions of Novikov additivity and Wall non-additivity for perverse
signatures [26]. These are the signatures of the nondegenerate intersection pairing on im(I p̄H2n(X4n) →
I q̄H2n(X4n, ∂X4n)), when p̄ ≤ q̄; the well-known Witt-space signature is a special case. Signatures arising
through intersection homology and the closely related analytic L2-cohomology and L2 Hodge theory have
been the subject of intense study since the beginnings of the subject. They have been studied topologically
by researchers including Goresky and MacPherson [28, 29], Siegel [49], and various combinations of Banagl,
Cappell, Libgober, Maxim, Shaneson, and Weinberger, whose papers on the topic include, among many
others, [3, 1, 4, 8, 10, 9]. There has also been much interest in the analytic study of these intersection
homology signatures as they arise in L2-cohomology and L2 Hodge theory and as they may relate to duality
in string theory, such as through Sen’s conjecture on the dimension of spaces of self-dual harmonic forms on
monopole moduli spaces. Results in these areas and closely related topics include those of Müller [43]; Dai
[17]; Cheeger and Dai [15]; Hausel, Hunsicker, and Mazzeo [34, 36, 35]; Saper [46, 45]; Saper and Stern [47];
and Carron [12, 14, 13]; and work on analytic symmetric signatures is currently being pursued by Albin,
Leichtmann, Mazzeo and Piazza.
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Theorem 1.5. Suppose x ∈ I p̄Ci(X; Z0), y ∈ I q̄Cj(X; Z0) are such that the pairs (|x|, |y|),

(|∂x|, |y|), and (|x|, |∂y|) are in stratified general position. Then there is a well-defined in-

tersection x t y ∈ I r̄Ci+j−n(X; Z0) for any r̄ ≥ p̄+ q̄.

Once again, such a general pairing does not exist in classical intersection homology,

in which it is not possible to intersect a p̄-allowable chain and a q̄-allowable chain unless

p̄+ q̄ ≤ t̄.

We also show in Section 5 that the results of [25] on the existence of partial DGA

structures on intersection chain complexes generalize to include general perversities.

Some of the arguments we present here adhere in general form to well-known paths

in intersection homology theory or to our other recent work. However, there are several

novelties that require special attention and detailed work. These include the introduction

of our generalized sheaf truncation functor, as well as the details of the PL chain pairing,

for which it is necessary to work with what can be best described as relative homology

analogues of more classical “absolute homology” arguments. In our exposition, we hope

to have found a middle road that does not repeat too much that can be found elsewhere

in the literature but that is sufficiently detailed to allow the reader to appreciate the new

results and modified techniques that arise in the study and application of general perversity

intersection homology.

Remark 1.6. A detailed expository survey of intersection homology with general perversities,

including an overview of some of the present results, can be found in [19].

Acknowledgment. I sincerely thank an anonymous referee for pointing out the appear-

ance of general perversities in the theory of perverse sheaves.

2 Background

We begin with a brief review of definitions, referring the reader to sources such as [28, 29,

7, 39, 2, 38, 22, 19] for more thorough background. We encourage the experts also to skim

this section, as we allow a few unconventional generalizations.

2.1 Pseudomanifolds and intersection homology basics

Pseudomanifolds. Let c(Z) denote the open cone on the space Z, and let c(∅) be a point.

A stratified paracompact Hausdorff space Y (see [29] or [11]) is defined by a filtration

Y = Y n ⊃ Y n−1 ⊃ Y n−2 ⊃ · · · ⊃ Y 0 ⊃ Y −1 = ∅

such that for each point y ∈ Y i−Y i−1, there exists a distinguished neighborhood U of y such

that there is a compact Hausdorff space L, a filtration of L

L = Ln−i−1 ⊃ · · · ⊃ L0 ⊃ L−1 = ∅,
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and a homeomorphism

φ : Ri × c(L)→ U

that takes Ri× c(Lj−1) onto Y i+j ∩U . The Y i are called skeleta. We denote Yi = Y i−Y i−1;

this is an i-manifold that may be empty. We refer to the connected components of the

various Yi as strata2. If a stratum Z is a subset of Yn = Y − Y n−1 it is called a regular

stratum; otherwise it is called a singular stratum. L is called a link. The depth of a stratified

space is the number of distinct skeleta it possesses minus one.

Usually, a stratified (topological) pseudomanifold of dimension n is defined to be a strat-

ified paracompact Hausdorff space X such that Xn−1 = Xn−2, X − Xn−2 is a manifold

of dimension n dense in X, and each link L is, inductively, a stratified pseudomanifold;

a space is a (topological) pseudomanifold if it can be given the structure of a stratified

pseudomanifold for some choice of filtration. In this paper, we will also allow for the possi-

bility that Xn−1 6= Xn−2. When we do assume Xn−1 = Xn−2, intersection homology with

Goresky-MacPherson perversities is known to be a topological invariant; in particular, it

is invariant under choice of stratification (see [29], [7], [38]). Examples of pseudomanifolds

include complex algebraic and analytic varieties (see [7, Section IV]).

A stratified pseudomanifold is orientable (respectively oriented) if X −Xn−2 is.

We refer to the link L in the distinguished neighborhood U of y as the link of y or of

the stratum containing y; it is, in general, not uniquely determined up to homeomorphism,

though if X is a pseudomanifold it is unique up to, for example, stratum preserving homotopy

equivalence (see, e.g., [21]), which is sufficient for the intersection homology type of the link

of a stratum to be determined uniquely. Thus there is no harm, in general, of referring to

“the link” of a stratum instead of “a link” of a stratum.

A piecewise linear (PL) pseudomanifold is a pseudomanifold with a PL structure compat-

ible with the filtration, meaning that each skeleton is a PL subspace, and such that each link

is a PL pseudomanifold and the distinguished neighborhood homeomorphisms U ∼= Rn−k×cL
are PL homeomorphisms.

We will assume all pseudomanifolds X to have a fixed given stratification X.

Intersection homology. We will work mostly with singular chain intersection homology

theory, which was introduced in [38] with finite chains (compact supports) and generalized

in [22] to include locally-finite but infinite chains (closed supports). Singular intersection

homology can be defined on any filtered space, but we limit ourselves to stratified pseudo-

manifolds.

A Goresky-MacPherson perversity (or GM perversity) p̄ is a function p̄ : Z≥2 → Z such

that p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1 and p̄(2) = 0. The elements of Z≥2 correspond to the sets

Xk. Here the domain is Z≥2 because Goresky and MacPherson did not allow codimension

1 strata. King [38] introduced loose perversities, which are completely arbitrary functions

p̄ : Z≥0 → Z. We will go even further, following Saralegi [48], and define a general perversity

2This definition agrees with some sources, but is slightly different from others, including our own past
work, which would refer to Yi as the stratum and what we call strata as “stratum components.”
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on a stratified pseudomanifold X to be any function3 p̄ : {singular strata of X} → Z.

Given a stratified pseudomanifold X, a general perversity p̄, and an abelian group G,

one defines the intersection chain complex I p̄Cc
∗(X;G) as a subcomplex of Cc

∗(X;G), the

complex of compactly supported singular chains on X, as follows: An i-simplex σ : ∆i → X

in Cc
i (X) is allowable if

σ−1(Z) ⊂ {i− codim(Z) + p̄(Z) skeleton of ∆i}

for any singular stratum Z of X. The chain ξ ∈ Cc
i (X;G) is allowable if each simplex

with non-zero coefficient in ξ or in ∂ξ is allowable. I p̄Cc
∗(X;G) is the complex of allowable

chains. I p̄C∞∗ (X;G) is defined similarly as the complex of allowable chains in C∞∗ (X;G),

the complex of locally-finite singular chains. Chains in C∞∗ (X;G) may be composed of an

infinite number of simplices (with their coefficients), but for each such chain ξ, each point in

X must have a neighborhood that intersects only a finite number of simplices (with non-zero

coefficients) in ξ. See [22] for more details.

The associated homology theories are denoted I p̄Hc
∗(X;G) and I p̄H∞∗ (X;G) and called

intersection homology with, respectively, compact or closed supports.

N.B. We will often omit the decorations c or ∞ when these theories are equivalent or

when our statements apply to either case.

Relative intersection homology is defined similarly, in the obvious way, though we note

that the filtration on a subspace will always be that inherited from the larger space by

restriction, and, in the closed support case, all chains are required to be locally-finite in the

larger space.

If p̄ is a GM perversity and X has no strata of codimension one, then it is also possible

to define intersection chains with coefficients in a local system of groups G that is defined

only on X −Xn−2. See [29, 22, 19] for more details.

Sheaves. Recall from [22] that one can define a sheaf complex4 I p̄S∗ on the n-dimensional

stratified pseudomanifold X as the sheafification of the presheaf U → I p̄C∞n−∗(X,X − Ū ;G)

or, equivalently, of the presheaf U → I p̄Cc
n−∗(X,X − Ū ;G). It is shown in [22] that the for-

mer presheaf is conjunctive for coverings and has no non-trivial global sections with empty

support. Furthermore, the sheaf I p̄S∗ is homotopically fine. As a consequence, the hyper-

cohomology Hi(X; I p̄S∗) is isomorphic to I p̄H∞n−i(X;G), and Hi
c(X; I p̄S∗) ∼= I p̄Hc

n−i(X;G).

By [29], if p̄ is a GM perversity and X is a pseudomanifold, then I p̄S∗ is quasi-isomorphic

to the Deligne sheaf, and hence they are interchangeable in the derived category of sheaves.

3 Technically, our definition of a general perversity is not strictly more general than King’s because he
allows loose perversities to be defined on regular strata and takes this into account in defining intersection
chains. In practice, however, if Z is a regular stratum, the only meaningful distinction for intersection
homology is between the cases p̄(Z) ≥ 0 and p̄(Z) ≤ −1. The latter condition would force chains to avoid
the regular stratum altogether, which is usually not worth considering (see the discussion of this point in
[19, Remark 6.1]), and it makes some later statements technically simpler to avoid imposing repeatedly the
condition p̄(Z) ≥ 0 for regular strata. The most elegant solution, used by Saralegi in [48], seems to be to
define p̄ only on the singular strata and to build this restriction into the definition of intersection chains.

4We tend to leave the coefficients out of the sheaf notation for simplicity; the coefficients will always be
known from context.
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To define the Deligne sheaf, let Uk = X − Xn−k, and let ik : Uk ↪→ Uk+1 be the inclusion.

Rik∗ denotes right derived functor of the push forward ik∗ and τ≤m is the truncation functor

that acts on the complex A∗ (in any appropriate category) as

(τ≤mA
∗)i =


0, i > m,

ker(d : Am → Am+1), i = m,

Ai, i ≤ m.

Recall that H i(τ≤mA
∗) = 0 for i > m, and H i(τ≤mA

∗) = H i(A∗) for i ≤ m. Let GU1 be the

constant sheaf G on the open manifold U1. Then the Deligne sheaf P∗p̄ is defined inductively

as τ≤p̄(n)Rin∗ . . . τ≤p̄(1)Ri1∗GU1 .

It is again possible to begin with a local system of groups G that is defined only on

X −Xn−1; one simply replaces GU1 with G.

2.2 Stratified coefficient systems

Motivation. When working with perversities p̄ for which p̄(Z) > codim(Z) − 2 for some

stratum Z (we call such perversities superperversities5 ), it is useful to make a technical

adjustment to the definition given above of chain-theoretic intersection homology. This

adjustment was introduced in [22] under the guise of using a “stratified coefficient system” G0

and independently by Saralegi [48] in the form of a certain relative intersection homology; it is

shown in [24] that the two approaches yield isomorphic chain complexes. The motivation for

stratified coefficients in [22] was the desire to construct a singular chain version of intersection

homology with superperversities that agrees with the Deligne sheaf version from [11], while

Saralegi’s purpose was to prove a de Rham theorem for general perversities. An added

benefit is that stratified coefficients let us start with a local coefficient system on X −Xn−1

for any general perversity, which would not otherwise be possible.

Before providing the definition, we note that the main technical point necessitating strat-

ified coefficients is the need to generalize the intersection homology cone formula so as to

obtain the following proposition. This proposition combines [22, Proposition 2.18] with the

isomorphism I p̄Hc
i (cL, L×R;G0) ∼= I p̄H∞i (cL;G0), which follows from [22, Lemma 2.12]. In

[22], these propositions are not proven in quite the generality stated here, but the proofs

generalize immediately; see also [19].

Proposition 2.1. Let L be an n − 1 dimensional filtered space with stratified coefficient

system G0. Let v be the vertex of cL, let cL be filtered such that (cL)0 = v and (cL)i =

c(Li−1)− v for i > 0. Then6

I p̄Hc
i (cL;G0) ∼=

{
0, i ≥ n− 1− p̄({v}),
I p̄Hc

i (L;G0), i < n− 1− p̄({v}).
5The term “superpervisity” was first used by the author in [22, 20] to refer to the perversities considered

by Cappell and Shaneson in [11].
6On the second line, we should technically use I p̄Hi−1(L;G0|L), but we will leave such restrictions tacit

throughout.
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If L is compact, then

I p̄Hc
i (cL, L× R;G0) ∼= I p̄H∞i (cL;G0) ∼=

{
I p̄Hi−1(L;G0), i ≥ n− p̄({v}),
0, i < n− p̄({v}).

This proposition is familiar for GM-perversity intersection homology, but it would not

be true for general perversities without the stratified coefficient systems. The reader should

compare with [38, Proposition 5]; the small but important difference is entirely in degree 0.

While this seems like a minor point, this proposition in its usual form for GM perversities

is a key player in proving all of the major results of the theory, and this continues to be borne

out for general perversities in [22, 24, 48] and in the results that follow. This seems ample

evidence that stratified coefficient systems (or, equivalently, Saralegi’s relative groups) are

worth using. Furthermore, when p̄ is a Goresky-MacPherson perversity (or, more generally,

if p̄(Z) ≤ codim(Z) − 2 for each singular stratum Z), then I p̄C∗(X;G0) ∼= I p̄C∗(X;G) as

observed in [20, Proposition 2.1]7. Thus intersection chains with stratified coefficients are a

legitimate extension of the traditional setting.

Remark 2.2. The intersection homology sheaves constructed by Habegger and Saper [32]

reflect singular intersection homology for which p̄(Z) ≥ codim(Z)−1 may occur but stratified

coefficients are not used. Thus the hypercohomology of their sheaves is not the same as the

superperverse intersection homology found in [11, 22, 48]. Habegger and Saper also continue

to require that p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1. They find a duality theorem in this setting, but

it is technically more complicated than the Goresky-MacPherson duality and that produced

here. See [32, 19] for more details.

Definition of stratified coefficients. Suppose given a filtered space X and local system

of coefficients G on X −Xn−1. Then the stratified coefficient system G0 is defined to consist

of the pair of coefficient systems given by G on X−Xn−1 and the constant 0 system on Xn−1,

i.e. we think of G0 as consisting of a locally constant fiber bundle GX−Xn−1 over X −Xn−1

with fiber G (with the discrete topology) together with the trivial bundle on Xn−1 with stalk

0. Then a coefficient n of a singular simplex σ can be described by a lift of σ|σ−1(X−Xn−1) to

GX−Xn−1 together with the trivial “lift” of σ|σ−1(Xn−1) to the 0 system on Xn−1. A coefficient

of a simplex σ is considered to be the 0 coefficient if it maps each point of ∆ to the 0 section

of one of the coefficient systems. If nσ is a simplex σ with its coefficient n, its boundary is

given by the usual formula ∂(nσ) =
∑

j(−1)j(n ◦ ij)(σ ◦ ij), where ij : ∆i−1 → ∆i is the jth

face inclusion map. In this way we can form a chain complex C∗(X;G0).

The basic idea behind the definition is essentially that when we consider allowability of

chains with respect to a perversity, simplices with support entirely in Xn−1 should vanish and

thus not be counted for allowability considerations. Thus the intersection homology chain

complexes I p̄Cc
∗(X;G0) and I p̄C∞∗ (X;G0) are defined just as I p̄Cc

∗(X;G) and I p̄C∞∗ (X;G)

are, but replacing the coefficients of simplices with coefficients in G0. Allowability of a

simplex is thus determined as above, but all simplices with support in Xn−1 vanish due

7The proposition there has the hypotheses that Xn−1 = Xn−2, but this hypothesis in not necessary if
for each Z ⊂ Xn−1, p̄(Z) ≤ codim(Z)− 2 = −1, a condition which was not allowed in [20].
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to the 0 coefficient they must carry, and so they are automatically allowable. This yields

nothing new when considering the allowability of the i-simplices of an i-chain ξ, but now

any simplices of ∂ξ with support in Xn−1 vanish, which may come into play in determining

the allowability of ξ as a chain. More details can be found in [22].

Relationship with Saralegi’s relative chains. Let G be a constant coefficient sys-

tem. As noted in [22], use of the coefficient system G0, in which Xn−1 carries a formal

0 coefficient system, is not the same as attempting to take relative intersection homology

I p̄H∗(X,X
n−1;G). For one thing, if p̄(Z) ≤ codim(Z)− 1, there is no such chain submodule

as I p̄C∗(X
n−1;G) because no allowable chains are contained entirely within Xn−1. However,

Saralegi’s idea in [48] for an intersection chain complex satisfying Proposition 2.1 is a correct

refinement of this idea. He defined a chain complex S p̄C∗(X;Xt̄−p̄) as

S p̄Cc
∗(X,Xt̄−p̄;G) =

(Ap̄C∗(X;G) + AC p̄+1
∗ (Xt̄−p̄;G)) ∩ ∂−1

(
Ap̄C∗−1(X;G) + AC p̄+1

∗−1 (Xt̄−p̄;G)
)

AC p̄+1
∗ (Xt̄−p̄;G) ∩ ∂−1AC p̄+1

∗−1 (Xt̄−p̄;G)
,

where t̄ is the top perversity, t̄(Z) = codim(Z)− 2, Ap̄Ci(X) is generated by the p̄-allowable

i-simplices of X, Xt̄−p̄ is the closure of the union of the singular strata Z of X such that

t̄(Z)− p̄(Z) < 0, and Ap̄+1Ci(Xt̄−p̄) is generated by the t̄− p̄− 1 allowable i-simplices with

support in Xt̄−p̄. Once again, we see that the idea is to have a complex made up of allowable

chains but to kill simplices that lie within the strata where the perversity is too high.

In [24], we proved that I p̄Cc
∗(X;G0) is quasi-isomorphic to S p̄Cc

∗(X,Xt̄−p̄;G). More

precisely, the proof there uses the extra assumption that the coefficient of any simplex in a

chain of I p̄C∗(X;G0) must lift to the same coefficient at all points of σ−1(X −Xn−1), and

with this assumption, I p̄Cc
∗(X;G0) and S p̄Cc

∗(X,Xt̄−p̄;G) are actually isomorphic. However,

it is also noted in [24] that this variant of the definition of I p̄Cc
∗(X;G0) yields a chain complex

that is quasi-isomorphic with the chain complex we have been using here. Furthermore, this

extra assumption will automatically be true if p̄ is an “efficient perversity,” a notion that is

defined in the next subsection, where we also show that p̄ can always be replaced with an

efficient perversity without changing the intersection homology groups.

Throughout this paper, we will use the stratified coefficient formulation, which we think

is slightly simpler to use in most of our arguments, largely because it avoids quotient groups.

Also, it is not quite clear how to extend Saralegi’s approach to local coefficient systems.

Basic Properties. As shown in [22], even with general perversities and G0 coefficients,

many of the basic properties of I p̄H∗(X;G0) established in [38] and [22] hold with little or

no change to the proofs, such as stratum-preserving homotopy equivalence, excision, the

Künneth theorem for which one term is an unstratified manifold, Mayer-Vietoris sequences,

etc.

It also remains true with general perversities and stratified coefficients that we can define

a sheaf I p̄S∗ as the sheafification of the presheaf U → I p̄C∞n−∗(X,X− Ū ;G0) or, equivalently,

of the presheaf U → I p̄Cc
n−∗(X,X − Ū ;G0). Again, the former presheaf is conjunctive for

coverings and has no non-trivial global sections with empty support, and the sheaf I p̄S∗ is
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homotopically fine. Thus, the hypercohomology Hi(X; I p̄S∗) is isomorphic to I p̄H∞n−i(X;G0),

and Hi
c(X; I p̄S∗) ∼= I p̄Hc

n−i(X;G0). For simplicity of notation, we generally write I p̄S∗,
without noting explicitly the coefficients.

N.B. Throughout this paper, we will always assume stratified coefficients are in use unless

explicitly noted otherwise.

2.3 Efficient perversities

In this section, we show that many perversities provide redundant information. In other

words, there is no need to consider perversities that are too general.

Definition 2.3. We will say that a general perversity p̄ is efficient if, for each singular

stratum Z, −1 ≤ p̄(Z) ≤ codim(Z)− 1.

Given a general perversity p̄, we can associate an efficient perversity p̌ as follows: Define

p̌ by

p̌(Z) =


codim(Z)− 1, if p̄(Z) ≥ codim(Z)− 1,

p̄(Z), if 0 ≤ p̄(Z) ≤ codim(Z)− 2,

−1, if p̄(Z) ≤ −1.

We now show that we can effectively eliminate consideration of perversities that are not

efficient when studying intersection homology.

Lemma 2.4. Let p̄ be a general perversity and X a pseudomanifold, possibly with codi-

mension one strata. Let p̌ be the associated efficient perversity. Then I p̄H∗(X;G0) ∼=
I p̌H∗(X;G0).

Corollary 2.5. Let X− denote the union of the singular strata Z of X such that p̄(Z) ≤ −1.

Then I p̄H∗(X;G0) ∼= I p̄H∗(X −X−;G0).

Proof. This follows directly from the lemma and from the definition of the intersection chain

complex by replacing p̄ with a perversity such that p̄(Z)� 0 for each Z ⊂ X−.

Proof of Lemma 2.4. We proceed in two steps. First, let p̃ be the perversity defined so that

p̃(Z) = −1 if p̄(Z) ≤ −1 and p̃(Z) = p̄(Z) otherwise. Then there is a natural inclusion

I p̄C∗(X;G0) ↪→ I p̃C∗(X;G0) (for either closed or compact supports). This induces a map

of sheaves I p̄S∗ → I p̃S∗, which we claim is a quasi-isomorphism. We induct on depth,

noting that we clearly have a quasi-isomorphism on depth 0 pseudomanifolds, which have

no singular strata. So suppose that we have shown the claim through depth j − 1 and

that x ∈ X, where X has depth j. It suffices to compute locally, and by the standard

computations (e.g. [38, 22]),

Hn−∗(I p̄S∗x) ∼= I p̄H∞∗ (Rn−k × cL;G0)
∼= I p̄H∞∗−n−k(cL;G0),

and similarly for p̃. In fact, the map of cohomology stalks of sheaves comes down to the

map induced by inclusion I p̄H∞∗ (cL;G0)→ I p̃H∞∗ (cL;G0). But by the cone formula and the
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induction hypothesis, since depth(L) < j, this is an isomorphism: if p̄(Z) ≤ −1, each of these

groups is 0 for all ∗, using that cL is k dimensional and so IH∗(cL;G0) vanishes for ∗ > k

automatically (an argument for this can be found below within the proof of Proposition

3.7). If p̄(Z) ≥ 0, then for i ≥ k − p̄(Z) = k − p̃(Z), I p̄H∞i (cL;G0) ∼= I p̄Hi−1(L;G0) ∼=
I p̃Hi−1(L;G0) ∼= I p̃H∞i (cL;G0), where the middle isomorphism follows from the induction

hypothesis.

Similarly, using the “opposite extreme” of the cone formula, there is a quasi-isomorphism

I p̂C∗(X;G0) ↪→ I p̄C∗(X;G0), where p̂(Z) = p̄(Z) when p̄(Z) ≤ codim(Z) − 2 and p̂(X) =

codim(Z)− 1 otherwise.

The lemma now follows by noting that p̌ can be obtained from p̄ by first forming p̃ and

then applying the p̂ construction to p̃ or vice versa.

Lemma 2.6. If p̄ is an efficient perversity, than so is t̄ − p̄, where t̄ is the top perversity,

t̄(Z) = codim(Z)− 2.

Proof. Since −1 ≤ p̄(Z) ≤ codim(Z)− 1, t̄(Z) + 1 ≥ t̄(Z)− p̄(Z) ≥ t̄(Z)− codim(Z) + 1, or

codim(Z)− 1 ≥ t̄(Z)− p̄(Z) ≥ −1.

Efficient perversities and interiors of simplices. Efficient perversities have a nice

feature that makes them technically better behaved than the more general perversities. If p̄

is a perversity for which p̄(Z) ≥ codim(Z) for some singular stratum Z, then any i-simplex

σ will be p̄-allowable with respect to Z. In particular, Z will be allowed to intersect the

image under σ of the interior of ∆i. As such, σ−1(X − Xn−1) could potentially have an

infinite number of connected components, and a coefficient of σ might lift each component

to a different branch of G, even if G is a constant system. This could potentially lead to

some pathologies, especially when considering intersection chains from the sheaf point of

view. However, if p̄ is efficient, then for a p̄-allowable σ we must have σ−1(X−Xn−1) within

the i−1 skeleton of ∆i. Hence assigning a coefficient lift value to one point of the interior of

∆i determines the coefficient value at all points (on σ−1(X −Xn−1) by the unique extension

of the lift and on σ−1(Xn−1), where it is 0). This is technically much simpler and makes the

complex of chains in some sense smaller.

In [24], the complex I p̄C∗(X;G0) was defined with the assumption that this “unique

coefficient” property holds, meaning that a coefficient should be determined by its lift at a

single point. However, as noted in [24, Appendix], even for inefficient perversities, this does

not change the intersection homology. Having introduced efficient perversities here, we are

instead free to assume all perversities are efficient, without loss of any information (at least

at the level of quasi-isomorphism), and this provides a reasonable way to avoid the issue

entirely.

3 A generalized Deligne sheaf

We now turn to sheaf theoretic versions of general perversity intersection homology.
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The need for a generalization of the Deligne construction. We first provide an

example showing that general perversity intersection homology is not necessarily given by

hypercohomology of the classical Deligne sheaf, even if p̄(Z) = p̄(Z ′) when codim(Z) =

codim(Z ′).

Proposition 3.1. Let p̄ be a general perversity and X an n-dimensional pseudomanifold.

Then neither I p̄H∗(X; Z) nor I p̄H∗(X; Z0) is necessarily isomorphic to Hn−∗(X;P∗), where

P∗ is the perversity-p̄ Deligne sheaf.

Proof. We provide an example. We will use the more traditional notation for perversities

taking codimensions as inputs.

Let X = S2T 2, the doubly suspended torus, stratified as such (so that X0 consists of

two points, X1 − X0 consists of two arcs, and X3 = X2 = X1), and let p̄ be the general

perversity given by p̄(0) = p̄(1) = p̄(2) = 0, p̄(3) = 3, p̄(4) = 0. We first compute I p̄H∗(X)

from the singular chain definition of intersection homology.

Since ST 2 has dimension 3 and p̄(X0) = 0, we have by the intersection homology sus-

pension formula (see [38, Proposition 5]),

I p̄H∗(X) ∼=


I p̄H∗−1(ST 2), ∗ > 3,

0, ∗ = 3− p̄(4) = 3,

I p̄H∗(ST
2), ∗ < 3,

and, using Proposition 2.1 and a Mayer-Vietoris sequence, the same formula holds with Z
replaced by Z0.

For I p̄H∗(ST
2), since p̄(X1) = 3, all chains are allowable, and

I p̄H∗(ST
2; Z) ∼= H∗(ST

2) ∼=


Z, ∗ = 3,

Z2, ∗ = 2,

0, ∗ = 1,

Z ∗ = 0.

If we replace the Z coefficients with Z0 coefficients, the only change is to replace the Z in

degree 0 with a 0.

Putting these together, we have

I p̄H∗(S
2T 2) ∼= H∗(S

2T 2) ∼=



Z, ∗ = 4,

0, ∗ = 3,

Z2, ∗ = 2,

0, ∗ = 1,

Z, ∗ = 0,

and, again, if we replace the Z coefficients with Z0 coefficients, the only change is to replace

the Z in degree 0 with a 0.

We claim, on the other hand, that H∗(X;P∗) ∼= H∗(X; Z). Thus

14



H4−∗(X;P∗) ∼= H4−∗(X) ∼=



Z, ∗ = 4,

0, ∗ = 3,

0, ∗ = 2,

Z2, ∗ = 1,

Z, ∗ = 0,

by the standard suspension formula for cohomology. This provides the desired contradiction.

To verify the claim, we first show that P∗ ∼= τ≤0Rj∗ZX4 , where j = i4 ◦ i3 and ∼= denotes

quasi-isomorphism (since we work in the derived category of sheaf complexes). Recall that,

by definition, P∗ = τ≤0Ri4∗τ≤3Ri3∗ZX4 . Now if x ∈ X1 = X4−3, then due to the pushforward,

the cohomology of the stalk of Ri3∗ZX4 is that of the link T 2 (since H∗((Ri3∗ZX4)x)
∼=

lim−→x∈U H∗(U − U ∩X1; Z) ∼= H∗(U − U ∩X1; Z) ∼= H∗(T 2), where for the last isomorphism

we have used that U − U ∩X1 is homotopy equivalent to T 2 since U can be assumed to be

a distinguished neighborhood R1 × cT 2). Thus the truncation τ≤3 occurs at a sufficiently

large dimension that τ≤3Ri3∗ZX4 is quasi-isomorphic to Ri3∗ZX4 . Then τ≤0Ri4∗τ≤3Ri3∗ZX4
∼=

τ≤0Ri4∗Ri3∗ZX4
∼= τ≤0Rj∗ZX4 .

Now, we notice that X can also be stratified as a pseudomanifold with two strata X ⊃ X̃1,

where X̃1 = X1 ∪X0 ∼= S1, since the double suspension of a space is the same thing as the

join of that space with S1. Using this stratification, τ≤0Rj∗ZX4 is the perversity-0̄ Deligne

sheaf, so H∗(X; τ≤0Rj∗ZX4)
∼= I 0̄H4−∗(X). Since X is a normal pseudomanifold, this is just

H∗(X; Z) (see [33, Section I.4.1]).

A Deligne sheaf for general perversities. In this section, we define a generalization of

the sheaf truncation functor that, when substituted into the Deligne sheaf formula, yields

a sheaf quasi-isomorphic to I p̄S∗ even if p̄ is a general perversity. This truncation functor

is a further generalization of the “truncations over a closed subset” functor presented in

[29, Section 1.14] and attributed to Deligne; that functor is used in [29, Section 9] to study

extensions of Verdier dual pairings in the context of classical perversity intersection homology.

Definition 3.2. Let A∗ be a sheaf complex on X, and let F be a locally-finite collection of

subsets of X. Let |F| = ∪V ∈FV . Let P be a function F→ Z. Define the presheaf T F
≤PA∗ as

follows. If U is an open set of X, then we let

T F
≤PA

∗(U) =

{
Γ(U ;A∗), U ∩ |F| = ∅,
Γ(U ; τ≤inf{P (V )|V ∈F,U∩V 6=∅}A∗), U ∩ |F| 6= ∅.

Restriction is well-defined because if m < n there is a natural inclusion τ≤mA∗ ↪→ τ≤nA∗.
Let the generalized truncation sheaf τF

≤PA∗ be the sheafification of T F
≤PA∗.

For maps f : A∗ → B∗ of sheaf complexes over X, we can define τF
≤Pf in the obvious way.

In fact, T F
≤Pf is well-defined by applying the ordinary truncation functors on the appropriate

subsets, and we obtain τF
≤Pf again by passing to limits in the sheafification process.
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The following lemma contains the key facts we will need about the generalized truncation;

they all follow immediately from the definition and the properties of the usual truncation

τ≤m.

Lemma 3.3. 1. τF
≤P is a functor of sheaf complexes on X.

2. There is an inclusion of sheaves τF
≤PA∗ ↪→ A∗.

3. Suppose F has the property that for each V ∈ F and each x ∈ V , there is a neighborhood

U of x such that U ∩ V ′ = ∅ for each V ′ ∈ F such that V ′ 6= V . Then (τF
≤PA∗)|X−|F| =

A∗|X−|F| and for each V ∈ F , (τF
≤PA∗)|V = (τ≤P (V )A∗)|V = τ≤P (A∗|V ).

Remark 3.4. It follows from the last statement of the lemma that if F = {X}, then τF
≤PA∗ =

τ≤P (X)A∗, which is a truncation in the usual sense.

Remark 3.5. T F
≤PA∗ will not necessarily be a sheaf, so the sheafification in the definition is

necessary. For example, let X = {v, w} be the two point discrete set, and let each stalk

of A∗ be the the chain complex that is trivial except for the isomorphism Z → Z from

degree 0 to degree 1. Now, let F = {{w}} and let P ({w}) = 0. Consider T F
≤PA∗. We have

T F
≤PA∗({v}) = A∗({v}), but T F

≤PA∗({w}) = T F
≤PA∗(X) = 0, since, on each of the latter sets,

the kernel of d : A0 → A1 is trivial. But this means that the trivial section of T F
≤PA∗ over

{w} and the section that is 1 in degree 0 over {v} cannot be pieced together into a global

presheaf section. So T F
≤PA∗ is not conjunctive and therefore not a sheaf.

Now, let X be an n-pseudomanifold, and recall the standard notation: We let Xk be

the k-skeleton, Xk = Xk − Xk−1, Uk = X − Xn−k, and ik : Uk ↪→ Uk+1. Notice that

Uk+1 = Uk ∪ Xn−k. Also, we will write τXk
≤P , allowing Xk to stand for the set of connected

components of Xk. We continue to allow the possibility that our pseudomanifolds possesses

a codimension 1 stratum.

Given a fixed general perversity p̄ and a local coefficient system G on X −Xn−1, let

Q∗p̄(G) = τX0
≤p̄Rin∗ . . . τ

Xn−1

≤p̄ Ri1∗G.

This is the generalization of the Deligne sheaf using our generalized truncations instead of

the usual truncations. We will often omit G from the notation and refer only to Q∗p̄ or Q∗
when the context is sufficient. We can now state and prove our main theorem of this section:

Theorem 3.6. Given a general perversity p̄ and a system of coefficients G on U1 = X−Xn−1,

Q∗p̄(G0⊗O0) is quasi-isomorphic to I p̄S∗(G0), where O is the orientation sheaf on X−Xn−1

and I p̄S∗(G0) is the sheaf of p̄-perversity intersection chains with coefficients in G0.

The proof consists of two propositions. The first tells us that I p̄S∗ satisfies the Deligne

sheaf axioms with the perversity being replaced by a general perversity; the second tells us

that any sheaf satisfying the axioms is quasi-isomorphic to the generalized Deligne sheaf.

The first proposition is mostly analogous to the standard case. We consider the following

axioms (AX1)p̄,X,G for a sheaf S∗, where X refers to the fixed stratification on X:
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1. S∗ is bounded, S i = 0 for i < 0, and S∗|U1 = G.

2. If x ∈ Z for a stratum Z, then H i(S∗x) = 0 for i > p̄(Z).

3. For x ∈ Z ⊂ Xk, the attachment map αk : S∗k+1 → Rik∗S∗k is a quasi-isomorphism at x

up to p̄(Z).

Proposition 3.7. For a general perversity p̄, I p̄S∗(G0) satisfies the axioms (AX1)p̄,X,G⊗O.

Proof. Most of these properties follow, essentially, from the work in [22], especially the cone

formula, Proposition 2.1.

I p̄S i(G0) = 0 for i > n, since these sheaves would be defined by singular chains in I p̄Cn−i,

which is clearly trivial for i > n.

The condition I p̄S i = 0 for i < 0 in property (1) is meant in the sense of the derived

category so that only the cohomology has to vanish in this range. That this happens can

be seen by induction on depth: If the depth of X is 0, X is a manifold, and for any x ∈ X,

H∗(I p̄S∗x;G0) ∼= H∞n−∗(Rn;G), which is certainly 0 for ∗ < 0. Now, assuming the condition of

depth d− 1, if X has depth d and x ∈ Xn−k, then H i(I p̄S∗(G0)x) ∼= I p̄H∞n−i(Rn−k × cL;G0),

which, depending on the perversity and i, is either 0 or I p̄Hk−1−i(L;G0). By the induction

hypothesis, the intersection sheaf I p̄S∗L(G0) on L is quasi-isomorphic to 0 in negative dimen-

sions, which also implies by the hypercohomology spectral sequence that I p̄Hk−1−i(L;G0) ∼=
Hi(L; I p̄S∗L) is 0 for i < 0. Thus H∗(I p̄S∗(G0)x) = 0 for ∗ < 0, and we are finished by

induction.

Using excision, the restriction to U1 is quasi-isomorphic to the sheaf complex of ordinary

singular chains with coefficients in G, which in turn is quasi-isomorphic to G ⊗ O since U1

is an n-manifold (note that with our indexing conventions, degree 0 of a sheaf complex

corresponds to degree n of the singular chain complex).

Finally, for x ∈ Z ⊂ Xn−k, H
i(I p̄S∗x) ∼= lim−→x∈U I

p̄H∞n−i(U ;G0) ∼= I p̄H∞n−i(Rn−k × cL;G0).

Properties 2 and 3 now hold by applying the Künneth formula for products with Rn−k and

Proposition 2.1 (the relation between the cone formula and the attaching map is explained

more fully in [22]).

The second proposition makes use of our new generalized truncation.

Proposition 3.8. For a general perversity p̄, any sheaf complex satisfying the axioms

(AX1)p̄,X,G is quasi-isomorphic to Q∗p̄(G).

Proof. Substituting the appropriate τF
≤P for τ≤m, the proof is analogous to that in the usual

case for GM perversities; see, e.g., [7, Theorem 2.5]. We run through the argument for

completeness. Let S∗ be any sheaf complex satisfying the axioms. We let S∗k denote S∗|Uk
.

We proceed by induction by showing that S∗k+1
∼= τ

Xn−k

≤p̄ Rik∗S∗k .

On U1, by property (1), we know that S∗|U1
∼= G ∼= Q∗|U1 . This last quasi-isomorphism

is easy to check by repeated application of the third property of Lemma 3.3 and the fact

that i∗Ri∗A∗ and A∗ are always quasi-isomorphic when i is an inclusion of an open subset.

Using Lemma 3.3, we form the diagram
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τ
Xn−k

≤p̄ S∗k+1

τ
Xn−k

≤p̄ αk
- τ

Xn−k

≤p̄ Rik∗S∗k

S∗k+1

? αk - Rik∗S∗k .
?

The lefthand vertical map is the identity over Uk and a quasi-isomorphism over Xn−k, using

the third property of Lemma 3.3 and the assumption that S∗ satisfies condition (2) of the

axioms. Furthermore, using property (3) of the axioms, τ
Xn−k

≤p̄ αk is also a quasi-isomorphism:

on Uk, it restricts to the identity (in the derived category), and on the stratum Z ⊂ Xn−k it

restricts to τ≤p̄(Z)(S∗k+1|Z)→ τ≤p̄(Z)((Rik∗S∗k)|Z), which again is a quasi-isomorphism because

αk is a quasi-isomorphism over Z for ∗ ≤ p̄(Z) by assumption. Thus, utilizing the left side

and the top of the diagram, we obtain a quasi-isomorphism between S∗k+1 and τ
Xn−k

≤p̄ Rik∗S∗k .

The proposition follows by induction.

Together, the propositions prove Theorem 3.6.

Proposition 3.8 and Theorem 3.6 together yield the following corollary, which is a version

of Lemma 2.4 in the sheaf world. This corollary says that any generalized Deligne sheaf is

equivalent to an efficient-perversity Deligne sheaf.

Corollary 3.9. For any general perversity p̄ and coefficient system G on X −Xn−1, Q∗p̄(G)

is quasi-isomorphic to Q∗p̌(G), where p̌ is the efficient perversity associated to p̄.

3.1 Comparison with intermediate extensions

The machinery of perverse sheaves developed axiomatically by Beilinson, Bernstein, and

Deligne in [5] also contains a method for creating sheaf complexes that satisfy the intersection

homology axioms AX1. For background on perverse sheaves, we refer the reader to [5], [37,

Chapter X], [2, Chapter 7], [6], and [18, Chapter 5].

Let U ⊂ X be an open subset of X that is a union of strata, let i : U ↪→ X be the

inclusion, and let S∗ be a P -perverse sheaf on U for some general perversity P . Then there

is defined axiomatically in [5] the “intermediate extension functor” i!∗ such that i!∗S∗ is

the unique extension in the category of P -perverse sheaves of S∗ to X (meaning that the

restriction of i!∗S∗ to U is quasi-isomorphic to S∗) such that for each stratum Z ⊂ X − U
and inclusion j : Z ↪→ X,we have Hk(j∗i!∗S∗) = 0 for k ≥ P (Z) and Hk(j!i!∗S∗) = 0 for

k ≤ P (Z). We refer the reader to [5, Section 1.4] or [18, Section 5.2] for the precise definition

of the functor i!∗.

In particular, suppose we let U = X − Xn−1, that S∗ is just the local system G, and

that p̄ is a general perversity on X. The sheaf G is certainly P -perverse on U with respect

to the perversity P (U) = 0. Now let P (Z) = p̄(Z) + 1. It follows that for each singular

stratum inclusion j : Z ↪→ X, we have Hk(j∗i!∗G) = 0 for k > p̄(Z) and Hk(j!i!∗G) = 0
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for k ≤ p̄(Z) + 1. In the presence of the first condition, the second condition is equivalent

to the attachment map at the stratum Z being an isomorphism up through degree p̄(Z);

see [7, page 87]. But according to the axioms AX1, these conditions are satisfied by the

perversity p̄ Deligne sheaf, which is also easily seen to be P -perverse. Thus, since i!∗G is the

unique extension of G with these properties, i!∗G is none other than the Deligne sheaf (up to

quasi-isomorphism). Thus we can also think of the generalized Deligne process as a means

to provide a concrete realization of i!∗G (which is defined quite abstractly and axiomatically

in [5]).

4 Constructibility and duality

Having established the equivalence in the realm of perverse sheaves between generalized

Deligne sheaves and intermediate extensions of coefficient systems, constructibility and dual-

ity results follow (at least with field coefficients) from the abstract perverse sheaf machinery

of [5]. However, we will provide (at least a sketch of) more direct proofs in the spirit of

Goresky-MacPherson [29] and Borel [7].

4.1 Constructibility

We refer to [7, Section V.3] for the definitions of X-clc (X-cohomologically locally constant),

X-cc (X-cohomologically constructible), and cc (cohomologically constructible), where X

refers to the stratification of X. These concepts are used briefly in the proof of Theorem

4.3, below, so the following proposition is worth having, but overall these concepts play a

minor role here, so we choose not to go into too much detail. We assume that the coefficient

system G on X −Xn−1 is a system of finitely-generated R-modules for a Noetherian ring R

of finite cohomological dimension.

Proposition 4.1. Any sheaf satisfying AX1p̄,X,G with respect to the general perversity p̄ is

constructible. More particularly, it is X-clc and X-cc with respect to the given stratification

X of X, and it is cc.

Sketch of proof. This follows by induction over the strata just as for the traditional case

(e.g. [7, Proposition 3.12]), which relies nowhere on the particular form of the perversity.

We refer the reader there for thorough details. We simply note that, just as in that proof,

it suffices for us, by Proposition 3.7 and 3.8, to consider only the Deligne sheaves Q∗, and

then it follows by general sheaf theory and the properties of the pseudomanifold X that the

functor Rik∗ preserves the property of being X-cc [7, Corollary V.3.11.iii]. Similarly, it is

not hard to see that being X-cc is preserved by our generalized truncation functors, using

Lemma 3.3.

4.2 Duality

In this section, we show that the generalized Deligne sheaves with complementary general

perversities are Verdier dual to each other. This implies Goresky-MacPherson duality on
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intersection homology for complementary general perversities. In fact, we will consider the

more general duality with coefficients in a principal ideal domain considered by Goresky and

Siegel [30]. For this, we need a definition.

Definition 4.2. Let R be a PID, and let E be a local coefficient system on X − Xn−1 of

finitely-generated free modules over R. We say that the pseudomanifold X is locally (p̄,E)-

torsion free if for all singular strata Z and each x ∈ Z, I p̄Hc
codim(Z)−2−p̄(Z)(Lx; E0) is R-torsion

free, where Lx is the link of x in X.

This definition is a direct analogue of the definition of locally p̄-torsion free in Goresky-

Siegel [30]. Note that any X is automatically locally (p̄,E)-torsion free if R is a field.

Let Q∗p̄(E) be the generalized Deligne sheaf of perversity p̄ with coefficients E . Let t̄ be

the top perversity, t̄(Z) = codim(Z)− 2. Let DY denote the Verdier dualizing functor over

the space Y - see [7, 29, 2] for details. Recall also that A∗[n] denotes the shifted complex

such that (A∗[n])i = Ai+n.

Theorem 4.3. Let p̄ and q̄ be general perversities such that p̄ + q̄ = t̄, and let X be an n-

dimensional stratified pseudomanifold that is locally (p̄, E)-torsion free. Let U1 = X −Xn−1.

Then DXQ∗p̄(E)[−n] ∼= Q∗q̄(DU1E [−n]) in the derived category of sheaves on X.

This is the usual duality statement in intersection homology (see [7, Theorem V.9.8]).

The principal novelty is the generality of the perversities and the acceptability of codimension

one strata.

Proof. The standard proof for GM perversities, given in [29] and [7] proceeds by showing that

DXQ∗p̄(E)[−n] satisfies the axioms AX2q̄,X,DU1
E[−n], which, when p̄ and q̄ are GM perversities,

are equivalent to AX1q̄,X,DU1
E[−n]. However, when p̄ and q̄ are general perversities, the axioms

AX2 are no longer well-formulated. In particular, when p̄ is a GM perversity, AX2 utilizes

the notion p̄−1(j) = min{c | p̄(c) ≥ j} and is formulated in terms of conditions such as

“dim supp(HjS∗) ≤ n − p̄−1(j) for all j > 0.” But when we allow p̄ to take different

values on different strata of the same dimension, it is no longer clear that such an equivalent

formulation of these axioms is possible. Thus instead we will show that DXQ∗p̄(E)[−n]

satisfies the axioms AX1q̄,X,DU1
E[−n], which suffice by Propositions 3.8. This will be similar

to the proof of our main theorem of [23], though simpler since the context there called for

much more general spaces.

Let Ẽ = E ⊗ O, where O is the orientation sheaf on X − Xn−1. Using Lemma 2.4 and

Corollary 3.9 and noting that if p̄ + q̄ = t̄, then p̌ + q̌ = t̄, where p̌, q̌ are the efficient

perversities associated to p̄, q̄, it suffices to prove the theorem when p̄ and q̄ are efficient. By

Propositions 3.7 and 3.8, we are free to interpret Q∗p̄(E) as either the generalized Deligne

sheaf or the sheaf of intersection chains I p̄S∗(Ẽ0), since we have seen that these sheaves are

quasi-isomorphic, making them equivalent in the derived category in which we work. It will

be useful to be able to use both points of view. Since Q∗p̄(E) is X-cc and cc by Proposition 4.1,

DXQ∗p̄(E) is also X-cc and cc by [7, Corollary V.8.7 and Proposition V.3.10.e]. In particular,

DXQ∗p̄(E) is X-clc, which is part of the definition of X-cc (see [7, Section V.3]).
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As we work in the derive category, we are free to replace the condition S i = 0 for i < 0

in axiom (1) with the condition H∗(S∗) = 0 for i < 0 - see [7, Remark V.2.7.b].

The coefficient part of axiom (1) follows by the usual arguments: Let U1 = X − Xn−1,

and let i : U1 ↪→ X be the inclusion. Since this is an inclusion of an open set i∗ = i! [2, p. 62],

and, so i∗DX = i!DX = DU1i
∗ [2, Proposition 3.4.5]. Thus the restriction of DXQ∗p̄(E)[−n]

to U1 is (DU1i
∗Q∗p̄(E))[−n], which is quasi-isomorphic to (DU1E)[−n], using axiom (1) for

Q∗p̄(E).

Next, let x ∈ Z ⊂ Xn−k − Xn−k−1 and consider H∗(D∗X(I p̄S∗(Ẽ0))x[−n]), which is

isomorphic to lim−→x∈U H∗−n(U ;D∗x(I p̄S∗(Ẽ0))). For any sheaf complexA∗ over R in the derived

category Db(X) and any open set U ∈ X, we have an exact sequence

0→ Ext(Hi+1
c (U ;A∗), R)→ H−i(U ;DXA∗)→ Hom(Hi

c(U ;A∗), R)→ 0 (1)

(see [2, Section 3.4]). Thus taking A∗ = I p̄S∗(Ẽ0) and shifting indices, there is an exact

sequence

0→ Ext(IHc
∗−1(U ; Ẽ0), R)→ H∗−n(U ;D∗(I p̄S∗(Ẽ0)))→ Hom(IHc

∗(U ; Ẽ0), R)→ 0.

Since the distinguished neighborhoods of any point in a pseudomanifold constitute a cofinal

system of neighborhoods, we may assume that U ∼= Rn−k× cLk−1. Now, we may employ the

the Künneth formula with Rn−k and the cone formula of Proposition 2.1 to conclude that

IHc
∗(U ; E) = 0 for ∗ > k−2− p̄(Z) = k−2− (k−2− q̄(Z)) = q̄(Z). Furthermore, since X is

locally (p̄,E)-torsion free, Ext(IHc
k−2−p̄(Z)(U ; E), R) is also 0, so H∗−n(U ;D∗(I p̄S∗(Ẽ0))) = 0

for ∗ > q̄(Z). It is also clear that these groups must be 0 for ∗ < 0. This completes the

demonstration of axioms (1) and (2).

Finally, we must verify the attaching axiom, axiom (3). If x ∈ Z, this axiom is equivalent

to the condition that H i(S∗)x ∼= lim−→x∈U Hi(U −U ∩Z;S∗) for all i ≤ p̄(Z) (see [7, V.1.7], [2,

Section 4.1.4]), where U runs over all open neighborhoods of x. Again, we can limit ourselves

to a cofinal system of distinguished neighborhoods, and it suffices to find then isomorphisms

Hj(U ;D∗(I p̄S∗(Ẽ0))[−n]) → Hj(U − U ∩ Z;D∗(I p̄S∗(Ẽ0))[−n]) that are functorial in that

they commute with further restrictions U → V . By [23, Appendix], there is a map of short

exact sequences
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0 0

Ext(Hn−j+1
c (U ; I p̄S(Ẽ0)), R)

?
- Ext(Hn−j+1

c (U − U ∩ Z; I p̄S∗(Ẽ0)), R)
?

Hj(U ;D∗X(I p̄S∗(Ẽ0))[−n])
?

- Hj(U − U ∩ Z;D∗X(I p̄S∗(Ẽ0))[−n])
?

Hom(Hn−j
c (U ; I p̄S(Ẽ0)), R)

?
- Hom(Hn−j

c (U − U ∩ Z; I p̄S∗(Ẽ0)), R)
?

0
?

0
?

,

where the maps of the top and bottom terms are induced by the inclusion maps I p̄Hc
j (U −

U ∩Xn−k; Ẽ0)→ I p̄Hc
j (U ; Ẽ0). Again since U ∼= Rn−k× cL, we can use the Künneth theorem

with Rn−k to obtain that Hn−∗
c (U − U ∩ Z; I p̄S(Ẽ0)) ∼= I p̄Hc

∗(U − U ∩ Z; Ẽ0) is isomorphic

to I p̄Hc
∗(L; Ẽ0) and Hn−∗

c (U ; I p̄S(Ẽ0)) ∼= I p̄Hc
∗(U ; Ẽ0) ∼= I p̄Hc

∗(cL; Ẽ0). By the cone formula,

the inclusion I p̄Hc
∗(L; Ẽ0) → I p̄Hc

∗(cL; Ẽ0) is an isomorphism for ∗ < k − 1 − p̄(Z). Thus,

by the five lemma, Hj(U ;DX(I p̄S(Ẽ0))[−n]) → Hj(U − U ∩ Z;DX(I p̄S∗(Ẽ0))[−n]) is an

isomorphism for j ≤ q̄(Z). Since this computation is functorial with respect to restrictions,

we obtain the desired isomorphism in the limits.

Thus D∗(I p̄S∗(Ẽ))[−n] satisfies the axioms AX1q̄,X(D∗U1
(E)[−n]), which completes the

proof of the theorem.

Corollary 4.4. Let X be a locally (p̄,E)-torsion free n-dimensional stratified pseudomanifold,

possibly with codimension one strata, where E is a local coefficient system on X −Xn−1 of

finitely-generated free modules over the principal ideal domain R. Let O be the orientation

sheaf of the n-manifold X −Xn−1. Let p̄ and q̄ be dual efficient perversities (p̄(Z) + q̄(Z) =

codim(Z)−2). Let TH∗ and FH∗ denote, respectively, the R-torsion subgroup and R-torsion

free quotient group of IH∗, and let Q(R) denote the field of fractions of R. Then,

1. Suppose that Hom(T p̄Hc
i−1(X; E0), Q(R)/R) is a torsion R-module (in particular, if

T p̄Hc
i−1(X; E0) is finitely generated). Then

Hom(F p̄Hc
i (X; E0), R) ∼= F q̄H∞n−i(X; Hom(E , RX−Xn−1)0 ⊗O0)
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and

Hom(T p̄Hc
i−1(X; E0), Q(R)/R) ∼= T q̄H∞n−i(X; Hom(E , RX−Xn−1)0 ⊗O0).

2. If E is a local coefficient system on X−Xn−1 of finitely-generated F-modules for a field

F, then

Hom(I p̄Hc
n−i(X; E0); F) ∼= I q̄H∞i (X; Hom(E ,FX−Xn−1)0 ⊗O0).

3. When X is compact and orientable, we obtain as a special case the simpler, but more

familiar, special case

Hom(I p̄Hi(X; Q0),Q) ∼= I q̄Hn−i(X; Q0).

If, in addition, X is locally (p̄,Z)-torsion free, we have

Hom(F p̄Hi(X; Z0),Z) ∼= F q̄Hn−i(X; Z0) and Hom(T p̄Hi(X; Z0),Q/Z) ∼= T q̄Hn−i(X; Z0).

Proof. These statements follow direction from the theorem, using the universal coefficient

short exact sequence (1). See [7, 30, 23] for more details.

Intersection Lefschetz duality. These duality theorems imply easy proofs of Lefschetz-

type duality theorems on the intersection homology of pseudomanifolds with boundary. The

proof is reminiscent of the standard proof that intersection homology duality implies classical

Lefschetz duality on manifolds.

Let X be a compact oriented n-pseudomanifold with collared boundary ∂X (we leave

the non-compact and/or non-orientable cases to the reader). In other words, X − ∂X is a

pseudomanifold as defined above, ∂X is an n−1 pseudomanifold, and there is a neighborhood

of ∂X in X stratified homeomorphic to ∂X × [0, 1), where [0, 1) is unstratified. We do

not consider ∂X to be a codimension one stratum of X, but rather we let it inherit its

stratification from that ofX. This is the traditional convention for discussing pseudomanifold

bordism; see e.g. Siegel [49]. Then our duality theorems can be interpreted to give a duality

between I p̄H∗(X) and I q̄H∗(X, ∂X) (where “duality” is interpreted as providing a set of

results akin to those in Corollary 4.4, i.e. a set of intersection pairings and linking pairings

between the relevant torsion subgroups and torsion-free quotients across the appropriate

dimensions, provided X is appropriately locally torsion-free).

To see this, let X̂ = X ∪∂X c̄∂X, the space obtained by adjoining to X a cone on the

boundary (or, equivalently, pinching the boundary to a point). Let v denote the vertex

of the cone point. Let p̄, q̄ be dual general perversities on X, and let p̄−, q̄+ be the dual

perversities on X̂ such that p̄−(Z) = p̄(Z) and q̄+(Z) = q̄(Z) for each stratum Z of X,

p̄−({v}) = −2, and q̄+({v}) = n. Our duality theorems provide a duality, in the above

sense, between I p̄−H∗(X̂) and I q̄+H∗(X̂). But now we simply observe that I p̄−H∗(X̂) ∼=
I p̄−H∗(X̂ − {v}) ∼= I p̄H∗(X), because the perversity condition at v ensures that no singular

simplex of a relevant dimension may intersect v. On the other hand, since I q̄+H∗(c∂X) = 0

by Proposition 2.1, I q̄+H∗(X̂) ∼= I q̄+H∗(X̂, c̄∂X) by the long exact sequence of the pair, but

I q̄+H∗(X̂, c∂X) ∼= I q̄+H∗(X, ∂X) ∼= I q̄H∗(X, ∂X) by excision.
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Classical Lefschetz duality results via codimension one strata. Another interesting

feature of our extended duality theorems is that they provide a proof of the Lefschetz duality

theorem for manifolds with boundary M without needing to employ the added vertex trick

of the preceding paragraphs. This is not a direct feature of traditional intersection homology

theory. More generally, we obtain duality results of Lefschetz type for pseudomanifolds with

codimension one strata; these are not available in traditional intersection homology.

Let us see how this works for a manifold with boundary. Let M be a compact oriented n-

manifold with collared boundary, and let (M,∂M) provide the stratification. For simplicity,

assume that ∂M is connected, though we will loosen this condition in a moment. Then there

are only two efficient perversity possibilities for ∂M , say p̄(∂M) = 0 and q̄(∂M) = −1, and

these perversities are dual because −1 = p̄(∂M) + q̄(∂M) = t̄(∂M) = codim(∂M)− 2 = −1.

Now we claim that the dual intersection homology groups I q̄H∗(M ;R0) and I p̄H∗(M ;R0)

are respectively isomorphic to H∗(M ;R) and H∗(M,∂M ;R).

First, we note that, by the proof of Lemma 2.4, I q̄C∗(M ;R0) is quasi-isomorphic to

I q̄
′
C∗(M ;R0), where q̄′(∂M) = m for any negative integer m. It follows then easily from the

definition of allowability that I q̄C∗(M ;R0) is quasi-isomorphic to Cc
∗(M − ∂M ;R), which is

quasi-isomorphic to C∗(M ;R) by homotopy equivalence. Secondly, it also follows Lemma

2.4 that I p̄C∗(M ;R0) is quasi-isomorphic to I p̄
′
C∗(M ;R0), where p̄′(∂M) is any non-negative

integer. In particular, taking p̄′(∂M) = 1, all chains become allowable, and we see that

I p̄
′
C∗(M ;R0) ∼= C∗(M ;R0) ∼= C∗(M,∂M ;R). This last isomorphism is discussed further in

Section 5.1.

Hence the duality of intersection homology becomes the dual pairing between H∗(M ;R)

and H∗(M,∂M ;R).

It is not hard to generalize this reasoning to see that we can also obtain the Lefschetz

pairing in its stronger form: Suppose M is a compact oriented n-manifold with boundary

M = M1∪M2, where each Mi is a union of connected components of the boundary. Suppose

that p̄(Z) = 0 if Z is a connected component of M1 and p̄(Z) = −1 if Z is a connected

component of M2. Let q̄ = t̄− p̄. Then the duality between I p̄Hi(M ;R0) and I q̄Hj(M ;R0)

translates into the duality between H∗(M,M1;R) and H∗(M ;M2;R).

Remark 4.5. An anonymous referee has points pointed out an alternative proof of Lefschetz

duality for intersection homology. The author is unaware of this proof in the literature, so

it is reproduced here for the interested reader:8

Let (Xn, ∂X) be a compact oriented pseudomanifold with boundary, i : X−∂X ⊂
X, j : ∂X ⊂ X. For S∗ a sheaf complex on X, the distinguished triangle

i!i
∗S∗ → S∗ → Rj∗j

∗S∗ +1−→

induces on hypercohomology the exact sequence of the pair (X, ∂X) with coeffi-

cients in S∗:

· · ·Hk(X, ∂X;S∗)→ Hk(X;S∗)→ Hk(∂X;S∗)→ Hk+1(X, ∂X;S∗) · · · .
8We have made some changes to notation for consistency with the present paper, but otherwise we quote

directly.
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Let I p̄C∗ and I q̄C∗ be complementary [perversity] intersection chain sheaves on

the interior of X − ∂X. Setting S∗p̄ = Ri∗I p̄C∗ and S∗q̄ = Ri∗I q̄C∗, we get

Hk(X, ∂X;S∗p̄ ) = Hk(i!i
∗S∗p̄ )

= Hk(i!I p̄C∗)
= Hk(i!DI

q̄C∗[−n])

= Hk−n(D(i∗I q̄C∗))
= Hom(Hn−k(X;S∗q̄ ),Q),

which is the desired Poincaré-Lefschetz result.

4.3 Sheaf pairings

In this section, we present the following theorems.

Theorem 4.6. Given a pairing of local systems m1 : E ⊗ F → G on X −Xn−1 and general

perversities such that p̄(Z) + q̄(Z) ≤ r̄(Z) for all singular strata Z, then in the bounded

derived category Db(X), there is a unique morphism m : Q∗p̄(E∗)
L
⊗ Q∗q̄(F) → Q∗r̄(G) that

restricts to m1 on X − Xn−1. Furthermore, if r̄ ≤ t̄ and G = O, the orientation sheaf of

X −Xn−1, then there exists a pairing m : Q∗p̄(E∗)
L
⊗Q∗q̄(F) → D∗X [−n] that restricts to m1

on X −Xn−1, where D∗X [−n] is the shift of the Verdier dualizing complex on X.

Theorem 4.7. If q̄ = t̄−p̄, then the pairing on intersection homology induced by the pairings

of Theorem 4.6 coincide with those of Corollary 4.4.

Remark 4.8. Note that we do not require the perversities in these theorems to be efficient,

and even if p̄ and q̄ are efficient, p̄+ q̄ may not be. Of course in the statements we can always

replace, for example, Q∗r̄ by Q∗ř, using Corollary 3.9.

We will explain in Remark 4.10 why we must have r̄ ≤ t̄ in the second statement of

Theorem 4.6.

Once again, the details of the proofs are mostly those that can be found already in

Chapter V.9.C of Borel’s book [7]. In this case, we will leave it to the reader to verify

that Borel’s treatment holds in our context. We simply note that the crucial point of

generalization is the following modification to [7, Lemma V.9.1].

Lemma 4.9. Let Y be a topological space and A∗ ∈ D(Y ), the derived category of sheaves

on Y . Let F be a locally-finite collection of subsets of Y , and let P be a function F → Z.

Suppose that the natural inclusion τF
≤PA∗ ↪→ A∗ is a quasi-isomorphism. Then,

1. for any B∗ ∈ D(Y ), the natural homomorphism

MorD(Y )(A∗, τF
≤PB

∗)→ MorD(Y )(A∗,B∗)

is an isomorphism, and
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2. if U = Y − |F| is an open subset of Y and i : U ↪→ Y is the inclusion, then for any

B∗ ∈ D(Y ),

MorD(Y )(A∗, τF
≤PRi∗B

∗)→ MorD(Y )(i
∗A∗,B∗)

is an isomorphism.

Proof. The proof is the same as that of [7, Lemma V.9.1], utilizing the properties of τF
≤P in

place of those of the standard truncation.

As in [7], one used the lemma to extend the relevant morphisms by induction and uniquely

from the coefficient pairings on X −Xn−1 up to the full pairings on X.

Remark 4.10. In order for these extension arguments to work, the hypotheses of Lemma 4.9

must be satisfied in the appropriate contexts. The reason that we must have r̄ ≤ t̄ in the

second statement of Theorem 4.6 is that we cannot apply Lemma 4.9 when p̄ + q̄ > t̄ and

the desired codomain is D∗X [−n].

In slightly more detail, the idea of the proof of Theorem 4.6 is to show that on a given

Uk+1 = X −Xn−k−1, (Q∗p̄
L
⊗Q∗q̄)|Uk+1

will be quasi-isomorphic to τ
Xn−k

≤r̄ (Q∗p̄
L
⊗Q∗q̄)Uk+1

for any

r̄ ≥ p̄ + q̄. Of course we also have Q∗r̄|Uk+1
= τ

Xn−k

≤r̄ Rik∗Q∗r̄|Uk
by the definition of Q∗. So

an extension argument can be made using the lemma. However, by [7, Lemma V.9.3], on

Uk+1, D∗X [−n]|Uk+1
is only quasi-isomorphic to Rik∗D

∗
X [−n]Uk

up to degree k− 2 = t̄(Xn−k).

Hence if p̄+ q̄ > t̄, the extension argument will not work.

At the level of chains, the issue is that for any p̄ ≤ t̄, we know from [22, Proposition

2.1] that I p̄C∗(X;R0) is isomorphic to I p̄C∗(X;R), which is a subgroup of C∗(X;R), whose

homology groups, up to the proper re-indexing, are the cohomology groups of DX [−n],

assuming X is oriented. So, there is a well-defined map I p̄C∗(X;R0)→ C∗(X;R). However,

if p̄(Z) > t̄(Z) for any singular stratum Z, then we will not necessarily have an isomorphism

from I p̄C∗(X;R0) to I p̄C∗(X;R), and hence no obvious chain map I p̄C∗(X;R0)→ C∗(X;R),

only a map I p̄C∗(X;R0)→ C∗(X;R0).

5 Intersection pairings on piecewise linear pseudoman-

ifolds

In this final section, we look at the intersection pairing of chains on a piecewise linear (PL)

pseudomanifold and see how the classical Goresky-MacPherson pairing of [28] and the more

general pairings of [25] extend to general perversities.

Throughout this section, X will be a compact PL pseudomanifold, possibly with codi-

mension one strata. In particular, this means that X possesses a family of triangulations

compatible with the stratification in the sense that each Xk will be a subcomplex of any

triangulation. More details on PL pseudomanifolds can be found in [7, Chapters I,II]. In

this section, we will consider only the PL chain complexes.
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5.1 Some basics concerning PL chains and stratified coefficients

Recall that the PL chain complex Cc
∗(X) is defined to be lim−→Cc,T

∗ (X), where Cc,T
∗ (X) is

the simplicial chain complex based on the triangulation T and the limit is taken over all

compatible triangulations of X. In particular, every PL chain can be described in a specific

triangulation. This definition generalizes in the obvious way to closed supports to yield

C∞∗ (X).

We can also extend the PL chain complex to include stratified coefficient systems G0. In

fact, we observe that any simplex σ of a triangulation is either completely contained in Xn−1,

in which case it inherits an automatic 0 coefficient, or it intersects Xn−1 only in its boundary,

in which case a unique coefficient lift can be assigned to σ by determining what happens

at one interior point. Furthermore, the boundary of the simplex with its coefficient is well-

defined - any boundary faces in Xn−1 vanish due to the 0 coefficient strata and the other faces

inherit their coefficients from σ. Thus if X is a PL pseudomanifold, it is possible to define

the simplicial chain complex C∗(X;G0), as well as the subcomplexes I p̄C∗(X;G0) for any

general perversity. These are defined precisely as above in Section 2, though the allowability

condition for a PL i-simplex σ can be simplified to dim(σ ∩ Z) ≤ i− codim(Z) + p̄(Z).

We form the subcomplexes and quotient complexes C∗(U ;G0) and C∗(X,U ;G0) in the

obvious way. We generally continue to use G0 also to denote the restriction of this coefficient

system to subsets. If ξ is a chain in Ci(X;G0) represented by a chain in CT
i (X;G0) for some

triangulation T , we let the support |ξ| be the union of all i-simplices σ of T such that the

coefficient of σ in ξ is not identically 0.

Notice that in the PL setting we obtain for any perversity the nice feature we observed

previously in Section 2.3 for efficient perversities: the coefficient of any i-simplex σ is de-

fined by the lift of a single point σ−1(X − Xn−1), which includes the entire interior of ∆i.

A useful consequence of this is that if we use constant coefficients on X − Xn−1, then we

have C∗(X;G0) ∼= C∗(X,X
n−1;G), where the isomorphism assigns to any gσ ∈ C∗(X;G0)

such that g is not identically 0 the obvious extension of g to the constant system G on X;

conversely, any gσ + C∗(X
n−1;G) ∈ C∗(X,X

n−1;G) for which |σ| 6⊂ Xn−1 determines an

element of C∗(X;G0) by restricting the coefficient lift to σ−1(X − Xn−1). The homomor-

phisms thus determined are obviously mutual inverses and encompass all generators. Thus,

we may think of I p̄C∗(X;G0) ⊂ C∗(X;G0) as being a subcomplex of C∗(X,X
n−1;G) when

it is useful to do so.

Pursuing this idea slightly further, there is also a natural homomorphism, though it is not

a chain map, ρ : C∗(X;G0)→ C∗(X;G). We define ρ as the composition of the isomorphism

C∗(X;G0) ∼= C∗(X,X
n−1;G) with the standard splitting C∗(X,X

n−1;G) → C∗(X;G) that

takes gσ + C∗(X
n−1;G) ∈ C∗(X,X

n−1;G) such that |σ| 6⊂ Xn−1 to gσ ∈ C∗(X;G). This

assignment is clearly additive, yielding a homomorphism. We observe that |ξ| = |ρ(ξ)|.
However, it is not necessarily true that |∂ρ(ξ)| = |ρ(∂ξ)|; for example, if the boundary of

ρ(ξ) is in Xn−1, then we might have ∅ 6= |∂ρ(ξ)| ⊂ Xn−1 but ρ(∂ξ) = ρ(0) = 0. Thus ρ will

not in general be a chain map.

Also, notice that |ρ(ξ)| ∩ (X −Xn−1) = |ξ| ∩ (X −Xn−1), and |∂ρ(ξ)| ∩ (X −Xn−1) =

|ρ(∂ξ)| ∩ (X −Xn−1) = |∂ξ| ∩ (X −Xn−1).
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To simplify notation below, we will often denote ρ(ξ) by ξ̄.

The correspondence between chains and homology. Given closed PL subspaces A ⊃
B such that dim(A) = i, dim(B) < i, it is well-known that there is a bijection between

Hi(A,B;G) and the set of chains ξ ∈ C∞∗ (X;G) such that |ξ| ⊂ A and |∂ξ| ⊂ B (see

[31, 28, 42]). We observe here a relative version of this phenomenon that includes stratified

local coefficients:

Lemma 5.1. Suppose that A ⊃ B are closed PL subspaces of X such that dim(A − A ∩
Xn−1) ≤ i and dim(B−B∩Xn−1) ≤ i−1. Let Â denote the closure of A−A∩Xn−1 in X (or,

equivalently, the union of all simplices σ in a triangulation of A such that σ∩(X−Xn−1) 6= ∅)
and similarly for B. Then there is a bijection between Hi(A,B;G0) ∼= Hi(Â, B̂;G0) and the

set of chains ξ ∈ Ci(X;G0) such that |ξ| ⊂ Â and |∂ξ| ⊂ B̂. Furthermore, if G is a

constant coefficient system, then there is a further bijection to Hi(A∪Xn−1, B ∪Xn−1;G) ∼=
Hi(A,B ∪ (A ∩Xn−1);G) ∼= Hi(Â, B̂ ∪ (Â ∩Xn−1);G).

Proof. The isomorphism Hi(A,B;G0) ∼= Hi(Â, B̂;G0) is immediate because simplices sup-

ported in Xn−1 must carry a 0 coefficient. The isomorphisms Hi(A∪Xn−1, B ∪Xn−1;G) ∼=
Hi(A,B ∪ (A ∩Xn−1);G) ∼= Hi(Â, B̂ ∪ (Â ∩Xn−1);G) are by excision. Furthermore, for a

constant coefficient system G, there is an evident isomorphism C∗(A∪Xn−1, B∪Xn−1;G) ∼=
C∗(A,B;G0).

Now we slightly generalize an argument of McClure [42, Lemma 4.1]: Hi(Â, B̂;G0) is

the ith homology group of C∗ = C∗(Â;G0)/C∗(B̂;G0), which is the cycles of Ci modulo the

boundaries of Ci. But the group of cycles of Ci = Ci(Â;G0)/Ci(B̂;G0) consists precisely of

those chains of C∗(X;G0) that are supported in Â and whose boundaries are contained in

B̂. Note that any piece of the boundary that would be contained in Xn−1 vanishes due to

the coefficient system. But the subgroup of boundaries in Ci is ∂Ci+1(A;G0) + Ci(B̂;G0),

which is zero due to the dimension hypotheses and again the fact that all chains supported

in Xn−1 vanish.

Remark 5.2. In the situation of the preceding lemma and assuming constant coefficients G,

note that if ξ is a chain in Ci(X;G0) corresponding to a certain element of Hi(Â, B̂ ∪ (Â ∩
Xn−1);G), then the element of Ci(X;G) that traditionally corresponds to this homology

element is precisely ρ(ξ) = ξ̄.

5.2 The Goresky-MacPherson pairing

Now, we generalize to general perversities the Goresky-MacPherson intersection pairing of

[28]. For simplicity, we start with constant coefficients and an oriented pseudomanifold. Let

Xn be a compact oriented piecewise-linear pseudomanifold, possibly with codimension one

strata. C∗(X) and I p̄C∗(X) denote complexes of PL chains over a fixed coefficient ring R.

Let us first recall the intersection pairing for GM perversities p̄, q̄ such that p̄+ q̄ ≤ r̄ ≤ t̄.

Suppose x ∈ I p̄Ci(X;R) and y ∈ I q̄Cj(X;R) are two chains such that the pairs (|x|, |y|),
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(|∂x|, |y|), and (|x|, |∂y|) are each pairs of chains in stratified general position. Recall that |x|
is the support of x, and that two subspaces A and B of X are in stratified general position

if A∩Z and B ∩Z are in general position in Z for each stratum Z, regular or singular. We

take the intersection product of x and y, following the procedure in [28] and generalized in

[25].

The chains x and y can be represented by homology classesHi(|x|, |∂x|;R) andHj(|y|, |∂y|;R)

(see [28, 7]). Let J = |∂x|∪|∂y|∪Xn−1. Then the Goresky-MacPherson intersection product

x t y is defined by first applying the following composition (all groups have R coefficients):

Hi(|x|, |∂x|)×Hj(|y|, |∂y|)

Hi(|x|, |x| ∩ J)×Hj(|y|, |y| ∩ J)
?

Hi(|x| ∪ J, J)×Hj(|y| ∪ J, J)
?

Hn−i(X − J,X − (|x| ∪ J))×Hn−j(X − J,X − (|y| ∪ J))

(−1)n(n−i)(· ∩ [X])−1 × (−1)n(n−j)(· ∩ [X])−1

?

H2n−i−j(X − J,X − ((|x| ∩ |y|) ∪ J))

∪

?

Hi+j−n((|x| ∩ |y|) ∪ J, J)

(−1)n(2n−i−j)(· ∩ [X])

?

Hi+j−n(|x| ∩ |y|, |x| ∩ |y| ∩ J).

∼=

?

(2)

Here the last isomorphism is by excision, [X] is the fundamental orientation class of X,

and ∩[X] is the cap product inducing the Whitehead-Dold-Goresky-MacPherson duality

isomorphism (see [28, Appendix]). The signs here were not present in the original Goresky-

MacPherson paper [28], but an argument is made in [25] that these signs are useful in order

for the duality to be a chain map in the appropriately graded sense.
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The last step in the Goresky-MacPherson intersection product is to use the long exact

sequence of the triple, excision, and the fact that dim(|x|∩ |y|∩Xn−1) ≤ i+ j−n−2, which

follows from the perversity conditions and the stratified general position, to conclude that

Hi+j−n(|x| ∩ |y|, |x| ∩ |y| ∩ |J |) ∼= Hi+j−n(|x| ∩ |y|, (|∂x| ∩ |y|)∪ (|x| ∩ |∂y|)), which represents

a chain, the intersection product x t y, in Ci+j−n(X;R). In particular, the third term in the

exact sequence of (|x| ∩ |y|, |x| ∩ |y| ∩J, (|∂x| ∩ |y|)∪ (|x| ∩ |∂y|)) is isomorphic by excision to

H∗(|x|∩|y|∩Xn−1, ((|∂x|∩|y|)∪(|x|∩|∂y|))∩Xn−1), but if dim(|x|∩|y|∩Xn−1) ≤ i+j−n−2,

this term vanishes for ∗ > i+ j − n− 2, which is enough for the desired isomorphism.

The reason that dim(|x|∩ |y|∩Xn−1) ≤ i+ j−n−2 is that if p̄+ q̄ ≤ r̄ ≤ t̄, then for each

stratum Z, dim(|x| ∩Z) ≤ i− codim(Z) + p̄(Z) and dim(|y| ∩Z) ≤ j − codim(Z) + q̄(Z) so

that, if they are in stratified general position,

dim(|x| ∩ |y| ∩ Z) ≤ i− codim(Z) + p̄(Z) + j − codim(Z) + q̄(Z)− dim(Z)

= i+ j + p̄(Z) + q̄(Z)− codim(Z)− (codim(Z) + dim(Z))

≤ i+ j + t̄(Z)− codim(Z)− n
= i+ j + codim(Z)− 2− codim(Z)− n
= i+ j − 2− n.

Furthermore, by the same type of computations, we see that the simplices of x t y must

be r-allowable. Similarly, if (|∂x|, |y|) and (|x|, |∂y|) are in stratified general position, then

since ∂|x t y| ⊂ (|∂x| ∩ |y|) ∪ (|x| ∩ |∂y|), an analogous argument shows that ∂(x t y) is

allowable. Thus x t y ∈ I r̄C∗(X;R).

Now, suppose that p̄ and q̄ are general perversities, that x ∈ I p̄Ci(X;R0) and y ∈
I p̄Cj(X;R0). In order to apply the pairings, we first translate x, y to elements of C∗(X;R)

by considering ρ(x) = x̄ and ρ(y) = ȳ as defined above. We can then proceed as before

to translate x̄, ȳ into elements of Hi(|x̄|, |∂x̄|;R) and Hj(|ȳ|, |∂ȳ|;R) and then apply the

sequence of maps in diagram (2). The trouble is the last step, since in the general perversity

setting, it may no longer be true that dim(|x̄| ∩ |ȳ| ∩ Xn−1) ≤ i + j − n − 2. In addition,

∂x̄ may contain simplices in Xn−1 that do not occur in ∂x due to the stratified coefficient

system, which may also a priori cause some trouble.

However, letting again J = |∂x̄| ∪ |∂ȳ| ∪Xn−1, we do still obtain a well-defined homology

class in Hi+j−n(|x̄| ∩ |ȳ|, |x̄| ∩ |ȳ| ∩J) ∼= Hi+j−n(|x̄| ∩ |ȳ|, (|∂x̄| ∩ |ȳ|)∪ (|x̄| ∩ |∂ȳ|)∪ (|x̄| ∩ |ȳ| ∩
Xn−1)). Now, assume that the pairs (|x|, |y|), (|∂x|, |ȳ|), and (|x̄|, |∂y|) are all in stratified

general position. Then, applying computations such as those above,

dim((|x̄| ∩ |ȳ|) ∩ (X −Xn−1))

= dim((|x| ∩ |y|) ∩ (X −Xn−1))

≤ i+ j − n

and

dim(((|∂x̄| ∩ |ȳ|) ∪ (|x̄| ∩ |∂ȳ|) ∪ (|x̄| ∩ |ȳ| ∩Xn−1)) ∩ (X −Xn−1))

= dim(((|∂x̄| ∩ |ȳ|) ∪ (|x̄| ∩ |∂ȳ|)) ∩ (X −Xn−1))

= dim(((|∂x| ∩ |y|) ∪ (|x| ∩ |∂y|)) ∩ (X −Xn−1)) ≤ i+ j − n− 1.
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So by Lemma 5.1, our homology class corresponds to a chain in Ci+j−n(X;R0) ∼= Ci+j−n(X,Xn−1;R)

with support in the closure of |x̄| ∩ |ȳ| ∩ (X − Xn−1) = |x| ∩ |y| ∩ (X − Xn−1) and with

boundary supported in the closure of ((|∂x̄| ∩ |ȳ|) ∪ (|x̄| ∩ |∂ȳ|)) ∩ (X −Xn−1). This latter

closure is contained in (|∂x| ∩ |y|) ∪ (|x| ∩ |∂y|), where the boundary is taken in C∗(X;R0),

while the former is contained in |x| ∩ |y|.
Now, computations just like those above, applied to the pairs |x̄| ∩ |ȳ|, |∂x| ∩ |y|, and

|∂y| ∩ |x| allow us to conclude that this chain is in I r̄Ci+j−n(X;R0).

In summary, we have proven the following theorem:

Theorem 5.3. Let X be a compact oriented PL stratified n-pseudomanifold. Let p̄, q̄ be

general perversities. Let x ∈ I p̄C∗(X;R0), y ∈ I q̄C∗(X;R0) be such that the pairs (|x̄|, |ȳ|),

(|∂x|, |ȳ|), and (|x̄|, |∂y|) are in stratified general position. Then the Goresky-MacPherson

intersection pairing yields a well-defined chain x t y ∈ I r̄C∗(X;R0) for any r̄ ≥ p̄ + q̄.

Furthermore, if r̄ ≤ t̄, then x t y ∈ I r̄C∗(X;R).

The last statement uses the fact that I r̄C∗(X;R) ∼= I r̄C∗(X;R0) when r̄ ≤ t̄ - see

Section 2.2. Furthermore, using this identification, we see that this pairing reduces to the

usual Goresky-MacPherson pairing if p̄, q̄ are traditional with p̄+ q̄ ≤ t̄.

Local Coefficients. Theorem 5.3 can be generalized in the local coefficient/possibly non-

orientable case to the following:

Theorem 5.4. Let X be a compact PL n-pseudomanifold, let p̄, q̄ be general perversities, and

let E and F be local coefficient systems on X −Xn−1 over a principal ideal domain R with

a pairing E ⊗ F → G. Let O be the R orientation coefficient system on X −Xn−1. Let x ∈
I p̄C∗(X; E0), y ∈ I q̄C∗(X;O ⊗ F0) be such that the pairs (|x|, |y|), (|∂x|, |y|), and (|x|, |∂y|)
are in stratified general position. Then the Goresky-MacPherson intersection pairing extends

to yield a well-defined chain x t y ∈ I r̄C∗(X;G0) for any r̄ ≥ p̄+ q̄.

The arguments are mostly the same as those above, however we will need the following

version of the Whitehead-Dold-Goresky-MacPherson duality isomorphism.

Lemma 5.5. Suppose Xn−1 ⊂ D ⊂ C are closed PL subspaces of the compact, not nec-

essarily oriented, pseudomanifold Xn. Let G be a local coefficient system of R modules on

X − Xn−1, where R is a principal ideal domain. Let O be the local orientation system

with R coefficients on X − Xn−1. Then there is an isomorphism H i(X − D,X − C;G) →
Hn−i(C,D;O0⊗G0) that is induced by inclusions and cap product with the fundamental class

[XR] ∈ Hn(X;O0).

Note that since X −D ⊂ X −Xn−1, H i(X −D,X − C;G) is well-defined with no need

for stratified coefficients.

We will turn to the proof of the lemma in a moment. Assuming it for now, we show why

Theorem 5.4 holds.

Firstly, since we have local coefficient systems, we cannot represent x and y as elements

of the form H∗(A,B;R) but only as elements of the form H∗(A,B; Υ0), where A, B denote
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the supports of the relevant chains, ∗ = i or j, and Υ is one of E or O ⊗F , as appropriate.

However, there are nonetheless obvious inclusion morphismsHi(A,B; Υ0)→ Hi(A∪J, J ; Υ0).

Note that in this case we don’t even need to utilize x̄ or ȳ at all, so this also provides an

alternative approach to the discussion above.

Now, we can apply 5.5 to each term Lemma in place of the Whitehead-Dold-Goresky-

MacPherson duality of [28] to obtain cochains of the form H∗(X−B,X−A;O⊗Υ). The cup

product, using the pairing E ⊗F → G, gives us an element of H2n−i−j(X−J,X− (|x|∩ |y|∪
J);O⊗G), and then applying duality again gives an element of Hi+j−n((|x| ∩ |y|)∪J, J ;G0).

The excision isomorphism to Hi+j−n(|x| ∩ |y|, |x̄| ∩ |ȳ| ∩ J ;G0) applies as usual, and applying

Lemma 5.1, this corresponds to an element of Ci+j−n(X;G0), which we can again verify to

be an element of I r̄Ci+j−n(X;G0).

This yields Theorem 5.4.

Now we return to Lemma 5.5.

Sketch of proof. Assume X is triangulated as a complex K such that C, D, and each skeleton

are subcomplexes. If A is a subcomplex of K, let Ā denote the complement of the open first

derived neighborhood of A in the derived triangulation K ′. We first note that H i(X−D,X−
C;G) ∼= H i(D̄, C̄;G) by homotopy equivalences.

Now we use the standard simplicial duality arguments as in, e.g. [41, Chapter 5], which

generalize in evident ways to the local coefficient case. In particular, we can think of

Ci(D̄, C̄;G) as being generated by the i-cochains cσ,g that evaluate to 0 except on a sin-

gle i-simplex σ of K ′ supported in D̄ but not in C̄, which evaluates to an element g ∈ Gx,
where x is a point in σ. Since all such simplices are in the interior of the manifold X−Xn−1,

if we let z be a chain representing the orientation class [XR], then after passing to the second

derived subdivision, cσ,g∩z is represented by the dual block e(σ) to σ, carrying the coefficient

in O ⊗ G0 inherited from the evaluation of cσ,g and from the coefficient carried by z in a

neighborhood of σ (by working within a contractible neighborhood of σ, we can see that this

coefficient is well-defined). So ∩z takes the cochains of C∗(D̄, C̄;G) to the dual blocks (with

coefficients) of the simplices of D̄ not supported in C̄, and, as shown in [41], this is a chain

isomorphism to the dual block complex C̄n−∗(
¯̄C, ¯̄D;O⊗G0); we are free to use the stratified

coefficients G0 since we never get close enough to Xn−1 for the 0 system on it to matter. This

chain isomorphism induces an isomorphism H i(D̄, C̄;G)→ Hn−i(
¯̄C, ¯̄D;O⊗G0). If we do not

wish to think about dual blocks near the singular set Xn−1, we can alternatively think of

the pair ( ¯̄C, ¯̄D) as being the appropriate dual pair in the manifold double D̄∪−D̄ (with the

appropriately extended coefficient systems), but then the resulting relative homology group

is isomorphic by excisions to our Hn−i(
¯̄C, ¯̄D;O ⊗ G0) in X.

Finally, we note that ¯̄D strongly deformation retracts to D, and similarly for ¯̄C. Just as

for ordinary homology, it follows that H∗(
¯̄D;O ⊗ G0) ∼= H∗(D;O ⊗ G0) and similarly for C.

Thus by the five lemma, Hn−i(
¯̄C, ¯̄D;O ⊗ G0) ∼= Hn−i(C,D;O ⊗ G0).
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5.3 The pairing algebra

Having established the basic results on the intersection pairing in the previous section, most

of the results on the algebraic properties of intersection pairings developed in [25] go through

without much extra effort. We will state the main theorems.

First, we must recall some definitions from [25]. Let X(k) denote the product of k copies

of X, endowed with the product stratification. Let k̄ = {1, . . . , k}. If R : k̄ → k̄′ is any

map of sets, it induces a map R∗ : X(k′) → X(k) by R∗(x1, . . . , xk′) = (xR(1), . . . , xR(k)).

These are generalizations of the diagonal map x → (x, x), which is induced by the unique

map 2̄→ 1̄.

If A is a PL subset of X(k), we will say that A is in stratified general position with respect

to R∗ if for each stratum Z ⊂ Xd1 × · · · ×Xdk
of X(k) such that di = d` if R(i) = R(`), we

have

dim((R∗)−1(A ∩ Z)) ≤ dim(A ∩ Z) +
k′∑
i=1

dR−1(i) −
k∑
i=1

di. (3)

Note that the condition on the dis implies that dj = d` for any j, ` ∈ R−1(i) so that this

sum is well-defined.

In other words, A is in stratified general position with respect to R∗ if for each stratum Z

of X(k), A∩Z is in general position with respect to the map of manifolds from the stratum

containing (R∗)−1(Z) to Z. A PL chain is said to be in stratified general position if its

support is, and we write CR∗
∗ (X(k)) for the subcomplex of PL chains D of C∗(X(k)) such

that both D and ∂D are in stratified general position with respect to R∗. Similarly, we let

CR∗
∗ (X(k);R0) be those chains D such that |D| and |∂D| are in stratified general position.

For a differential graded complex C∗, S
mC∗ is the shifted complex with (SmC∗)i = Ci−m

and ∂SmC∗ = (−1)m∂C∗ . For a chain ξ, we define |Smξ| = |ξ|.
The product ε is the multilinear extension of the product that takes σ1 ⊗ σ2, where the

σi are oriented simplices, to a chain with support |σ1| × |σ2| and with appropriate orienta-

tion. This is a direct generalization of the standard simplicial cross product construction

(see e.g. [44]); we refer the reader to [42, Section 7] for details. With dim(X) = n, ε̄k :

S−nC∗(X)⊗ · · · ⊗ S−nC∗(X)→ S−knC∗(X(k)) is defined to be (−1)e2(n,...,n) times the com-

position S−knε̄ ◦Θ, where Θ is the appropriately signed chain isomorphism Θ : S−nC∗(X)⊗
· · · ⊗ S−nC∗(X) → S−nk(C∗(X(k))) (see [25, Remark 3.2]). Here e2(n, . . . , n) is the ele-

mentary symmetric polynomial of degree two on the k symbols n, . . . , n, so e2(n, . . . , n) =∑k
i=1

∑
j<i n

2. In other words, ε̄ is the composite

S−nC∗(X)⊗ · · · ⊗ S−nC∗(X)
Θ

- S−nk(C∗(X)⊗ · · · ⊗ C∗(Xk))

(−1)e2S−nkε
- S−nkC∗(X(k)).

ε and ε̄ are monomorphisms. Furthermore, ε̄ is a degree 0 chain map.

Unfortunately, all of this shifting and application of signs is necessary for the appropriate

pairings to be degree 0 chain maps.
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We note that this definition also determines a map ε̄ : S−nC∗(X,X
n−1)⊗· · ·⊗S−nC∗(X,Xn−1)→

S−nkC∗(X(k), X(k)nk−1), or, equivalently ε̄ : S−nC∗(X;R0)⊗· · ·⊗S−nC∗(X;R0)→ S−nkC∗(X(k);R0).

This is a well-defined monomorphism because |ε̄(σ1 ⊗ · · · ⊗ σk)| ⊂ (X(k))nk−1 if and only if

|σi| ⊂ Xn−1 for some at least one i.

Next, recall the following definition from [25], generalizing that of [42], of the complex of

chains in general position.

Definition 5.6. For k ≥ 2, let the domain Gk be the subcomplex of (S−nC∗(X;R))⊗k

consisting of elements D such that both ε̄(D) and ε̄(∂D) are in stratified general position

with respect to all generalized diagonal maps, i.e.

Gk =
⋂
k′<k

⋂
R:k̄�k̄′

ε̄−1(S−nkCR∗

∗ (X(k))).

It is shown in [25] that the inclusion Gk ↪→ (S−nC∗(X;R))⊗k is a quasi-isomorphism for

all k ≥ 1.

Furthermore, there are the intersection chain versions. If P = (p̄1, . . . , p̄k) is a collection

of GM perversities and GP
k = Gk ∩ (S−nIC p̄1

∗ (X)⊗ · · · ⊗ S−nIC p̄k
∗ (X)), then the inclusion

GP
k ↪→ S−nIC p̄1

∗ (X)⊗ · · · ⊗ S−nIC p̄k
∗ (X) is a quasi-isomorphism.

Here we will need also a relative version.

Definition 5.7. For k ≥ 2, let the domain Gk,0 be the subcomplex of (S−nC∗(X,X
n−1;G))⊗k

consisting of elements D such that both ε̄(D) and ε̄(∂D) are in stratified general position

with respect to all generalized diagonal maps, i.e.

Gk,0 =
⋂
k′<k

⋂
R:k̄�k̄′

ε̄−1(S−nkCR∗

∗ (X(k);R0)).

First, we should observe that Gk,0 is a well-defined chain complex. If x, y ∈ Gk,0, then

certainly −x ∈ Gk,0, as well at x+ y because the sum of chains in general position will also

be in general position. Furthermore, if D ∈ Gk,0, then it is built into the definition that ∂D

will also be in stratified general position, and of course ∂∂D = 0; thus ∂D ∈ Gk,0. So Gk,0

is a chain complex.

Similarly, we can define the intersection chain versions:

Definition 5.8. For k ≥ 2 and a sequence of general perversities P = (p̄1, . . . , p̄k), let the

domain GP
k,0 be the subcomplex of S−nI p̄1C∗(X;R0) ⊗ · · · ⊗ S−nI p̄kC∗(X;R0) consisting of

elements D such that both ε̄(D) and ε̄(∂D) are in stratified general position with respect to

all generalized diagonal maps, i.e.

GP
k,0 = Gk,0 ∩

(
S−nIC p̄1

∗ (X)⊗ · · · ⊗ S−nIC p̄k
∗ (X)

)
.

Then we have the following theorem.

Theorem 5.9. The inclusion Gk,0 ↪→ (S−nC∗(X;R0))⊗k is a quasi-isomorphism for all

k ≥ 1, as are the inclusions GP
k,0 ↪→ S−nIC p̄1

∗ (X;R0)⊗ · · · ⊗ S−nIC p̄k
∗ (X;R0).
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Sketch of proof. Ultimately, the proof is more-or-less the same as that of Theorem 3.5 of

[25], which shows that Gk is quasi-isomorphic to (S−nC∗(X))⊗k. The general idea is to push

chains by homotopies until all desired general positions are achieved. In fact, since ∂D ⊂ ∂D̄,

it suffices to use the arguments of the proof of [25, Theorem 3.5], which constructs all relevant

homotopies and homologies for D̄ and ∂D̄. These are absolute homologies, but they become

relative homologies when considered with coefficients in R0.

Umkehr maps. The motivation in [42] for creating the complexes Gk for the manifold M

is that Gk serves as the domain for a generalized intersection pairing. Using this domain, the

intersection pairing can be defined as a chain map, rather than as an ad hoc construction

on pairs of chains in suitable general position. Furthermore, this intersection pairing on Gk

is used to show that the intersection pairing extends to the algebraic structure of a Leinster

partial commutative differential graded algebra (DGA). Similarly, in [25], the GP
k are shown

to be domains for the intersection pairing of intersection chains, and these pairings are shown

to induce partial restricted commutative DGAs.

To extend these results here, we need to consider the appropriate relative form of the

general intersection pairings.

The more general intersection homology multi-products come from considering umkehr

maps on pseudomanifolds. This was done in [25, Section 4.2]. Here we consider the relative,

or stratified coefficient, version, which in some sense is simpler, just as for the Goresky-

MacPherson pairing we were able not to concern ourselves with the final excision step.

The umkehr map proceeds as follows.

Suppose f : Xn → Y m is a PL map of compact oriented PL stratified pseudomanifolds

such that f−1(Y m−1) ⊂ Xn−1, where Xn−1 and Y m−1 are the respective singular sets of X

and Y . Suppose that D ∈ Ci(Y ;R0) = Ci(Y ;Y m−1). Then by Lemma 5.1, D corresponds to

the homology class [D] ∈ Hi(|D̄|∪Y m−1, |∂D|∪Y m−1;R) ∼= Hi(|D̄|, |∂D|∪ (|D̄|∩Y m−1);R).

Let A = |D̄|, B = |∂D|, A′ = f−1(A), and B′ = f−1(B). We consider the following

composition of maps, in which all groups have R coefficients.

S−mHi(A ∪ Y m−1, B ∪ Y m−1)
(−1)m(m−i)(· ∩ [Y ])−1

∼=
- Hm−i(Y − (B ∪ Y m−1), Y − (A ∪ Y m−1))

f ∗
- Hm−i(X − (B′ ∪Xn−1), X − (A′ ∪Xn−1))

(−1)n(m−i)(· ∩ [X])
∼=

- S−nHi+n−m(A′ ∪Xn−1, B′ ∪Xn−1)

The indicated signed cap products with the respective fundamental classes again represent

the Whitehead-Dold-Goresky-MacPherson duality isomorphism - see [28, Appendix]. We

also incorporate the sign conventions of [25].

If dim(A′ − A′ ∩ Xn−1) ≤ i + n − m and dim(B′ − B′ ∩ Xn−1) ≤ i + n − m −
1, then by Lemma 5.1, the image of this composition represents a well-defined chain in

S−nCi+n−m(X,Xn−1;R) = S−nCi+n−m(X;R0). In this case, we say that D is in general po-

sition with respect to f , and we denote the composite map Ci(Y ;R0)→ Ci+n−m(X;R0) by
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f!. Furthermore, f! is a degree 0 chain map as follows from the same arguments as presented

in the proof of [25, Lemma 7.3].

In particular now, suppose that ∆ : X → X(k) is the diagonal embedding x→ (x, . . . , x).

Then ∆ = R∗ for the unique surjection R : k̄ → 1̄. For some collection of general perver-

sities P , suppose D ∈ GP
k,0. Then by assumption, ε̄D is in stratified general position, so

by the definition of the last section, dim(∆−1(Z(k) ∩ ρ(ε̄D))) = dim(Z ∩ ∆−1(ρ(ε̄D))) ≤
dim(Z(k) ∩ ρ(ε̄D)) + dim(Z)(1 − k). In particular, if D is (the shift of) an i-chain and Z

is a regular stratum, we get dim((X −Xn−1) ∩∆−1(ρ(ε̄D))) = dim(∆−1((X −Xn−1)(k) ∩
ρ(ε̄D))) ≤ i + n(1 − k), and similarly for ∂D. Thus we have a well-defined ∆! : GP

k,0 →
S−nC∗(X,X

n−1;R) ∼= S−nC∗(X;R0), which is the generalized intersection pairing. Further-

more, using analogous computations to the GM perversity case (see [25, Proposition 4.5]),

which extend the sort of computations in our discussion of the Goresky-MacPherson pairing

above, we see that ∆!(D) ∈ S−nI r̄C∗(X;R0) for any r̄ ≥
∑k

i=1 p̄i.

Note that in the special case where D ∈ GP
2,0 and D = S−nx⊗ S−ny, the condition that

ε̄(D) be in stratified general position with respect to ∆ : X → X ×X says precisely that for

each stratum Z, Z ∩∆−1(|εD|) = dim(Z ∩ |x| ∩ |y|) ≤ dim((Z×Z)∩ (|x|× |y|))−dim(Z) =

dim(|x| ∩ Z) + dim(|y| ∩ Z) − dim(Z), which is precisely the condition that |x| and |y| be

in stratified general position. Similarly, the condition that ε̄(∂D) be in stratified general

position with respect to ∆ is equivalent to the pairs (|x|, |∂y|) and (|∂x|, |y|) each being in

general position. So, in this special setting, the conditions for ∆! to be well-defined reduce

to those for the Goresky-MacPherson pairing, and arguments as those in the proof of [25,

Proposition 4.9] show that these pairings are equivalent, up to the appropriate index shifts.

It also follows analogously to the arguments of [25, Section 6] that these geometric in-

tersection chain pairings are compatible with the purely sheaf theoretic pairings of Theorem

4.6.

Further results from [25]. Now that we have established the necessary modifications

to the umkehr map and, more generally, understood the role that stratified coefficients

and relative chains play in the generalization of the pairing and general position arguments

to the general perversity case, the remaining major results of [25] go through with little

difficulty. In particular, one can define a category GPn of general perverse chain complexes

consisting of functors from the poset category of general n-perversities (in which p̄ → q̄

exists uniquely if and only if p̄(Z) ≤ q̄(Z) for all singular strata Z) to the category of chain

complexes. Loosely perverse chain complexes are denoted {C?
∗} with evaluation at p̄ denoted

by {C?
∗}p̄ = C p̄

∗ . GPn is a symmetric monoidal category with product � obtained by setting

({D?
∗}� {E?

∗})r̄ = lim−→
p̄+q̄≤r̄

Dp̄
∗ ⊗ E q̄

∗ .

It follows as by the proof of [25, Theorem 5.3], with some minor modifications, that the

following theorem holds:

Theorem 5.10. For any compact oriented PL stratified pseudomanifold X, the partially-

defined intersection pairing on the perverse chain complex {S−nI?C∗(X,R0)} extends to the

structure of a partial perverse commutative DGA.
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A partial perverse commutative DGA is what we referred to as a partial restricted com-

mutative DGA in [25, Section 5] with the change that we now allow general perversities.

This wording is also more reflective of the fact that we no longer need restrict to perversities

(or sums of perversities) below t̄. We refer the reader to [25, Section 5] for the original

definition of this structure and the details of the proof, which readily generalize in light of

the work above.
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