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Abstract

We provide an expository survey of the different notions of perversity in intersection
homology and how different perversities require different definitions of intersection
homology theory itself. We trace the key ideas from the introduction of intersection
homology by Goresky and MacPherson through to the recent and ongoing work of the
author and others.
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1 Introduction

When Goresky and MacPherson first introduced intersection homology in [32], they required

its perversity parameters to satisfy a fairly rigid set of constraints. Their perversities were

functions on the codimensions of strata, p̄ : Z≥2 → Z, satisfying

p̄(2) = 0 and p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1.

These strict requirements were necessary for Goresky and MacPherson to achieve their initial

goals for intersection homology: that the intersection homology groups I p̄H∗(X) should

satisfy a generalized form of Poincaré duality for stratified pseudomanifolds and that they

should be topological invariants, i.e they should be independent of the choice of stratification

of X.

In the ensuing years, perversity parameters have evolved as the applications of intersec-

tion homology have evolved, and in many cases the basic definitions of intersection homology

itself have had to evolve as well. Today, there are important results that utilize the most

general possible notion of a perversity as a function

p̄ : {components of singular strata of a stratified pseudomanifold} → Z.

In this setting, one usually loses topological invariance of intersection homology (though this

should be seen not as a loss but as an opportunity to study stratification data), but duality

results remain, at least if one chooses the right generalizations of intersection homology.
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Complicating this choice is the fact that there are a variety of approaches to intersection

homology to begin with, even using Goresky and MacPherson’s perversities. These include

(at the least) the original simplicial chain definition [32]; Goresky and MacPherson’s Deligne

sheaves [33, 6]; King’s singular chain intersection homology [32]; Cheeger’s L2 cohomology

and L2 Hodge theory [16]; perverse differential forms on Thom-Mather stratified spaces (and,

later, on unfoldable spaces [7]), first published by Brylinski [8] but attributed to Goresky and

MacPherson; and the theory of perverse sheaves [4]. Work to find the “correct” versions of

these theories when general perversities are allowed has been performed by the author, using

stratified coefficients for simplicial and singular intersection chains [26]; by Saralegi, using

“relative” intersection homology and perverse differential forms in [54]; and by the author,

generalizing the Deligne sheaf in [22]. Special cases of non-Goresky-MacPherson perversities

in the L2 Hodge theory setting have also been considered by Hausel, Hunsicker, and Mazzeo

[37]; Hunsicker and Mazzeo [39]; and Hunsicker [38]. And arbitrary perversities have been

available from the start in the theory of perverse sheaves!

This paper is intended to serve as something of a guidebook to the different notions of

perversities and as an introduction to some new and exciting work in this area. Each stage of

development of the idea of perversities was accompanied by a flurry of re-examinings of what

it means to have an intersection homology theory and what spaces such a theory can handle

as input, and each such re-examining had to happen within one or more of the contexts

listed above. In many cases, the outcome of this re-examination led to a modification or

expansion of the basic definitions. This has resulted in a, quite justified, parade of papers

consumed with working through all the technical details. However, technicalities often have

the unintended effect of obscuring the few key main ideas. Our goal then is to present

these key ideas and their consequences in an expository fashion, referring the reader to the

relevant papers for further technical developments and results. We hope that such a survey

will provide something of an introduction to and overview of the recent and ongoing work

of the author, but we also hope to provide a readable (and hopefully accurate!) historical

account of this particular chain of ideas and an overview of the work of the many researchers

who have contributed to it. We additionally hope that such an overview might constitute

a suitable introduction for those wishing to learn about the basics of intersection homology

and as preparation for those wishing to pursue the many intriguing new applications that

general perversities bring to the theory.

This exposition is not meant to provide a comprehensive historical account but merely

to cover one particular line of development. We will focus primarily on the approaches

to intersection homology by simplicial and singular chains and by sheaf theory. We will

touch only tangentially upon perverse differential forms when we consider Saralegi’s work in

Section 10; we advise the reader to consult [54] for the state of the art, as well as references

to prior work, in this area. Also, we will not discuss L2-cohomology. This is a very active

field of research, as is well-demonstrated elsewhere in this volume [30], but the study of L2-

cohomology and L2 Hodge theories that yield intersection homology with general perversities

remains under development. The reader should consult the papers cited above for the work

that has been done so far. We will briefly discuss perverse sheaves in Section 8.2, but the

reader should consult [4] or any of the variety of fine surveys on perverse sheaves that have
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appeared since for more details.

We will not go into many of the myriad results and applications of intersection homol-

ogy theory, especially those beyond topology proper in analysis, algebraic geometry, and

representation theory. For broader references on intersection homology, the reader might

start with [6, 42, 2]. These are also excellent sources for the material we will be assuming

regarding sheaf theory and derived categories and functors.

We proceed roughly in historical order as follows: Section 2 provides the original Goresky-

MacPherson definitions of PL pseudomanifolds and PL chain intersection homology. We

also begin to look closely at the cone formula for intersection homology, which will have

an important role to play throughout. In Section 3, we discuss the reasons for the original

Goresky-MacPherson conditions on perversities and examine some consequences, and we

introduce King’s singular intersection chains. In Section 4, we turn to the sheaf-theoretic

definition of intersection homology and introduce the Deligne sheaf. We discuss the intersec-

tion homology version of Poincaré duality, then we look at our first example of an intersection

homology result that utilizes a non-Goresky-MacPherson perversity, the Cappell-Shaneson

superduality theorem.

In Section 5, we discuss “subperversities” and “superperversities”. Here we first observe

the schism that occurs between chain-theoretic and sheaf-theoretic intersection homology

when perversities do not satisfy the Goresky-MacPherson conditions. Section 6 introduces

stratified coefficients, which were developed by the author in order to correct the chain version

of intersection homology for it to conform with the Deligne sheaf version.

In Section 7, we discuss the further evolution of the chain theory to the most general

possible perversities and the ensuing results and applications. Section 8 contains the further

generalization of the Deligne sheaf to general perversities, as well as a brief discussion of per-

verse sheaves and how general perversity intersection homology arises in that setting. Some

indications of recent work and work-in-progress with these general perversities is provided

in Section 9.

Finally, Sections 10 and 11 discuss some alternative approaches to intersection homology

with general perversities. In Section 10, we discuss Saralegi’s “relative intersection chains”,

which are equivalent to the author’s stratified coefficients when both are defined. In Section

11, we present the work of Habegger and Saper from [35]. This work encompasses another

option to correcting the schism presented in Section 5 by providing a sheaf theory that agrees

with King’s singular chains, rather than the other way around; however, the Habegger-Saper

theory remains rather restrictive with respect to acceptable perversities.

Acknowledgment. I sincerely thank my co-organizers and co-editors – Eugénie Hunsicker,

Anatoly Libgober, and Laurentiu Maxim – for making an MSRI workshop and this accom-

panying volume possible. I thank my collaborators Jim McClure and Eugénie Hunsicker as

the impetus and encouragement for some of the work that is discussed here and for their

comments on earlier drafts of this paper. And I thank an anonymous referee for a number

of helpful suggestions that have greatly improved this exposition.
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2 The original definition of intersection homology

We begin by recalling the original definition of intersection homology as given by Goresky and

MacPherson in [32]. We must start with the spaces that intersection homology is intended

to study.

2.1 Piecewise linear stratified pseudomanifolds

The spaces considered by Goresky and MacPherson in [32] were piecewise linear (PL) strati-

fied pseudomanifolds. An n-dimensional PL stratified pseudomanifold X is a piecewise linear

space (meaning it is endowed with a compatible family of triangulations) that also possesses

a filtration by closed PL subspaces (the stratification)

X = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X1 ⊃ X0 ⊃ X−1 = ∅

satisfying the following properties:

1. X −Xn−2 is dense in X,

2. for each k ≥ 2, Xn−k−Xn−k−1 is either empty or is an n−k dimensional PL manifold,

3. if x ∈ Xn−k − Xn−k−1, then x has a distinguished neighborhood N that is PL home-

omorphic to Rn−k × cL, where cL is the open cone on a compact k − 1 dimensional

stratified PL pseudomanifold L. Also, the stratification of L must be compatible with

the stratification of X.

A PL stratified pseudomanifold is oriented (respectively, orientable) if X −Xn−2 is.

A few aspects of this definition deserve comment. Firstly, the definition is inductive: to

define an n-dimensional PL stratified pseudomanifold, we must already know what a k − 1

dimensional PL stratified pseudomanifold is for k − 1 < n. The base case occurs for n = 0;

a 0-pseudomanifold is a discrete set of points. Secondly, there is a gap from n to n − 2 in

the filtration indices. This is more-or-less intended to avoid issues of pseudomanifolds with

boundary, although there are now established ways of dealing with these issues that we will

return to below in Section 5.

The sets X i are called skeleta, and we can verify from condition (2) that each has dimen-

sion ≤ i as a PL complex. The sets Xi := X i −X i−1 are traditionally called strata, though

it will be more useful for us to use this term for the connected components of Xi, and we

will favor this latter usage rather than speaking of “stratum components.”1 The strata of

Xn−Xn−2 are called regular strata, and the other strata are called singular strata. The space

L is called the link of x or of the stratum containing x. For a PL stratified pseudomanifold

L is uniquely determined up to PL homeomorphism by the stratum containing x. The cone

cL obtains a natural stratification from that of L: (cL)0 is the cone point and for i > 0,

(cL)i = Li−1 × (0, 1) ⊂ cL, where we think of cL as L×[0,1)
(x,0)∼(y,0)

. The compatibility condition

1It is perhaps worth noting here that the notation we employ throughout mostly will be consistent with
the author’s own work, though not necessarily with all historical sources.
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of item (3) of the definition means that the PL homeomorphism should take X i ∩ N to

Rn−k × (cL)i−(n−k).

Roughly, the definition tells us the following. An n-dimensional PL stratified pseudo-

manifold X is mostly the n-manifold X − Xn−2, which is dense in X. (In much of the

literature, Xn−2 is also referred to as Σ, the singular locus of X.) The rest of X is made

up of manifolds of various dimensions, and these must fit together nicely, in the sense that

each point in each stratum should have a neighborhood that is a trivial fiber bundle, whose

fibers are cones on lower-dimensional stratified spaces.

We should note that examples of such spaces are copious. Any complex analytic or

algebraic variety can be given such a structure (see [6, Section IV]), as can certain quotient

spaces of manifolds by group actions. PL pseudomanifolds occur classically as spaces that

can be obtained from a pile of n-simplices by gluing in such a way that each n − 1 face of

an n-simplex is glued to exactly one n − 1 face of one other n-simplex. (Another classical

condition is that we should be able to move from any simplex to any other, passing only

through interiors of n − 1 faces. This translates to say that X − Xn−2 is path connected,

but we will not concern ourselves with this condition.) Other simple examples arise by

taking open cones on manifolds (naturally, given the definition), by suspending manifolds

(or by repeated suspensions), by gluing manifolds and pseudomanifolds together in allowable

ways, etc. One can construct many useful examples by such procedures as “start with this

manifold, suspend it, cross that with a circle, suspend again,...” For more detailed examples,

the reader might consult [6, 2, 44].

More general notions of stratified spaces have co-evolved with the various approaches to

intersection homology, mostly by dropping or weakening requirements. We shall attempt to

indicate this evolution as we progress.

2.2 Perversities

Besides the spaces on which one is to define intersection homology, the other input is the

perversity parameter. In the original Goresky-MacPherson definition, a perversity p̄ is a

function from the integers ≥ 2 to the non-negative integers satisfying the following properties

1. p̄(2) = 0,

2. p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1.

These conditions say that a perversity is something like a sub-step function. It starts

at 0, and then each time the input increases by one, the output either stays the same or

increases by one. Some of the most commonly used perversities include the zero perversity

0̄(k) = 0, the top perversity t̄(k) = k − 2, the lower-middle perversity m̄(k) = bk−2
2
c, and

the upper middle perversity n̄(k) = bk−1
2
c.

The idea of the perversity is that the input number k represents the codimension of a

stratum Xn−k = Xn−k − Xn−k−1 of an n-dimensional PL stratified pseudomanifold, while

the output will control the extent to which the PL chains in our homology computations

will be permitted to interact with these strata.
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The reason for the arcane restrictions on p̄ will be made clear below in Section 3. We

will call any perversity satisfying conditions (1) and (2) a Goresky-MacPherson perversity,

or a GM perversity.

2.3 Intersection homology

At last, we are ready to discuss intersection homology.

Let X be an n-dimensional PL stratified pseudomanifold, and let CT
∗ (X) denote the

simplicial chain complex of X with respect to the triangulation T . The PL chain complex

C∗(X) is defined to be lim−→T
CT
∗ (X), where the limit is taken with respect to the directed set

of compatible triangulations. This PL chain complex is utilized by Goresky and MacPherson

in [32] (see also [6]), and it is useful in a variety of other contexts (see, e.g. [46]). However,

it turns out that this is somewhat technical overkill for the basic definition of intersection

homology, as what follows can also be performed in CT
∗ (X), assuming T is sufficiently refined

with respect to the the stratification of X (for example, pick any T , take two barycentric

subdivisions, and you’re set to go - see [45]).

We now define the perversity p̄ intersection chain complex I p̄C∗(X) ⊂ C∗(X). We say

that a PL j-simplex σ is p̄-allowable provided

dim(σ ∩Xn−k) ≤ j − k + p̄(k)

for all k ≥ 2. We say that a PL i-chain ξ ∈ Ci(X) is p̄-allowable if each i-simplex occurring

with non-zero coefficient in ξ is p̄-allowable and if each i − 1 simplex occurring with non-

zero coefficient in ∂ξ is p̄-allowable. Notice that the simplices in ξ must satisfy the simplex

allowability condition with j = i while the simplices of ∂ξ must satisfy the condition with

j = i− 1.

Then I p̄C∗(X) is defined to be the complex of allowable chains. It follows immediately

from the definition that this is indeed a chain complex. The intersection homology groups

are I p̄H∗(X) = H∗(I
p̄C∗(X)).

Some remarks are in order.

Remark 2.1. The allowability condition at first seems rather mysterious. However, the con-

dition dim(σ ∩Xn−k) ≤ j − k would be precisely the requirement that σ and Xn−k intersect

in general position if Xn−k were a submanifold of X. Thus introducing a perversity can be

seen as allowing deviation from general position to a degree determined by the perversity.

This seems to be the origin of the nomenclature.

Remark 2.2. It is a key observation that if ξ is an i-chain, then it is not every i− 1 face of

every i-simplex of ξ that must be checked for its allowability, but only those that survive

in ∂ξ. Boundary pieces that cancel out do not need to be checked for allowability. This

seemingly minor point accounts for many subtle phenomena, including the next remark.

Remark 2.3. Intersection homology with coefficients I p̄H∗(X;G) can be defined readily

enough beginning with C∗(X;G) instead of C∗(X). However, I p̄C∗(X;G) is generally NOT

the same as I p̄C∗(X)⊗G. This is precisely due to the boundary cancellation behavior: extra

7



boundary cancellation in chains may occur when G is a group with torsion, leading to al-

lowable chains in I p̄C∗(X;G) that do not come from any G-linear combinations of allowable

chains in I p̄C∗(X; Z). For more details on this issue, including many examples, the reader

might consult [29].

Remark 2.4. In [32], Goresky and MacPherson stated the allowability condition in terms of

skeleta, not strata. In other words, they define a j-simplex to be allowable if

dim(σ ∩Xn−k) ≤ j − k + p̄(k)

for all k ≥ 2. However, it is not difficult to check that the two conditions are equivalent for

the perversities we are presently considering. When we move on to more general perversities,

below, it becomes necessary to state the condition in terms of strata rather than in terms of

skeleta.

2.4 Cones

It turns out that understanding cones plays a crucial role in almost all else in intersection

homology theory, which perhaps should not be too surprising, as pseudomanifolds are all

locally products of cones with euclidean space. Most of the deepest proofs concerning in-

tersection homology can be reduced in some way to what happens in these distinguished

neighborhoods. The euclidean part turns out not to cause too much trouble, but cones

possess interesting and important behavior.

So let L be a compact k − 1 dimensional PL stratified pseudomanifold, and let cL be

the open cone on L. Checking allowability of a j-simplex σ with respect to the cone vertex

{v} = (cL)0 is a simple matter, since the dimension of σ∩{v} can be at most 0. Thus σ can

allowably intersect v if and only if 0 ≤ j−k+ p̄(k), i.e. if j ≥ k− p̄(k). Now, suppose ξ is an

allowable i-cycle in L. We can form the chain c̄ξ ∈ I p̄Ci+1(cL) by taking the cone on each

simplex in the chain (by extending each simplex linearly to the cone point). We can check

using the above computation (and a little more work that we’ll suppress) that c̄ξ is allowable

if i+1 ≥ k− p̄(k), and thus ξ = ∂c̄ξ is a boundary; see [6, Chapters I and II]. Similar, though

slightly more complicated, computations show that any allowable cycle in cL is a boundary.

Thus I p̄Hi(cL) = 0 if i ≥ k − 1 − p̄(k). On the other hand, if i < k − 1 − p̄(k), then no

i-chain ξ can intersect v nor can any chain of which it might be a boundary. Thus ξ is left

to its own devices in cL− v, i.e. I p̄Hi(cL) = I p̄Hi(cL− v) ∼= I p̄Hi(L× (0, 1)). It turns out

that intersection homology satisfies the Künneth theorem when one factor is euclidean space

and we take the obvious product stratification (see [6, Chapter I]), or alternatively we can

use the invariance of intersection homology under stratum-preserving homotopy equivalences

(see [23]), and so in this range I p̄Hi(cL) ∼= I p̄Hi(L).

Altogether then, we have

I p̄Hi(cL
k−1) ∼=

{
0, i ≥ k − 1− p̄(k),

I p̄Hi(L), i < k − 1− p̄(k).
(1)

We will return to this formula many times.

8



3 Goresky-MacPherson perversities

The reasons for the original Goresky-MacPherson conditions on perversities, as enumerated

in Section 2.2, are far from obvious. Ultimately, they come down to the two initially most

important properties of intersection homology: its topological invariance and its Poincaré

duality.

The topological invariance property of traditional intersection homology says that when p̄

is a Goresky-MacPherson perversity and X is a stratified pseudomanifold (PL or topological,

as we’ll get to soon) then I p̄H∗(X) depends only on X and not on the choice of stratification

(among those allowed by the definition). This is somewhat surprising considering how the

intersection chain complex depends on the strata.

The desire for I p̄H∗(X) to be a topological invariant leads fairly quickly to the condition

that we should not allow p̄(k) to be negative. This will be more evident once we get to the

sheaf theoretic formulation of intersection homology, but for now, consider the cone formula

(1) for cLk−1, and suppose that p̄(k) < 0. Then we can check that no allowable PL chain

may intersect v. Thus we see that the intersection homology of cL is the same as if we

removed the cone point altogether. A little more work (see [22, Corollary 2.5]) leads more

generally to the conclusion that if p̄(k) < 0, then I p̄H∗(X) ∼= I p̄H∗(X − Xk). This would

violate the topological invariance since, for example, topological invariance tells us that if

Mn is a manifold then I p̄H∗(M) ∼= H∗(M), no matter how we stratify it2. But if we now

allow, say, a locally-flat PL submanifold Nn−k and stratify by M ⊃ N , then if p̄(k) < 0

we would have H∗(M) ∼= I p̄H∗(M) ∼= I p̄H∗(M − N) ∼= H∗(M − N). This presents a clear

violation of topological invariance.

The second Goresky-MacPherson condition, that p̄(k) ≤ p̄(k+ 1) ≤ p̄(k) + 1, also derives

from topological invariance considerations. The following example is provided by King [41,

p. 155]. We first note that, letting SX denote the suspension of X, we have cSX ∼= R× cX
(ignoring the stratifications). This is not hard to see topologically (recall that cX is the open

cone on X). But now if we assume X is k − 1 dimensional and that we take the obvious

stratifications of R× cX (assuming some initial stratification on X), then

I p̄Hi(R× cX) ∼=

{
0, i ≥ k − 1− p̄(k),

I p̄Hi(X), i < k − 1− p̄(k).
(2)

This follows from the cone formula (1) and the intersection homology Künneth theorem for

which one term is unstratified [41] (or stratum-preserving homotopy equivalence [23]).

But now it also follows by an easy argument, using (1) and the Mayer-Vietoris sequence,

that

I p̄Hi(SX) ∼=


I p̄Hi−1(X), i > k − 1− p̄(k),

0, i = k − 1− p̄(k),

I p̄Hi(X), i < k − 1− p̄(k),

(3)

and, since SX has dimension k,

2Note that one choice of stratification is the trivial one containing a single regular stratum, in which case
it is clear from the definition that I p̄H∗(M) ∼= H∗(M).

9



I p̄Hi(cSX) ∼=

{
0, i ≥ k − p̄(k + 1),

I p̄Hi(SX), i < k − p̄(k + 1).
(4)

So, I p̄Hi(R× cX) is 0 for i ≥ k − 1− p̄(k), while I p̄Hi(cSX) must be 0 for i ≥ k − p̄(k + 1)

and also for i = k − 1 − p̄(k) even if k − 1 − p̄(k) < k − p̄(k + 1). Also, it is not hard

to come up with examples in which the terms that are not forced to be zero are, in fact,

non-zero. If k − 1− p̄(k) ≥ k − p̄(k + 1) (i.e. 1 + p̄(k) ≤ p̄(k + 1)), so that the special case

i = k − 1 − p̄(k) is already in the zero range for I p̄H∗(cSX), then topological invariance

would require k− 1− p̄(k) = k− p̄(k+ 1), i.e. p̄(k+ 1) = p̄(k) + 1. So if we want topological

invariance, p̄(k + 1) cannot be greater than p̄(k) + 1.

On the other hand, if k− 1− p̄(k) < k− p̄(k+ 1), then the 0 at I p̄Hk−1−p̄(k)(cSX) forced

by the suspension formula drops below the truncation dimension cutoff at k− p̄(k + 1) that

arises from the cone formula. If k − 1 − p̄(k) = k − 1 − p̄(k + 1) (i.e. p̄(k) = p̄(k + 1)), no

contradiction occurs. But if k − 1 − p̄(k) < k − 1 − p̄(k + 1) (i.e. p̄(k + 1) < p̄(k)), then

I p̄Hk−1−p̄(k+1)(cSX) could be non-zero, which means, using the formula for I p̄H∗(R × cX),

that we must have k − 1 − p̄(k + 1) < k − 1 − p̄(k) (i.e. p̄(k + 1) > p̄(k)), yielding a

contradiction.

Hence the only viable possibilities for topological invariance are that p̄(k + 1) = p̄(k) or

p̄(k + 1) = p̄(k) + 1.

It turns out that both possibilities work out, and in [33], Goresky and MacPherson showed

using sheaf theory that any perversity satisfying the two Goresky-MacPherson conditions

yields a topologically invariant intersection homology theory. King [41] later gave a non-sheaf

proof that holds even when p̄(2) > 0.

Why, then, did Goresky and MacPherson limit consideration to perversities for which

p̄(2) = 0? For one thing, they were primarily concerned with the Poincaré duality theorem

for intersection homology, which states that if X is a compact oriented n-dimensional PL

stratified pseudomanifold, then there is a non-degenerate pairing

I p̄Hi(X; Q)⊗ I q̄Hn−i(X; Q)→ Q

if p̄ and q̄ satisfy the Goresky-MacPherson conditions and p̄ + q̄ = t̄, or, in other words,

p̄(k) + q̄(k) = k − 2. If we were to try to allow p̄(2) > 0, then we would have to have

q̄(2) < 0, and we have already seen that this causes trouble with topological invariance.

So if we want both duality and invariance, we must have p̄(2) = q̄(2) = 0. Without this

condition we might possibly have one or the other, but not both. In fact, King’s invariance

results for p̄(2) > 0 implies that duality cannot hold in general when we pair a perversity

with p̄(2) > 0 with one with q̄(2) < 0, at least not without modifying the definition of

intersection homology, which we do below.

But there is another interesting reason that Goresky and MacPherson did not obtain

King’s invariance result for p̄(2) > 0. When intersection homology was first introduced in

[32], Goresky and MacPherson were unable initially to prove topological invariance. They

eventually succeeded by reformulating intersection homology in terms of sheaf theory. But,

as it turns out, when p̄(2) 6= 0 the original sheaf theory version of intersection homology does

10



not agree with the chain version of intersection homology we have been discussing and for

which King proved topological invariance. Furthermore, the sheaf version is not a topological

invariant when p̄(2) > 0 (some examples can be found in [24]). Due to the powerful tools that

sheaf theory brings to intersection homology, the sheaf theoretic point of view has largely

overshadowed the chain theory. However, this discrepancy between sheaf theory and chain

theory for non-GM perversities turns out to be very interesting in its own right, as we shall

see.

3.1 Some consequences of the Goresky-MacPherson conditions

The Goresky-MacPherson perversity conditions have a variety of interesting consequences be-

yond turning out to be the right conditions to yield both topological invariance and Poincaré

duality.

Recall that the allowability condition for an i-simplex σ is that dim(σ∩Xk) ≤ i−k+p̄(k).

The GM perversity conditions ensure that p̄(k) ≤ k − 2, and so for any perversity we must

have i− k+ p̄(k) ≤ i− 2. Thus no i-simplex in an allowable chain can intersect any singular

stratum in the interiors of its i or its i− 1 faces. One simple consequence of this is that no

0- or 1-simplices may intersect Xn−2, and so I p̄H0(X) ∼= H0(X −Xn−2).

Another consequence is the following fantastic idea, also due to Goresky and MacPherson.

Suppose we have a local coefficient system of groups (i.e. a locally constant sheaf) defined

on X −Xn−2, even perhaps one that cannot be extended to all of X. If one looks back at

early treatments of homology with local coefficient systems, for example in Steenrod [56],

it is sufficient to assign a coefficient group to each simplex of a triangulation (we can think

of the group as being located at the barycenter of the simplex) and then to assign to each

boundary face map a homomorphism between the group on the simplex and the group on

the boundary face. This turns out to be sufficient to define homology with coefficients -

what happens on lower dimensional faces does not matter (roughly, everything on lower

faces cancels out because we still have ∂2 = 0). Since the intersection i-chains with the GM

perversities have the barycenters of their simplices and of their top i−1 faces outside of Xn−2,

a local coefficient system G on Xn−2 is sufficient to define the intersection chain complex

I p̄C∗(X;G) and the resulting homology groups. For more details on this construction, see,

e.g. [26].

Of course now the stratification does matter to some extent since it determines where the

coefficient system is defined. However, see [6, Section V.4] for a discussion of stratifications

adapted to a given coefficient system defined on an open dense set of X of codimension ≥ 2.

One powerful application of this local coefficient version of intersection homology occurs

in [12], in which Cappell and Shaneson study singular knots by considering the knots in

their ambient spaces as stratified spaces. They employ a local coefficient system that wraps

around the knot to mimic the covering space arguments of classical knot theory. This

work also contains one of the first useful applications of intersection homology with non-

GM perversities. In order to explain this work, though, we first need to discuss the sheaf

formulation of intersection homology, which we pick up in Section 4, below.

11



3.2 Singular chain intersection homology

Before moving on to discuss the sheaf-theoretic formulation of intersection homology, we

jump ahead in the chronology a bit to King’s introduction of singular chain intersection

homology in [41]. As one would expect, singular chains are a bit more flexible than PL

chains (pun somewhat intended), and the singular intersection chain complex can be defined

on any filtered space X ⊃ Xn−1 ⊃ Xn−2 ⊃ · · · , with no further restrictions. In fact,

the “dimension” indices of the skeleta Xk need no longer have a geometric meaning. These

spaces include both PL stratified pseudomanifolds and topological stratified pseudomanifolds,

the definition of which is the same as of PL pseudomanifolds but with all requirements of

piecewise linearity dropped. We also extend the previous definition now to allow an n − 1

skeleton, and we must extend perversities accordingly to be functions p̄ : Z≥1 → Z. King

defines loose perversities, which are arbitrary functions of this type. We will return to these

more general perversities in greater detail as we go on.

To define the singular intersection chain complex, which we will denote I p̄S∗(X), we can

no longer use dimension of intersection as a criterion (especially if the index of a skeleton no

longer has a dimensional meaning). Instead, the natural generalization of the allowability

condition is that a singular i-simplex σ : ∆i → X is allowable if

σ−1(Xn−k) ⊂ {i− k + p̄(k) skeleton of ∆i}.

Once allowability has been defined for simplices, allowability of chains is defined as in the PL

case, and we obtain the chain complex I p̄S∗(X) and the homology groups I p̄H∗(X). If X is a

PL stratified pseudomanifold, the notation I p̄H∗(X) for singular chain intersection homology

causes no confusion; as King observes, the PL and singular intersection homology theories

agree on such spaces. Also as for PL chains, and by essentially the same arguments, if X

has no codimension one stratum and p̄ is a GM perversity, singular intersection homology

can take local coefficients on X −Xn−2.

From here on, when we refer to chain-theoretic intersection homology, we will mean both

the singular version (in any context) and the PL version (on PL spaces).

4 Sheaf theoretic intersection homology

Although intersection homology was developed originally utilizing PL chain complexes, this

approach was soon largely supplanted by the techniques of sheaf theory. Sheaf theory was

brought to bear by Goresky and MacPherson in [33], originally as a means to demonstrate

the topological invariance (stratification independence) of intersection homology with GM

perversities; this was before King’s proof of this fact using singular chains. However, it

quickly became evident that sheaf theory brought many powerful tools along with it, in-

cluding a Verdier duality approach to the Poincaré duality problem on pseudomanifolds.

Furthermore, the sheaf theory was able to accommodate topological pseudomanifolds. This

sheaf-theoretic perspective has largely dominated intersection homology theory ever since.
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The Deligne sheaf. We recall that if Xn is a stratified topological pseudomanifold3, then

a primary object of interest is the so-called Deligne sheaf. For notation, we let Uk = X−Xn−k

for k ≥ 2, and we let ik : Uk ↪→ Uk+1 denote the inclusion. Suppose that p̄ is a GM perversity.

We have seen that intersection homology should allow a local system of coefficients defined

only on X −Xn−2; let G be such a local system. The Deligne sheaf complex P∗ (or, more

precisely P∗p̄,G) is defined by an inductive process. It is4

P∗ = τ≤p̄(n)Rin∗ . . . τ≤p̄(2)Ri2∗(G ⊗ O),

where O is the orientation sheaf on X − Xn−2, Rik∗ is the right derived functor of the

pushforward functor ik∗, and τ≤m is the sheaf complex truncation functor that takes the

sheaf complex S∗ to τ≤mS∗ defined by

(τ≤mS∗)i =


0, i > m,

ker(di), i = m,

S i, i < m.

Here di is the differential of the sheaf complex. Recall that τ≤mS∗ is quasi-isomorphic to S∗
in degrees ≤ m and is quasi-isomorphic to 0 in higher degrees.

Remark 4.1. Actually, the orientation sheaf O is not usually included here as part of the

definition of P∗, or it would be only if we were discussing P∗p̄,G⊗O. However, it seems best to

include this here so as to eliminate having to continually mess with orientation sheaves when

discussing the equivalence of sheaf and chain theoretic intersection homology, which, without

this convention, would read that H∗(X;P∗p̄,G⊗O) ∼= I p̄Hn−∗(X;G); see below. Putting O into

the definition of P∗ as we have done here allows us to leave this nuisance tacit in what

follows.

The connection between the Deligne sheaf complex (also called simply the “Deligne

sheaf”) and intersection homology is that it can be shown that, on an n-dimensional PL

pseudomanifold, P∗ is quasi-isomorphic to the sheaf U → I p̄C∞n−∗(U ;G). Here the ∞ indi-

cates that we are now working with Borel-Moore PL chain complexes, in which chains may

contain an infinite number of simplices with non-zero coefficients, so long as the collection

of such simplices in any chain is locally-finite. This is by contrast to the PL chain complex

discussed above for which each chain can contain only finitely many simplices with non-zero

coefficient. This sheaf of intersection chains is also soft, and it follows via sheaf theory that

the hypercohomology of the Deligne sheaf is isomorphic to the Borel-Moore intersection

homology

H∗(X;P∗) ∼= I p̄H∞n−∗(X;G).

3For the moment, we again make the historical assumption that there are no codimension one strata.
4There are several other indexing conventions. For example, it is common to shift this complex so that

the coefficients G live in degree −n and the truncations become τ≤p̄(k)−n. There are other conventions that
make the cohomologically nontrivial degrees of the complex symmetric about 0 when n is even. We will stick
with the convention that G lives in degree 0 throughout. For more details on other conventions, see e.g. [33].
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It is also possible to recover the intersection homology we introduced initially by using

compact supports:

H∗c(X;P∗) ∼= I p̄Hc
n−∗(X;G).

Now that we have introduced Borel-Moore chains, we will use “c” to indicate the more

familiar compact (finite number of simplices) supports. If the results we discuss hold in both

contexts (in particular if X is compact) we will forgo either decoration. More background

and details on all of this can be found in [33, 6].

It was shown later, in [26], that a similar connection exists between the Deligne sheaf and

singular chain intersection homology on topological pseudomanifolds. Continuing to assume

GM perversities, one can also define a sheaf via the sheafification of the presheaf of singular

chains5 U → I p̄Sn−∗(X,X − Ū ;G). This sheaf turns out to be homotopically fine, and it is

again quasi-isomorphic to the Deligne sheaf. Thus once again, H∗c(X;P∗) ∼= I p̄Hc
n−∗(X;G)

and H∗(X;P∗) ∼= I p̄H∞n−∗(X;G), which is the homology of the chain complex I p̄S∞∗ (X;G)

consisting of chains that can involve an infinite, though locally-finite, number of simplices

with non-zero coefficient.

The Goresky-MacPherson proof of topological invariance follows by showing that the

Deligne sheaf is uniquely defined up to quasi-isomorphism via a set of axioms that do not

depend on the stratification of the space. This proof is given in [33]. However, we would

here like to focus attention on what the Deligne sheaf accomplishes locally, particularly in

mind of the maxim that a sheaf theory (and sheaf cohomology) is a machine for assembling

local information into global. So let’s look at the local cohomology (i.e. the stalk coho-

mology) of the sheaf P∗ at x ∈ Xn−k. This is H∗(P∗)x = H∗(P∗x) ∼= lim−→x∈U H∗(U ;P∗) ∼=
lim−→x∈U I

p̄H∞n−∗(U ;G), and we may assume that the limit is taken over the cofinal system of

distinguished neighborhoods N ∼= Rn−k × cLk−1 containing x. It is not hard to see that P∗
at x ∈ Xn−k depends only on the stages of the iterative Deligne construction up through

τ≤p̄(k)Rik∗ (at least so long as we assume that p̄ is nondecreasing6, as it will be for a GM per-

versity). Then it follows immediately from the definition of τ that H∗(P∗)x = 0 for ∗ > p̄(k).

On the other hand, the pushforward construction, together with a Künneth computation and

an appropriate induction step (see [6, Theorem V.2.5]), shows that for ∗ ≤ p̄(k) we have

H∗(P∗)x ∼= H∗(N −N ∩Xn−k;P∗)
∼= H∗(Rn−k × (cL− v);P∗)
∼= H∗(Rn−k+1 × L;P∗)
∼= H∗(L;P∗|L).

It can also be shown that P∗|L is quasi-isomorphic to the Deligne sheaf on L, so H∗(L;P∗|L) ∼=
I p̄Hk−1−∗(L).

For future reference, we record the formula

Hi(P∗)x ∼=

{
0, i > p̄(k),

Hi(L;P∗), i ≤ p̄(k),
(5)

5Since X is locally compact, we may use either c or ∞ to obtain the same sheaf.
6If p̄ ever decreases, say at k, then the truncation τ≤p̄(k) might kill local cohomology in other strata of

lower codimension.
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for x ∈ Xn−k and L the link of x. Once one accounts for the shift in indexing between

intersection homology and Deligne sheaf hypercohomology and for the fact that we are now

working with Borel-Moore chains, these computations work out to be equivalent to the cone

formula (1). In fact,

H∗(P∗x) ∼= I p̄H∞n−∗(Rn−k × cL;G)
∼= I p̄H∞k−∗(cL;G) (by the Künneth theorem)
∼= I p̄Hk−∗(cL, L× (0, 1);G),

and the cone formula (1) translates directly, via the long exact sequence of the pair (cL, L×
(0, 1)), to this being 0 for ∗ > p̄(k) and I p̄Hk−1−∗(L;G) otherwise.

So the Deligne sheaf recovers the local cone formula, and one would be hard pressed to

find a more direct or natural way to “sheafify” the local cone condition than the Deligne

sheaf construction. This reinforces our notion that the cone formula is really at the heart of

intersection homology. In fact, the axiomatic characterization of the Deligne sheaf alluded

to above is strongly based upon the sheaf version of the cone formula. There are several

equivalent sets of characterizing axioms. The first, AX1p̄,G, is satisfied by a sheaf complex

S∗ if

1. S∗ is bounded and S∗ = 0 for i < 0,

2. S∗|X−Xn−2
∼= G ⊗ O,7

3. for x ∈ Xn−k, H
i(S∗x) = 0 if i > p̄(k), and

4. for each inclusion ik : Uk → Uk+1, the “attaching map” αk given my the composition

of natural morphisms S∗|Uk+1
→ ik∗i

∗
kS∗ → Rik∗i

∗
kS∗ is a quasi-isomorphism in degrees

≤ p̄(k).

These axioms should technically be thought of as applying in the derived category of sheaves

onX, in which case all equalities and isomorphisms should be thought of as quasi-isomorphisms

of sheaf complexes. The first axiom acts as something of a normalization and ensures that S∗
lives in the bounded derived category. The second axiom fixes the coefficients on X −Xn−2.

The third and fourth axioms are equivalent to the cone formula (5); see [6, Sections V.1 and

V.2]. In fact, it is again not difficult to see that the Deligne sheaf construction is designed

precisely to satisfy these axioms. It turns out that these axioms completely characterize a

sheaf up to quasi-isomorphism (see [6, Section V.2]), and in fact it is by showing that the

sheafification of U → I p̄S∗(X,X−Ū ;G) satisfies these axioms that one makes the connection

between the sheaf of singular intersection chains and the Deligne sheaf.

Goresky and MacPherson [33] proved the stratification independence of intersection ho-

mology by showing that the axioms AX1 are equivalent to other sets of axioms, including

one that does not depend on the stratification of X. See [6, 33] for more details.

7See Remark 4.1 on page 13.
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4.1 Duality

It would take us too far afield to engage in a thorough discussion of how sheaf theory and,

in particular, Verdier duality lead to proofs of the intersection homology version of Poincaré

duality. However, we sketch some of the main ideas, highlighting the role that the perversity

functions play in the theory. For complete accounts, we refer the reader to the excellent

expository sources [6, 2].

The key to sheaf-theoretic duality is the Verdier dualizing function D. Very roughly, D
functions as a fancy sheaf-theoretic version of the functor Hom(·, R). In fact, D takes a

sheaf complex S∗ to a sheaf complex Hom∗(S∗,D∗X), where D∗X is the Verdier dualizing sheaf

on the space X. In reasonable situations, the dualizing sheaf D∗X is quasi-isomorphic (after

reindexing) to the sheaf of singular chains on X; see [6, Section V.7.2.]. For us, the most

important property of the functor D is that it satisfies a version of the universal coefficient

theorem. In particular, if S∗ is a sheaf complex over the Dedekind domain R, then for any

open U ⊂ X,

Hi(U ;DS∗) ∼= Hom(H−ic (U ;S∗);R)⊕ Ext(H−i+1
c (U ;S∗);R).

The key, now, to proving a duality statement in intersection homology is to show that if

X is orientable over a ground field F and p̄ and q̄ are dual perversities, meaning p̄(k)+ q̄(k) =

k − 2 for all k ≥ 2, then DP∗p̄ [−n] is quasi-isomorphic to P∗q̄ . Here [−n] is the degree shift

by −n degrees, i.e. (S∗[−n])i = S i−n, and this shift is applied to DP∗ (it is not a shifted P∗
being dualized). It then follows from the universal coefficient theorem with field coefficients

F that

I q̄H∞n−i(X;F ) ∼= Hom(I p̄Hc
i (X;F ), F ),

which is intersection homology Poincaré duality for pseudomanifolds.

To show that DP∗p̄ [−n] is quasi-isomorphic to P∗q̄ , it suffices to show that DP∗p̄ [−n]

satisfies the axioms AX1q̄. Again, we will not go into full detail, but we remark the following

main ideas, referring the reader to the axioms AX1 outlined above:

1. On X − Xn−2, DP∗p̄ [−n] restricts to the dual of the coefficient system P∗p̄ |X−Xn−2 ,

which is again a local coefficient system. If X is orientable and the coefficient system

is trivial, then so is its dual.

2. Recall that the third and fourth axioms for the Deligne sheaf concern what happens at a

point x in the stratum Xn−k. To compute H∗(S∗x), we may compute lim−→x∈U H∗(U ;S∗).
In particular, if we let each U be a distinguished neighborhood U ∼= Rn−k × cL of x

16



and apply the universal coefficient theorem, we obtain

H i(U ;DP∗p̄ [−n]x) ∼= lim−→
x∈U

Hi(DP∗p̄ [−n]) (6)

∼= lim−→
x∈U

Hi−n(U ;DP∗p̄ )

∼= lim−→
x∈U

Hom(Hn−i
c (U ;P∗p̄ ), F )

∼= lim−→
x∈U

Hom(I p̄Hc
i (Rn−k × cL;F ), F )

∼= lim−→
x∈U

Hom(I p̄Hc
i (cL;F ), F ).

The last equality is from the Künneth theorem with compact supports. From the cone

formula, we know that this will vanish if i ≥ k−1− p̄(k), i.e. if i > k−2− p̄(k) = q̄(k).

This is the third item of AX1q̄.

3. The fourth item of AX1q̄ is only slightly more difficult, but the basic idea is the same.

By the computations (6), H i(DP∗p̄ [−n]x) comes down to computing I p̄Hc
i (cL;F ), which

we know is isomorphic to I p̄Hc
i (L;F ) when i < k − 1 − p̄(k), i.e. i ≤ q̄(k). It is then

an easy argument to show that in fact the attaching map condition of AX1q̄ holds in

this range.

4. The first axiom also follows from these computations; one checks that the vanish-

ing of H i(P̄ ∗p̄,x) for i < 0 and for i > p̄(k) for x ∈ Xn−k is sufficient to imply that

H i(DP∗p̄ [−n]x) also vanishes for i < 0 or i sufficiently large.

We see quite clearly from these arguments precisely why the dual perversity condition

p̄(k) + q̄(k) = k − 2 is necessary in order for duality to hold.

A more general duality statement, valid over principal ideal domains, was provided by

Goresky and Siegel in [34]. However, there is an added requirement that the space X be

locally (p̄, R)-torsion free. This means that for each x ∈ Xn−k, I
p̄Hc

k−2−p̄(k)(Lx) is R-torsion

free, where Lx is the link of x in X. The necessity of this condition is that when working

over a principal ideal domain R, the Ext terms of the universal coefficient theorem for

Verdier duals must be taken into account. If these link intersection homology groups had

torsion, then there would be a possibly non-zero Ext term in the computation (6) when

i = q̄(k) + 1, due to the degree shift in the Ext term of the universal coefficient theorem.

This would prevent the proof that DP∗p̄ [−n] satisfies AX1q̄, so this possibility is eliminated

by hypothesis. With these assumption, there result duality pairings analogous to those that

occur for manifolds using ordinary homology with Z coefficients. In particular, one obtains

a nondegenerate intersection pairing on homology mod torsion and a nondegenerate torsion

linking pairing on torsion subgroups. See [34] and [22] for more details.

This circle of ideas is critical in leading to the need for superperversities in the Cappell-

Shaneson superduality theorem, which we shall now discuss.
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4.2 Cappell-Shaneson superduality

The first serious application (of which the author is aware) of a non-GM perversity in sheaf

theoretic intersection homology occurs in Cappell and Shaneson’s [12], where they develop a

generalization of the Blanchfield duality pairing of knot theory to study L-classes of certain

codimension 2 subpseudomanifolds of manifolds. Their pairing is a perfect Hermitian pairing

between the perversity p̄ intersection homology H∗(X;P∗p̄,G) (with p̄ a GM perversity) and

Hn−1−∗(X;P∗q̄,G∗), where G∗ is a Hermitian dual system to G and q̄ satisfies p̄(k)+q̄(k) = k−1.

This assures that q̄ satisfies the GM perversity condition q̄(k) ≤ q̄(k + 1) ≤ q̄(k) + 1, but it

also forces q̄(2) = 1. In [26], we referred to such perversities as superperversities, though this

term was later expanded by the author to include larger classes of perversities q̄ for which

q̄(k) may be greater than t̄(k) = k − 2 for some k.

Cappell and Shaneson worked with the sheaf version of intersection homology through-

out. Notice that the Deligne sheaf remains perfectly well-defined despite q̄ being a non-GM

perversity; the truncation process just starts at a higher degree. Let us sketch how these

more general perversities come into play in the Cappell-Shaneson theory.

The Cappell-Shaneson superduality theorem holds in topological settings that generalize

those in which one studies the Blanchfield pairing of Alexander modules in knot theory; see

[12] for more details. The Alexander modules are the homology groups of infinite cyclic covers

of knot complements, and one of the key features of these modules is that they are torsion

modules over the principal ideal domain Q[t, t−1]. In fact, the Alexander polynomials are just

the products of the torsion coefficients of these modules. Similarly, the Cappell-Shaneson

intersection homology groups H∗(X;P∗p̄,G) are torsion modules over Q[t, t−1] (in fact, G is a

coefficient system with stalks equal to Q[t, t−1] and with monodromy action determined by

the linking number of a closed path with the singular locus in X). Now, what happens if

we try to recreate the Poincaré duality argument from Section 4.1 in this context? For one

thing, the dual of the coefficient system over X −Xn−2 becomes the dual system G∗. More

importantly, all of the Hom terms in the universal coefficient theorem for Verdier duality

vanish, because all modules are torsion, but the Ext terms remain. From here, it is possible

to finish the argument, replacing all Homs with Exts, but there is one critical difference.

Thanks to the degree shift in Ext terms in the universal coefficient theorem, at a point

x ∈ Xn−k, H
i(DP∗p̄,G[−n]x) vanishes not for i > k − 2 − p̄(k) but for i > k − 1 − p̄(k),

while the attaching isomorphism holds for i ≤ k − 1 − p̄(k). It follows that DP∗p̄,G[−n]x is

quasi-isomorphic to P∗q̄,G∗ , but now q̄ must satisfy p̄(k) + q̄(k) = k − 1.

The final duality statement that arises has the form

I p̄Hi(X;G)∗ ∼= Ext(I q̄Hn−i−1(X;G),Q[t, t−1]) ∼= Hom(I q̄Hn−i−1(X;G); Q(t, t−1)/Q[t, t−1]),

where p̄(k) + q̄(k) = k − 1, X is compact and orientable, and the last isomorphism is from

routine homological algebra. We refer the reader to [12] for the remaining technical details.

Note that this is somewhat related to our brief discussion of the Goresky-Siegel duality

theorem. In that theorem, a special condition was added to ensure the vanishing of the extra

Ext term. In the Cappell-Shaneson duality theorem, the extra Ext term is accounted for

by the change in perversity requirements, but it is important that all Hom terms vanish,

18



otherwise there would still be a mismatch between the degrees in which the Hom terms

survive truncation and the degrees in which the Ext terms survive truncation. It might be

an enlightening exercise for the reader to work through the details.

While the Cappell-Shaneson superduality theorem generalizes the Blanchfield pairing in

knot theory, the author has identified an intersection homology generalization of the Farber-

Levine Z-torsion pairing in knot theory [21]. In this case, the duality statement involves

Ext2 terms and requires perversities satisfying the duality condition p̄(k) + q̄(k) = k.

5 Subperversities and superperversities

We have already noted that King considered singular chain intersection homology for per-

versities satisfying p̄(2) > 0, and, more generally, he defined in [41] a loose perversity to be

an arbitrary function from {2, 3, . . .} to Z. It is not hard to see that the PL and singular

chain definitions of intersection homology (with constant coefficients) go through perfectly

well with loose perversities, though we have seen that we would expect to forfeit topological

invariance (and perhaps Poincaré duality) with such choices. On the sheaf side, Cappell and

Shaneson [12] used a perversity with p̄(2) > 0 in their superduality theorem. Somewhat

surprisingly, however, once we have broken into the realm of non-GM perversities, the sheaf

and chain theoretic versions of intersection homology no longer necessarily agree.

A very basic example comes by taking p̄(k) < 0 for some k; we will call such a perversity

a subperversity. In the Deligne sheaf construction, a subperversity will truncate everything

away and wind up with the trivial sheaf complex, whose hypercohomology groups are all

0. In the chain construction, however, we have only made it more difficult for a chain

to be allowable with respect to the kth stratum. In fact, it is shown in [22, Corollary

2.5] that the condition p̄(k) < 0 is homologically equivalent to declaring that allowable

chains cannot intersect the kth stratum at all. So, for example, if p̄(k) < 0 for all k, then

I p̄Hc
∗(X) ∼= Hc

∗(X −Xn−2).

The discrepancy between sheaf theoretic and chain theoretic intersection homology also

occurs when perversities exceed the top perversity t̄(k) = k − 2 for some k; we call such

perversities superperversities. To see what the issue is, let us return once again to the cone

formula, which we have seen plays the defining local (and hence global) role in intersec-

tion homology. So long as p̄ is non-decreasing (and non-negative), the arguments of the

preceding section again yield the sheaf-theoretic cone formula (5) from the Deligne construc-

tion. However, the cone formula can fail in the chain version of superperverse intersection

homology.

To understand why, suppose L is a compact k − 1 pseudomanifold, so that (cL)k = v,

the cone point. Recall from Section 2.4 that the cone formula comes by considering cones

on allowable cycles and checking whether or not they are allowable with respect to v. In the

dimensions where such cones are allowable, this kills the homology. In the dimensions where

the cones are not allowable, we also cannot have any cycles intersecting the cone vertex,

and the intersection homology reduces to I p̄Hc
i (cL− v) ∼= I p̄Hc

i (L×R) ∼= I p̄Hc
i (L), the first

isomorphism because cL− v is homeomorphic to L× R and the second using the Künneth
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theorem with the unstratified R (see [41]) or stratum-preserving homotopy equivalence (see

[23]). These arguments hold in both the PL and singular chain settings. However, there is

a subtle point these arguments overlook when perversities exceed t̄.

If p̄ is a GM perversity, then p̄(k) ≤ k − 2 and so k − 1− p̄(k) > 0 and the cone formula

guarantees that I p̄Hc
0(cL) is always isomorphic to I p̄Hc

0(L). In fact, we have already observed,

in Section 3.1, that 0- and 1-simplices cannot intersect the singular strata. Now suppose that

p̄(k) = k − 1. Then extending the cone formula should predict that I p̄Hc
0(cL) = 0. But, in

these dimensions, the argument breaks down. For if x is a point in cL− (cL)k−2 representing

a cycle in I p̄Sc0(cL), then c̄x is a 1-simplex, and a quick perversity computation shows that

it is now an allowable 1-simplex. However, it is not allowable as a chain since ∂(c̄x) has

two 0-simplices, one supported at the cone vertex. This cone vertex is not allowable. The

difference between this case and the prior ones is that when i > 0 the boundary of a cone on

an i-cycle is (up to sign) that i-cycle. But when i = 0, there is a new boundary component.

In the previous computations, this was not an issue because the 1-simplex would not have

been allowable either. But now this ruins the cone formula.

In general, a careful computation shows that if L is a compact k− 1 filtered space and p̄

is any loose perversity, then the singular intersection homology cone formula becomes [41]

I p̄Hc
i (cL) ∼=


0, i ≥ k − 1− p̄(k), i 6= 0,

Z, i = 0 and p̄(k) ≥ k − 1,

I p̄Hi(L), i < k − 1− p̄(k).

(7)

Which is the right cone formula? So when we allow superperversities with p̄(k) >

t̄(k) = k − 2, the cone formula (1) no longer holds for singular intersection homology, and

there is a disagreement with the sheaf theory, for which the sheaf version (5) of (1) always

holds by the construction of the Deligne sheaf (at least so long as p̄ is non-decreasing). What,

then, is the “correct” version of intersection homology for superperversities (and even more

general perversities)? Sheaf theoretic intersection homology allows the use of tools such as

Verdier duality, and the superperverse sheaf intersection homology plays a key role in the

Cappell-Shaneson superduality theorem. On the other hand, singular intersection homology

is well-defined on more general spaces and allows much more easily for homotopy arguments,

such as those used in [41, 23, 25, 27].

In [35], Habegger and Saper created a sheaf theoretic generalization of King’s singular

chain intersection homology provided p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1 and p̄(2) ≥ 0. This theory

satisfies a version of Poincaré duality but is somewhat complicated. We will return to this

below in Section 11.

Alternatively, a modification of the chain theory whose homology agrees with the hyper-

cohomology of the Deligne sheaf even for superperversities (up to the appropriate reindexing)

was introduced independently by the author in [26] and by Saralegi in [54]. This chain the-

ory has the satisfying property of maintaining the cone formula (1) for completely general

perversities, even those that are not necessarily non-decreasing, while yielding the usual

intersection homology groups for GM perversities. Recently, the author has found also a
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generalization of the Deligne sheaf construction that yields sheaf complexes whose hyperco-

homology groups agree with the homology groups of this chain theory and are the usual ones

for GM perversities. Of course these groups generally will not be independent of the strati-

fication, but they do possess Poincaré duality for pseudomanifolds. Thus this theory seems

to be a reasonable candidate for the most general possible intersection homology theory. We

will describe this theory and its characteristics in the following sections.

Superperversities and codimension one strata. It is a remarkable point of interest

that the perversity issues we have been discussing provide some additional insight into why

codimension one strata needed to be left out of the definition of stratified pseudomanifolds

used by Goresky and MacPherson (though I do not know if it was clear that this was the

issue at the time). On the one hand, if we assume that X has a codimension one stratum and

let p̄(1) = 0, then p̄(1) is greater than t̄(1), which we would expect to be 1− 2 = −1, and so

we run into the trouble with the cone formula described earlier in this section. On the other

hand, if we let q̄(1) = t̄(1) = −1, then we run into the trouble with negative perversities

described prior to that. In this latter case, the Deligne sheaf is always trivial, yielding only

trivial sheaf intersection homology, so there can be no non-trivial Poincaré duality via the

sheaf route (note that p̄(1) = 0 and q̄(1) = −1 are dual perversities at k = 1, so any

consideration of duality involving the one perversity would necessarily involve the other).

Similarly, there is no duality in the chain version since, for example, if Xn ⊃ Xn−1 is S1 ⊃ pt

then easy computations shows that I q̄H1(X) ∼= Hc
1(S1 − pt) = 0, while I p̄H0(X) ∼= Z. Note

that the first computation shows that we have also voided the stratification independence of

intersection homology.

One of the nice benefits of our (and Saralegi’s) “correction” to chain-theoretic intersection

homology is that it allows one to include codimension one strata and still obtain Poincaré

duality results. In general, though, the stratification independence does need to be sacrificed.

One might argue that this is the preferred trade-off, since one might wish to use duality as

a tool to study spaces together with their stratifications.

6 “Correcting” the definition of intersection chains

As we observed in the previous section, if p̄ is a superperversity (i.e. p̄(k) > k−2 for some k),

then the Deligne sheaf version of intersection homology and the chain version of intersection

homology need no longer agree. Modifications of the chain theory to correct this anomaly

were introduced by the author in [26] and by Saralegi in [54], and these have turned out

to provide a platform for the extension of other useful properties of intersection homology,

including Poincaré duality. These modifications turn out to be equivalent, as proven in [28].

We first present the author’s version, which is slightly more general in that it allows for the

use of local coefficient systems on X −Xn−1.

As we saw in Section 5, the discrepancy between the sheaf cone formula and the chain

cone formulas arises because the boundary of a 1-chain that is the cone on a 0-chain has

a 0-simplex at the cone point. So to fix the cone formula, it is necessary to find a way to
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make the extra 0 simplex go away. This is precisely what both the author’s and Saralegi’s

corrections do, though how they do it is described in different ways.

Motivated by the fact that Goresky-MacPherson perversity intersection chains need only

have their coefficients well-defined on X − Xn−2, the author’s idea was to extend the co-

efficients G on X − Xn−1 (now allowing codimension one strata) to a stratified coefficient

system by including a “zero coefficient system” on Xn−1. Together these are denote G0.

Then a coefficient on a singular simplex σ : ∆i → X is defined by a lift of σ|σ−1(X−Xn−1)

to the bundle G on X −Xn−1 and by a “lift” of σ|σ−1(Xn−1) to the 0 coefficient system over

Xn−1. Boundary faces then inherit their coefficients from the simplices they are boundaries

of by restriction. A simplex has coefficient 0 if its coefficient lift is to the zero section over

all of ∆i. In the PL setting, coefficients of PL simplices are defined similarly. In principle,

there is no reason the coefficient system over Xn−1 must be trivial, and one could extend

this definition by allowing different coefficient systems on all the strata of X; however, this

idea has yet to be investigated.

With this coefficient system G0, the intersection chain complex I p̄S∗(X;G0) is defined

exactly as it is with ordinary coefficients - allowability of simplices is determined by the

same formula, and chains are allowable if each simplex with a non-zero coefficient in the

chain is allowable. So what has changed? The subtle difference is that if a simplex that

is in the boundary of a chain has support in Xn−1, then that boundary simplex must now

have coefficient 0, since that is the only possible coefficient for simplices in Xn−1; thus such

boundary simplices vanish and need not be tested for allowability. This simple idea turns

out to be enough to fix the cone formula.

Indeed, let us reconsider the example of a point x in cL − (cL)k−2, together with a

coefficient lift to G, representing a cycle in I p̄Sc0(cL;G0), where p̄(k) = k−1. As before, c̄x is

a 1-simplex, and it is allowable. Previously, c̄x was not, however, allowable as a chain since

the component of ∂(c̄x) in the cone vertex was not allowable. However, if we consider the

boundary of c̄x in I p̄Sc0(cL;G0), then the simplex at the cone point vanishes because it must

have a zero coefficient there. Thus allowability is not violated by c̄x; it is now an allowable

chain.

A slightly more detailed computation (see [26]) shows that, in fact,

I p̄Hc
i (cL

k−1;G0) ∼=

{
0, i ≥ k − 1− p̄(k),

I p̄Hc
i (L;G0), i < k − 1− p̄(k),

(8)

i.e. we recover the cone formula, even if p̄(k) > k − 2.

Another pleasant feature of I p̄H∗(X;G0) is that if p̄ does happen to be a GM perversity

and X has no codimension one strata, then I p̄H∗(X;G0) ∼= I p̄H∗(X;G), the usual intersection

homology. In fact, this follows from our discussion in Section 3.1, where we noted that if

p̄ is a GM perversity then no allowable i-simplices intersect Xn−2 in either the interiors of

their i faces or the interiors of their i− 1 faces. Thus no boundary simplices can lie entirely

in Xn−2 and canceling of boundary simplices due to the stratified coefficient system does

not occur. Thus I p̄H∗(X;G0) legitimately extends the original Goresky-MacPherson theory.

Furthermore, working with this “corrected” cone formula, one can show that the resulting
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intersection homology groups I p̄H∞∗ (X;G0) agree on topological stratified pseudomanifolds

(modulo the usual reindexing issues) with the Deligne sheaf hypercohomology groups (and

similarly with compact supports), assuming that p̄(2) ≥ 0 and that p̄ is non-decreasing. This

was proven in [26] under the assumption that p̄(2) = 0 or 1 and that p̄(k) ≤ p̄(k + 1) ≤
p̄(k) + 1, but the more general case follows from [22].

Thus, in summary, I p̄H∗(X;G0) satisfies the cone formula, generalizes intersection homol-

ogy with GM perversities, admits codimension one strata, and agrees with the Deligne sheaf

for the superperversities we have considered up to this point. It turns out that stratified

coefficients also permit useful results for even more general contexts.

Remark 6.1. A similar idea for modifying the definition of intersection homology for non-GM

perversities occurs in the unpublished notes of MacPherson [44]. There, only locally-finite

chains in X−Xn−1 are considered, but their closures in X are used to determine allowability.

7 General perversities

We have now seen that stratified coefficients G0 allow us to recover the cone formula (8)

both when p̄ is a GM perversity and when it is a non-decreasing superperversity. How

far can we push this? The answer turns out to be “quite far!” In fact, the cone formula

will hold if p̄ is completely arbitrary. Recall that we have defined a stratum of X to be a

connected component of any Xk = Xk − Xk−1. For a stratified pseudomanifold, possibly

with codimension one strata, we define a general perversity p̄ on X to be a function

p̄ : {singular strata of X} → Z.

Then a singular simplex σ : ∆i → X is p̄-allowable if

σ−1(Z) ⊂ {i− codim(Z) + p̄(Z) skeleton of ∆i}

for each singular stratum Z of X. Even in this generality, the cone formula (8) holds for

I p̄Hc
∗(cL

k−1;G0), replacing p̄(k) with p̄(v), where v is the cone vertex.

Such general perversities were considered in [44], following their appearance in the realm

of perverse sheaves (see [4] and Section 8.2, below), and they appear in the work of Saralegi

on intersection differential forms [53, 54]. They also play an important role in the intersection

homology Künneth theorem of [28], which utilizes “biperversities” in which the set Xk×Yl ⊂
X × Y is given a perversity value depending on p̄(k) and q̄(l) for two perversities p̄, q̄ on X

and Y , respectively; see Section 9, below.

In this section, we discuss some of the basic results on intersection homology with general

perversities, most of which generalize the known theorems for GM perversities. We continue,

for the most part, with the chain theory point of view. In Section 8, we will return to sheaf

theory and discuss sheaf-theoretic techniques for handling general perversities.

Remark 7.1. One thing that we can continue to avoid in defining general perversities is

assigning perversity values to regular strata (those in X −Xn−1) and including this as part

of the data to check for allowability. The reason is as follows: If Z is a regular stratum, the
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allowability conditions for a singular i-simplex σ would include the condition that σ−1(Z) lie

in the i+ p̄(Z) skeleton of ∆i. If p̄(Z) ≥ 0, then this is true of any singular i-simplex, and if

p̄(Z) < 0, then this would imply that the singular simplex must not intersect Z at all, since

Xn−1 is a closed subset of X. Thus there are essentially only two possibilities. The case

p̄(Z) ≥ 0 is the default that we work with already (without explicitly checking the condition

that would always be satisfied on regular strata). On the other hand, the case p̄(Z) < −1 is

something of a degeneration. If p̄(Z) < 0 for all regular strata, then all singular chains must

be supported in Xn−1 and so I p̄S∗(X;G0) = 0. If there are only some regular strata such

that p̄(Z) < 0, then, letting X+ denote the pseudomanifold that is the closure of the union

of the regular strata Z of X such that p̄(Z) ≥ 0, we have I p̄H∗(X;G0) ∼= I p̄H∗(X
+;G0|X+).

We could have simply studied intersection homology on X+ in the first place, so we get

nothing new. Thus it is reasonable to concern ourselves only with singular strata in defining

allowability of simplices.

This being said, there are occasional situations where it is useful in technical formulae to

assume that p̄(Z) is defined for all strata. This comes up, for example, in [28], where we define

perversities on product strata Z1 × Z2 ⊂ X1 ×X2 using formulas such as Q{p̄,q̄}(Z1 × Z2) =

p̄(Z1) + q̄(Z2) for perversities p̄, q̄. Here Z1 × Z2 may be a singular stratum, for example,

even if Z1 is regular but Z2 is singular. The formula has the desired consequence in [28] by

setting p̄(Z1) = 0 for Z1 regular, and this avoids having to write out several cases.

Efficient perversities. It turns out that such generality contains a bit of overkill. In [22],

we define a general perversity p̄ to be efficient if −1 ≤ p̄(Z) ≤ codim(Z)−1 for each singular

stratum Z ⊂ X. Given a general p̄, we define its efficientization p̌ as

p̌(Z) =


codim(Z)− 1, if p̄(Z) ≥ codim(Z)− 1,

p̄(Z), if 0 ≤ p̄(Z) ≤ codim(Z)− 2,

−1, if p̄(Z) ≤ −1.

It is shown in [22, Section 2] that I p̄H∗(X;G0) ∼= I p̌H∗(X;G0). Thus it is always sufficient

to restrict attention to the efficient perversities.

Efficient perversities and interiors of simplices. Efficient perversities have a nice

feature that makes them technically better behaved than the more general perversities. If p̄

is a perversity for which p̄(Z) ≥ codim(Z) for some singular stratum Z, then any i-simplex

σ will be p̄-allowable with respect to Z. In particular, Z will be allowed to intersect the

image under σ of the interior of ∆i. As such, σ−1(X − Xn−1) could potentially have an

infinite number of connected components, and a coefficient of σ might lift each component

to a different branch of G, even if G is a constant system. This could potentially lead to

some pathologies, especially when considering intersection chains from the sheaf point of

view. However, if p̄ is efficient, then for a p̄-allowable σ we must have σ−1(X−Xn−1) within

the i−1 skeleton of ∆i. Hence assigning a coefficient lift value to one point of the interior of

∆i determines the coefficient value at all points (on σ−1(X −Xn−1) by the unique extension
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of the lift and on σ−1(Xn−1), where it is 0). This is technically much simpler and makes the

complex of chains in some sense smaller.

In [28], the complex I p̄S∗(X;G0) was defined with the assumption that this “unique

coefficient” property holds, meaning that a coefficient should be determined by its lift at a

single point. However, as noted in [28, Appendix], even for inefficient perversities, this does

not change the intersection homology. So we are free to assume all perversities are efficient,

without loss of any information (at least at the level of quasi-isomorphism), and this provides

a reasonable way to avoid the issue entirely.

7.1 Properties of intersection homology with general perversities

and stratified coefficients

One major property that we lose in working with general perversities and stratified coef-

ficients is independence of stratification. However, most of the other basic properties of

intersection homology survive, including Poincaré duality, some of them in even a stronger

form than GM perversities allow.

Basic properties. Suppose Xn is a topological stratified pseudomanifold, possibly with

codimension one strata, let G be a coefficient system on X − Xn−1, and let p̄ be a general

perversity. What properties does I p̄H∗(X;G0) possess?

For one thing, the most basic properties of intersection homology remain intact. It is

invariant under stratum-preserving homotopy equivalences, and it possesses an excision prop-

erty, long exact sequences of the pair, and Mayer-Vietoris sequences. The Künneth theorem

when one term is an unstratified manifold M holds true (i.e. I p̄Sc∗(X×M ; (G×G ′)0) is quasi-

isomorphic to I p̄Sc∗(X;G0) ⊗ Sc∗(M ;G ′0)). There are versions of this intersection homology

with compact supports and with closed supports. And U → I p̄S∗(X,X− Ū ;G0) sheafifies to

a homotopically fine sheaf whose hypercohomology groups recover the intersection homology

groups, up to reindexing. It is also possible to work with PL chains on PL pseudomanifolds.

For more details, see [26, 22].

Duality. Let us now discuss Poincaré duality in our present context.

Theorem 7.2 (Poincaré duality). If F is a field8, X is an F -oriented n-dimensional strati-

fied pseudomanifold, and p̄+ q̄ = t̄ (meaning that p̄(Z)+ q̄(Z) = codim(Z)−2 for all singular

strata Z), then

I p̄H∞i (X;F0) ∼= Hom(I q̄Hc
n−i(X;F0), F ).

For compact orientable PL pseudomanifolds without codimension one strata and with

GM perversities, this was initially proven in [32] via a combinatorial argument; a proof

extending to the topological setting using the axiomatics of the Deligne sheaf and Verdier

duality was obtained in [33]. This Verdier duality proof was extended to the current setting

in [22] using a generalization of the Deligne sheaf that we will discuss in the following section.

8Recall that even in the Goresky-MacPherson setting, duality only holds, in general, with field coefficients.
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It also follows from the theory of perverse sheaves [4]. Recent work of the author and Jim

McClure in [31] shows that intersection homology Poincaré duality can be proven using a

cap product with an intersection homology orientation class by analogy to the usual proof

of Poincaré duality on manifolds (see, e.g. [36]). A slightly more restrictive statement

(without proof) of duality for general perversities appears in the unpublished lecture notes

of MacPherson [44] as far back as 1990.

As is the case for classical intersection homology, more general duality statements hold.

These can involve local-coefficient systems, non-orientable pseudomanifolds, and, if X is

locally (p̄, R)-torsion free for the principal ideal domain R, then there are torsion linking

and mod torsion intersection dualities over R. For complete details, see [22].

Pseudomanifolds with boundary and Lefschetz duality. General perversities and

stratified coefficients can also be used to give an easy proof of a Lefschetz version of the

duality pairing, one for which X is a pseudomanifold with boundary:

Definition 7.3. An n-dimensional stratified pseudomanifold with boundary is a pair (X, ∂X)

such that X−∂X is an n-dimensional stratified pseudomanifold and the boundary ∂X is an

n−1 dimensional stratified pseudomanifold possessing a neighborhood in X that is stratified

homeomorphic to ∂X× [0, 1), where [0, 1) is unstratified and ∂X× [0, 1) is given the product

stratification.

Remark 7.4. A pseudomanifold may have codimension one strata that are not part of a

boundary, even if they would be considered part of a boundary otherwise. For example, let

M be a manifold with boundary ∂M (in the usual sense). If we consider M to be unstratified,

then ∂M is the boundary of M . However, if we stratify M by the stratification M ⊃ ∂M ,

then ∂M is not a boundary of M as a stratified pseudomanifold, and in this case M is a

stratified pseudomanifold without boundary.

We can now state a Lefschetz duality theorem for intersection homology of pseudomani-

folds with boundary.

Theorem 7.5 (Lefschetz duality). If F is a field, X is a compact F -oriented n-dimensional

stratified pseudomanifold, and p̄ + q̄ = t̄ (meaning that p̄(Z) + q̄(Z) = codim(Z) − 2 for all

singular strata Z), then

I p̄Hi(X;F0) ∼= Hom(I q̄Hn−i(X, ∂X;F0), F ).

This duality also can be extended to include local-coefficient systems, non-compact or

non-orientable pseudomanifolds, and, if X is locally (p̄, R)-torsion free for the principal ideal

domain R, then there are torsion linking and mod torsion intersection dualities over R.

In fact, in the setting of intersection homology with general perversities, this Lefschetz

duality follows easily from Poincaré duality. To see this, let X̂ = X ∪∂X c̄∂X, the space

obtained by adjoining to X a cone on the boundary (or, equivalently, pinching the boundary

to a point). Let v denote the vertex of the cone point. Let p̄−, q̄+ be the dual perversities

on X̂ such that p̄−(Z) = p̄(Z) and q̄+(Z) = q̄(Z) for each stratum Z of X, p̄−(v) = −2, and
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q̄+(v) = n. Poincaré duality gives a duality isomorphism between I p̄−H∗(X̂) and I q̄+H∗(X̂).

But now we simply observe that I p̄−H∗(X̂) ∼= I p̄−H∗(X̂ − v) ∼= I p̄H∗(X), because the

perversity condition at v ensures that no singular simplex may intersect v. On the other

hand, since I q̄+H∗(c∂X) = 0 by the cone formula, I q̄+H∗(X̂) ∼= I q̄+H∗(X̂, c̄∂X) by the long

exact sequence of the pair, but I q̄+H∗(X̂, c̄∂X) ∼= I q̄+H∗(X, ∂X) ∼= I q̄H∗(X, ∂X) by excision.

Notice that general perversities are used in this argument even if p̄ and q̄ are GM per-

versities.

PL intersection Pairings. As in the classical PL manifold situation, the duality iso-

morphism of intersection homology arises out of a more general pairing of chains. In [32],

Goresky and MacPherson defined the intersection pairing of PL intersection chains in a PL

pseudomanifold as a generalization of the classical manifold intersection pairing. For mani-

folds, the intersection pairing is dual to the cup product pairing in cohomology. Given a ring

R and GM perversities p̄, q̄, r̄ such that p̄+ q̄ ≤ r̄, Goresky and MacPherson constructed an

intersection pairing

I p̄Hc
i (X;R)⊗ I q̄Hc

j (X;R)→ I r̄Hc
i+j−n(X;R).

This pairing arises by pushing cycles into a stratified version of general position due to

McCrory [47] and then taking chain-theoretic intersections.

The Goresky-MacPherson pairing is limited in that a p̄-allowable chain and a q̄-allowable

chain can be intersected only if there is a GM perversity r̄ such that p̄+ q̄ ≤ r̄. In particular,

we must have p̄+ q̄ ≤ t. This is more than simply a failure of the intersection of the chains

to be allowable with respect to a GM perversity — if p̄+ q̄ 6≤ t̄, then there are even technical

difficulties with defining the intersection product in the first place. See [22, Section 5] for an

in depth discussion of the details.

If we work with stratified coefficients, however, the problems mentioned in the preceding

paragraphs can be circumvented, and we obtain pairings

I p̄Hi(X;R0)⊗ I q̄Hj(X;R0)→ I r̄Hi+j−n(X;R0)

for any general perversities such that p̄+ q̄ ≤ r̄.

Goresky and MacPherson extended their intersection pairing to topological pseudoman-

ifolds using sheaf theory [33]. This can also be done for general perversities and stratified

coefficients, but first we must revisit the Deligne sheaf construction. We do so in the next

section.

A new approach to the intersection pairing via intersection cohomology cup products is

presently being pursued by the author and McClure in [31].

Further applications. Some further applications of general perversity intersection ho-

mology will be discussed below in Section 9.
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8 Back to sheaf theory

8.1 A generalization of the Deligne construction

Intersection chains with stratified coefficients were introduced to provide a chain theory

whose homology agrees with the hypercohomology of the Deligne sheaf when p̄ is a super-

perversity, in particular when p̄(2) > 0 or when X has codimension one strata. However,

when p̄ is a general perversity, our new chain formulation no long agrees with the Deligne

construction. For one thing, we know that if p̄ is ever negative, the Deligne sheaf is triv-

ial. The classical Deligne construction also has no mechanism for handling perversities that

assign different values to strata of the same codimension, and, even if we restrict to less

general perversities, any decrease in perversity value at a later stage of the Deligne process

will truncate away what might have been vital information coming from an earlier stage.

Thus, we need a generalization of the Deligne process that incorporates general perversities

and stratified coefficients. One method was provided by the author in [22], and we describe

this now.

The first step is to modify the truncation functor to be a bit more picky. Rather than

truncating a sheaf complex in the same degree at all stalks, we truncate more locally. This

new truncation functor is a further generalization of the “truncation over a closed subset”

functor presented in [33, Section 1.14] and attributed to Deligne; that functor is used in [33,

Section 9] to study extensions of Verdier duality pairings in the context of intersection homol-

ogy with GM perversities. Our construction is also related to the “intermediate extension”

functor in the theory of perverse sheaves; we will discuss this in the next subsection.

Definition 8.1. Let A∗ be a sheaf complex on X, and let F be a locally-finite collection of

subsets of X. Let |F| = ∪V ∈FV . Let P be a function F→ Z. Define the presheaf T F
≤PA∗ as

follows. If U is an open set of X, let

T F
≤PA

∗(U) =

{
Γ(U ;A∗), U ∩ |F| = ∅,
Γ(U ; τ≤inf{P (V )|V ∈F,U∩V 6=∅}A∗), U ∩ |F| 6= ∅.

Restriction is well-defined because if m < n there is a natural inclusion τ≤mA∗ ↪→ τ≤nA∗.
Let the generalized truncation sheaf τF

≤PA∗ be the sheafification of T F
≤PA∗.

For maps f : A∗ → B∗ of sheaf complexes over X, we can define τF
≤Pf in the obvious way.

In fact, T F
≤Pf is well-defined by applying the ordinary truncation functors on the appropriate

subsets, and we obtain τF
≤Pf again by passing to limits in the sheafification process.

Using this truncation, we can modify the Deligne sheaf.

Definition 8.2. Let X be an n-dimensional stratified pseudomanifold, possibly with codi-

mension one strata, let p̄ be a general perversity, let G be a coefficient system on X −Xn−1,

and let O be the orientation sheaf on X −Xn−1. Let Xk stand also for the set of strata of

dimension k. Then we define the generalized Deligne sheaf as9

Q∗p̄,G = τX0
≤p̄Rin∗ . . . τ

Xn−1

≤p̄ Ri1∗(G ⊗ O).

9This definition differs from that in [22] by the orientation sheaf O - see Remark 4.1 on page 13. For
consistency, we also change notation slightly to include G as a subscript rather than as an argument.

28



If p̄ is a GM perversity, then it is not hard to show directly thatQ∗p̄,G is quasi-isomorphic to

the usual Deligne sheaf P∗p̄,G. Furthermore, it is shown in [22] that Q∗p̄,G is quasi-isomorphic

to the sheaf generated by the presheaf U → I p̄Sn−∗(X,X − Ū ;G0), and so H∗(Q∗p̄,G) ∼=
I p̄H∞n−∗(X;G0) and similarly for compact supports. It is also true, generalizing the Goresky-

MacPherson case, that if p̄+ q̄ = t̄, then Q∗p̄ and Q∗q̄ are appropriately Verdier dual, leading

to the expected Poincaré and Lefschetz duality theorems. Furthermore, for any general

perversities such that p̄ + q̄ ≤ r̄, there are sheaf pairings Q∗p̄ ⊗ Q∗q̄ → Q∗r̄ that generalize

the PL intersection pairing. If p̄ + q̄ ≤ t̄, there is also a pairing Q∗p̄ ⊗Q∗q̄ → D∗X [−n], where

D∗X [−n] is the shifted Verdier dualizing complex on X. See [22] for the precise statements

of these results.

8.2 Perverse sheaves

The theory of perverse sheaves provided, as far back as the early 1980s, a context for the

treatment of general perversities. To quote Banagl’s introduction to [2, Chapter 7]:

In discussing the proof of the Kazhdan-Lusztig conjecture, Beilinson, Bernstein

and Deligne discovered that the essential image of the category of regular holo-

nomic D-modules under the Riemann-Hilbert correspondence gives a natural

abelian subcategory of the nonabelian bounded constructible derived category

[of sheaves] on a smooth complex algebraic variety. An intrinsic characterization

of this abelian subcategory was obtained by Deligne (based on discussions with

Beilinson, Bernstein, and MacPherson), and independently by Kashiwara. It

was then realized that one still gets an abelian subcategory if the axioms of the

characterization are modified to accommodate an arbitrary perversity function,

with the original axioms corresponding to the middle perversity. The objects of

these abelian categories were termed perverse sheaves...

Thus, the phrase “perverse sheaves” refers to certain subcategories, indexed by various

kinds of perversity functions, of the derived category of bounded constructible sheaf com-

plexes on a space X. The general theory of perverse sheaves can handle general perversities,

though the middle perversities are far-and-away those most commonly encountered in the

literature (and, unfortunately, many expositions restrict themselves solely to this case). The

remarkable thing about these categories of perverse sheaves is that they are abelian, which

the derived category is not (it is only “triangulated”).10 The Deligne sheaf complexes on the

various strata of X (and with appropriate coefficients systems) turn out to be the simple

objects of these subcategories.

The construction of perverse sheaves is largely axiomatic, grounded in a number of quite

general categorical structures. It would take us well too far afield to provide all the details.

Rather, we provide an extremely rough sketch of the ideas and refer the reader to the

10 There is an old joke in the literature that perverse sheaves are neither perverse nor sheaves. The first
claim reflects the fact that perverse sheaves form abelian categories, which are much less “perverse” than
triangulated categories. The second reflects simply the fact that perverse sheaves are actually complexes of
sheaves.
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following excellent sources: [4], [40, Chapter X], [2, Chapter 7], [5], and [20, Chapter 5]. For

a more historical account, the reader should see [43].

The starting point for any discussion of perverse sheaves is the notion of T -structures.

Very roughly, a T -structure on a triangulated categoryD is a pair of subcategories (D≤0, D≥0)

that are complementary, in the sense that for any S in D, there is a distinguished triangle

S1 → S → S2,

with S1 ∈ D≤0 and S2 in D≥0. Of course there are a number of axioms that must be

satisfied and that we will not discuss here. The notation reflects the canonical T -structure

that occurs on the derived category of sheaves on a space X: D≤0(X) is defined to be those

sheaf complexes S∗ such that Hj(S∗) = 0 for j > 0, and D≥0(X) is defined to be those sheaf

complexes S∗ such that Hj(S∗) = 0 for j < 0. Here H∗(S∗) denotes the derived cohomology

sheaf of the sheaf complex S∗, such that H∗(S∗)x = H∗(S∗x).

The heart (or core) of a T -structure is the intersection D≤0 ∩ D≥0. It is always an

abelian category. In our canonical example, the heart consists of the sheaf complexes with

nonvanishing cohomology only in degree 0. In this case, the heart is equivalent to the abelian

category of sheaves on X. Already from this example, we see how truncation might play

a role in providing perverse sheaves - in fact, for the sheaf complex S∗, the distinguished

triangle in this example is provided by

τ≤0S∗ → S∗ → τ≥0S∗.

Furthermore, this example can be modified easily by shifting the truncation degree from 0

to any other integer k. This T -structure is denoted (D≤k(X), D≥k(X)).

The next important fact about T -structures is that if X is a space, U is an open subspace,

F = X−U , and T -structures satisfying sufficient axioms on the derived categories of sheaves

on U and F are given, they can be “glued” to provide a T -structure on the derived category

of sheaves on X. The idea the reader should have in mind now is that of gluing together

sheaves truncated at a certain dimension on U and at another dimension on F . This then

starts to look a bit like the Deligne process. In fact, let P be a perversity11 on the two

stratum space X ⊃ F , and let (D≤P (U)(U), D≥P (U)(U)) and (D≤P (F )(F ), D≥P (F )(F )) be T -

structure on U and F . Then these T -structures can be glued to form a T -structure on X,

denoted (PD≤0, PD≥0).

It turns out that the subcategories PD≤0 and PD≥0 can be described quite explicitly. If

i : U ↪→ X and j : F ↪→ X are the inclusions, then

PD≤0 = {S∗ ∈ D+(X) | Hk(i∗S∗) = 0 for k > P (U) and Hk(j∗S∗) = 0 for k > P (F )}
PD≥0 = {S∗ ∈ D+(X) | Hk(i∗S∗) = 0 for k < P (U) and Hk(j!S∗) = 0 for k < P (F )}.

If S∗ is in the heart of this T -structure, we say it is P -perverse.

11The reason we use P here for a perversity, departing from both our own notation, above, and from the
notation in most sources on perverse sheaves (in particular [4]) is that when we use perverse sheaf theory,
below, to recover intersection homology, there will be a discrepancy between the perversity P for perverse
sheaves and the perversity p̄ for the Deligne sheaf.
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More generally, if X is a space with a variety of singular strata Z and P is a perversity

on the stratification of X, then it is possible to glue T -structures inductively to obtain

the category of P -perverse sheaves. If jZ : Z ↪→ X are the inclusions, then the P -perverse

sheaves are those which satisfy Hk(j∗ZS∗) = 0 for k > P (Z) and Hk(j!
ZS∗) = 0 for k < P (Z).

These two conditions turn out to be remarkably close to the conditions for S∗ to satisfy

the Deligne sheaf axioms AX1. In fact, the conditionHk(j∗ZS∗) = 0 for k > P (Z) is precisely

the third axiom. The condition Hk(j!
ZS∗) = 0 for k < P (Z) implies that the local attaching

map is an isomorphism up to degree P (Z)−2; see [6, page 87]. Notice that this is a less strict

requirement than that for the Deligne sheaf. Thus, Deligne sheaves are perverse sheaves,

but not necessarily vice versa.

The machinery developed in [4] also contains a method for creating sheaf complexes that

satisfy the intersection homology axioms AX1, though again it is more of an axiomatic

construction than the concrete construction provided in Section 8.1. Let U ⊂ X be an open

subset of X that is a union of strata, let i : U ↪→ X be the inclusion, and let S∗ be a

P -perverse sheaf on U . Then there is defined in [4] the “intermediate extension functor”

i!∗ such that i!∗S∗ is the unique extension in the category of P -perverse sheaves of S∗ to

X (meaning that the restriction of i!∗S∗ to U is quasi-isomorphic to S∗) such that for each

stratum Z ⊂ X − U and inclusion j : Z ↪→ X,we have Hk(j∗i!∗S∗) = 0 for k ≥ P (Z) and

Hk(j!i!∗S∗) = 0 for k ≤ P (Z). We refer the reader to [4, Section 1.4] or [20, Section 5.2] for

the precise definition of the functor i!∗.

In particular, suppose we let U = X − Xn−1, that S∗ is just the local system G, and

that p̄ is a general perversity on X. The sheaf G is certainly P -perverse on U with respect

to the perversity P (U) = 0. Now let P (Z) = p̄(Z) + 1. It follows that for each singular

stratum inclusion j : Z ↪→ X, we have Hk(j∗i!∗G) = 0 for k > p̄(Z) and Hk(j!i!∗G) = 0

for k ≤ p̄(Z) + 1. In the presence of the first condition, the second condition is equivalent

to the attaching map being an isomorphism up through degree p̄(Z); see [6, page 87]. But,

according to the axioms AX1, these conditions are satisfied by the perversity p̄ Deligne sheaf,

which is also easily seen to be P -perverse. Thus, since i!∗G is the unique extension of G with

these properties, i!∗G is none other than the Deligne sheaf (up to quasi-isomorphism)! Thus

we can think of the Deligne process provided in Section 8.1 as a means to provide a concrete

realization of i!∗G.

9 Recent and future applications of general perversi-

ties

Beyond extending the results of intersection homology with GM perversities, working with

general perversities makes possible new results that do not exist in “classical” intersection

homology theory. For example, we saw in Sections 7 and 8 that general perversities permit

the definition of PL or sheaf-theoretic intersection pairings with no restrictions on the perver-

sities of the intersection homology classes being intersected. In this section, we review some

other recent and forthcoming results made possible by intersection homology with general

perversities.
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Künneth theorems and cup products. In [28], general perversities were used to pro-

vide a very general Künneth theorem for intersection homology. Some special cases had

been known previously. King [41] showed that for any loose perversity I p̄Hc
∗(M × X) ∼=

H∗(C
c
∗(M) ⊗ I p̄Cc

∗(X)) when X is a pseudomanifold, M is an unstratified manifold, and

(M × X)i = M × X i. Special cases of this result were proven earlier by Cheeger [16],

Goresky and MacPherson [32, 33], and Siegel [55]. In [18], Cohen, Goresky, and Ji provided

counterexamples to the existence of a general Künneth theorem for a single perversity and

showed that I p̄Hc
∗(X × Y ;R) ∼= H∗(I

p̄Cc
∗(X;R) ⊗ I p̄Cc

∗(Y ;R)) for pseudomanifolds X and

Y and a principal ideal domain R provided either that

1. p̄(a) + p̄(b) ≤ p̄(a+ b) ≤ p̄(a) + p̄(b) + 1 for all a and b, or that

2. p̄(a) + p̄(b) ≤ p̄(a + b) ≤ p̄(a) + p̄(b) + 2 for all a and b and either X or Y is locally

(p̄, R)-torsion free.

The idea of [28] was to ask a broader question: for what perversities on X × Y is the

intersection chain complex quasi-isomorphic to I p̄Cc
∗(X;R0) ⊗ I q̄Cc

∗(X;R0)? This question

encompasses the Cohen-Goresky-Ji Künneth theorem and the possibility of both GM and

non-GM perversities p̄, q̄. However, in order to avoid the fairly complicated conditions on

a single perversity found by Cohen, Goresky, and Ji, it is reasonable to consider general

perversities on X × Y that assign to a singular stratum Z1×Z2 a value depending on p̄(Z1)

and q̄(Z2). Somewhat surprisingly, there turn out to be many perversities on X × Y that

provide the desired quasi-isomorphism. The main result of [28] is the following theorem.

The statement is reworded here to account for the most general case (see [28, Theorem 3.2,

Remark 3.4, Theorem 5.2]), while the statement in [28] is worded to avoid overburdening the

reader too much with details of stratified coefficients, which play a minimal role that paper.

Theorem 9.1. If R is a principal ideal domain and p̄ and q̄ are general perversities, then

IQHc
∗(X × Y ;R0) ∼= H∗(I

p̄Cc
∗(X;R0)⊗ I q̄Cc

∗(Y ;R0)) if the following conditions hold:

1. Q(Z1 ×Z2) = p̄(Z1) if Z2 is a regular stratum of Y and Q(Z1 ×Z2) = q̄(Z2) if Z1 is a

regular stratum of X,

2. For each pair Z1 × Z2 such that Z1 and Z2 are each singular strata, either

(a) Q(Z1 × Z2) = p̄(Z1) + q̄(Z2), or

(b) Q(Z1 × Z2) = p̄(Z1) + q̄(Z2) + 1, or

(c) Q(Z1×Z2) = p̄(Z1)+q̄(Z2)+2 and the torsion product I p̄Hcodim(Z1)−2−p̄(Z1)(L1;R0)∗
I q̄Hcodim(Z2)−2−q̄(Z2)(L2;R0) = 0, where L1, L2 are the links of Z1, Z2 in X, Y , re-

spectively, and codim refers to codimension in X or Y , as appropriate.

Furthermore, if these conditions are not satisfied, then IQHc
∗(X × Y ;R0) will not equal

H∗(I
p̄Cc
∗(X;R0)⊗ I q̄Cc

∗(Y ;R0)) in general.
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Of course the torsion condition in (2c) will be satisfied automatically if R is a field or

if X or Y is locally (p̄, R)- or (q̄, R)-torsion free. Note also that it is not required that a

consistent choice among the above options be made across all products of singular strata -

for each such Z1 × Z2 one can choose independently which perversity to use from among

options (2a), (2b), or, assuming the hypothesis, (2c). The theorem can also be generalized

further to include stratified local coefficient systems on X or Y ; we leave the details to the

reader.

This Künneth theorem has opened the way toward other results in intersection homol-

ogy, including the formulation by the author and Jim McClure of an intersection coho-

mology cup product over field coefficients that they expect to be dual to the Goresky-

MacPherson intersection pairing. There does not seem to have been much past research

done on or with intersection cohomology in the sense of the homology groups of cochains

Ip̄C
∗(X;R0) = Hom(I p̄Cc

∗(X;R0);R). One important reason would seem to be the prior lack

of availability of a geometric cup product. A cup product using the Alexander-Whitney map

is unavailable in intersection homology since it does not preserve the admissibility conditions

for intersection chains - in other words, breaking chains into “front p-faces and back q-faces”

(see [49, Section 48]) might destroy allowability of simplices. However, there is another clas-

sical approach to the cup product that can be adapted to intersection cohomology, provided

one has an appropriate Künneth theorem. For ordinary homology, this alternative approach

is to define a diagonal map (with field coefficients) as the composite

Hc
∗(X)→ Hc

∗(X ×X)
∼=← Hc

∗(X)⊗Hc
∗(X),

where the first map is induced by the geometric diagonal inclusion map and the second

is the Eilenberg-Zilber shuffle product, which is an isomorphism by the ordinary Künneth

theorem with field coefficients (note that the shuffle product should have better geometric

properties than the Alexander-Whitney map because it is really just Cartesian product). The

appropriate Hom dual of this composition yields the cup product. This process suggests

doing something similar in intersection homology with field coefficients, and indeed the

Künneth theorem of [28] provides the necessary righthand quasi-isomorphism in a diagram

of the form

I s̄Hc
∗(X;F0)→ IQHc

∗(X ×X;F0)
∼=← I p̄Hc

∗(X;F0)⊗ I q̄Hc
∗(X;F0).

There results a cup product

Ip̄H
∗(X;F0)⊗ Iq̄H∗(X;F0)→ Is̄H

∗(X;F0)

when p̄+ q̄ ≥ t̄+ s̄.

The intersection Künneth theorem also allows for a cap product of the form

Ip̄H
i(X;F0)⊗ I s̄Hc

j (X;F0)→ I q̄Hc
j−i(X;F0)

for any field F and any perversities satisfying p̄+ q̄ ≥ t̄+ s̄. This makes possible a Poincaré

duality theorem for intersection (co)homology given by cap products with a fundamental

class in I 0̄Hn(X;F0). For further details and applications, the reader is urged to consult

[31].
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Perverse signatures. Right from its beginnings, there has been much interest and activ-

ity in using intersection homology to define signature (index) invariants and bordism theories

under which these signatures are preserved. Signatures first appeared in intersection homol-

ogy in [32] associated to the symmetric intersection pairings on Im̄H2n(X4n; Q) for spaces

X with only strata of even codimension, such as complex algebraic varieties. The condition

on strata of even codimension ensures that Im̄H2n(X4n; Q) ∼= I n̄H2n(X4n; Q) so that this

group is self-dual under the intersection pairing. These ideas were extended by Siegel [55]

to the broader class of Witt spaces, which also satisfy Im̄H2n(X4n; Q) ∼= I n̄H2n(X4n; Q).

In addition, Siegel developed a bordism theory of Witt spaces, which he used to construct

a geometric model for ko-homology at odd primes. Further far reaching generalizations of

these signatures have been studied by, among others, Banagl, Cappell, Libgober, Maxim,

Shaneson, and Weinberger, in various combinations [1, 3, 10, 11, 9].

Signatures on singular spaces have also been studied analytically via L2-cohomology and

L2 Hodge theory, which are closely related to intersection homology. Such signatures may

relate to duality in string theory, such as through Sen’s conjecture on the dimension of spaces

of self-dual harmonic forms on monopole moduli spaces. Results in these areas and closely

related topics include those of Müller [48]; Dai [19]; Cheeger and Dai [17]; Hausel, Hunsicker,

and Mazzeo [37, 39, 38]; Saper [51, 50]; Saper and Stern [52]; and Carron [13, 15, 14]; and

work on analytic symmetric signatures is currently being pursued by Albin, Leichtmann,

Mazzeo and Piazza. Much more on analytic approaches to invariants of singular spaces can

be found in the other papers in the present volume [30].

A different kind of signature invariant that can be defined using non-GM perversities

appears in this analytic setting in the works of Hausel, Hunsicker, and Mazzeo [37, 39, 38],

in which they demonstrate that groups of L2 harmonic forms on a manifold with fibered

boundary can be identified with cohomology spaces associated to the intersection coho-

mology groups of varying perversities for a canonical compactification X of the manifold.

These perverse signatures are the signatures of the nondegenerate intersection pairings on

im(I p̄H2n(X4n) → I q̄H2n(X4n, ∂X4n)), when p̄ ≤ q̄. The signature for Witt spaces men-

tioned above is a special case in which p̄ = q̄ = m̄ = n̄ and ∂X = ∅. If X is the compact-

ification of the interior of a compact manifold with boundary (M,∂M) and p̄(Z) < 0 and

q̄(Z) ≥ codim(Z) − 1 for all singular Z, then I p̄H∗(X) ∼= H∗(M), I q̄H∗(X) ∼= H∗(M,∂M),

and in this case the perverse signature is the classical signature associated to a manifold

with boundary.

Using the Lefschetz duality results of general perversity intersection homology described

above, Hunsicker and the author are currently undertaking a topological study of the perverse

signatures, including research on how Novikov additivity and Wall non-additivity extend to

these settings.

10 Saralegi’s relative intersection chains

Independently of the author’s introduction of stratified coefficients, Saralegi [54] discovered

another way, in the case of a constant coefficient system, to obtain an intersection chain
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complex that satisfies the cone formula (1) for general perversities. In [54], he used this

chain complex to prove a general perversity version of the de Rham theorem on unfoldable

pseudomanifolds. These spaces are a particular type of pseudomanifold on which it is possible

to define a differential form version of intersection cohomology over the real numbers. This

de Rham intersection cohomology appeared in a paper by Brylinski [8], though he credits

Goresky and MacPherson with the idea. Brylinski showed that for GM perversities and on a

Thom-Mather stratified space, de Rham intersection cohomology is Hom dual to intersection

homology with real coefficients. Working on more general “unfoldable spaces,” Brasselet,

Hector, and Saralegi later proved a de Rham theorem in [7], showing that this result can be

obtained by integration of forms on intersection chains, and this was extended to more general

perversities by Saralegi in [53]. However, [53] contains an error in the case of perversities

p̄ satisfying p̄(Z) > codim(Z) − 2 or p̄(Z) < 0 for some singular stratum Z. This error

can be traced directly to the failure of the cone formula for non-GM perversities. Saralegi

introduced his relative intersection chains12 in [54] specifically to correct this error.

The rough idea of Saralegi’s relative chains is precisely the same as the author’s moti-

vation for introducing stratified coefficients: when a perversity on a stratum Z is too high

(greater than codim(Z) − 2), it is necessary to kill chains living in that stratum in order

to preserve the cone formula. The idea of stratified coefficients is to redefine the coefficient

system so that such chains are killed by virtue of their coefficients being trivial. The idea

of relative chains is instead to form a quotient group so that the chains living in such strata

are killed in the quotient.

More precisely, let Ap̄Ci(X) be the group generated by the p̄-allowable i-simplices of

X (notice that there is no requirement that the boundary of an element of Ap̄Ci(X) be

allowable), and let Xt̄−p̄ be the closure of the union of the singular strata Z of X such that

p̄(Z) > codim(Z)− 2. Let Ap̄Ci(Xt̄−p̄) be the group generated by the p̄ allowable i-simplices

with support in Xt̄−p̄. Then Saralegi’s relative intersection chain complex is defined to be

S p̄Cc
∗(X,Xt̄−p̄) =

(Ap̄C∗(X) + Ap̄+1C∗(Xt̄−p̄)) ∩ ∂−1 (Ap̄C∗−1(X) + Ap̄+1C∗−1(Xt̄−p̄))

Ap̄+1C∗(Xt̄−p̄) ∩ ∂−1Ap̄+1C∗−1(Xt̄−p̄)
.

Roughly speaking, this complex consists of p̄-allowable chains in X and slightly more

allowable chains ((p̄+ 1)-allowable) in Xt̄−p̄ whose boundaries are also either p̄-allowable in

X or p̄ + 1 allowable in Xt̄−p̄, but then we quotient out by those chains supported in Xt̄−p̄.

This quotient step is akin to the stratified coefficient idea of setting simplices supported in

Xn−1 to 0. In fact, there is no harm in extending Saralegi’s definition by replacing Xt̄−p̄ by

all of Xn−1, since the perversity conditions already guarantee that no simplex of Ap̄Ci(X)

nor the boundary of any such simplex can have support in those singular strata not in Xt̄−p̄.

In addition, there is also nothing special about the choice p̄+ 1 for allowability of chains in

Xt̄−p̄: the idea is to throw in enough singular chains supported in the singular strata so that

the boundaries of any chains in Ap̄Ci(X) will also be in “the numerator” (for example, the

inallowable 0-simplex in ∂(c̄x) that lives at the cone vertex in our example in Section 5),

12These should not be confused with relative intersection chains in the sense I p̄C∗(X,A) ∼=
I p̄C∗(X)/I p̄C∗(A).
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but then to kill any such extra chains by taking the quotient. In other words, it would be

equivalent to define Saralegi’s relative intersection chain complex as

(Ap̄C∗(X) + S∗(X
n−1)) ∩ ∂−1 (Ap̄C∗−1(X) + S∗−1(Xn−1))

S∗(Xn−1)
,

where S∗(X) is the ordinary singular chain complex.

We refer the reader to [28, Appendix A] for a proof13 that S p̄C∗(X,Xt̄−p̄;G) and I p̄S∗(X;G0)

are chain isomorphic, and so, in particular, they yield the same intersection homology groups.

It is not clear that there is a well-defined version of S p̄C∗(X,Xt̄−p̄) with coefficients in a local

system G defined only on X −Xn−1, and so stratified coefficients may be a slightly broader

concept. There may also be some technical advantages in sheaf theory to avoiding quotient

groups.

11 Habegger and Saper’s codimension ≥ c intersection

homology theory

Finally, we discuss briefly the work of Habegger and Saper [35], in which they introduce

what they call codimension ≥ c intersection homology. This is the sheafification of King’s

loose perversity intersection homology. In a sense, this is the opposite approach to that

of stratified coefficients: stratified coefficients were introduced to provide a chain theory

that agrees with the Deligne sheaf construction for superperversities, while codimension ≥ c

intersection homology provides a Deligne-type sheaf construction whose hypercohomology

yields King’s intersection homology groups. Habegger and Saper work with perversities

p̄ : Z≥2 → Z such that p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1 and14 p̄(2) ≥ 0, and they work on

cs-sets, which generalize pseudomanifolds (see [41, 35]). In fact, King showed in [41] that

intersection homology is independent of the stratification in this setting.

The paper [35] involves many technicalities in order to obtain the most general possible

results. We will attempt to simplify the discussion greatly in order to convey what seems to

be the primary stream of ideas. However, we urge the reader to consult [35] for the correct

details.

Given a perversity p̄, the “codimension ≥ c” in the name of the theory comes from

considering

cp̄ = min({k ∈ Z+|p̄(k) ≤ k − 2} ∪ {∞}).

In other words, cp̄ (or simply c when the perversity is understood) is the first codimension for

which p̄ takes the values of a GM perversity. Since the condition p̄(k) ≤ p̄(k+ 1) ≤ p̄(k) + 1

ensures that p̄ will be in the Goresky-MacPherson range of values for all k ≥ c, the number

c serves as somewhat of a phase transition. At points in strata of codimension ≥ c, the cone

13The proof in [28] uses a slightly different definition of intersection chains with stratified coefficients than
the one given here. However, for any general perversity, the intersection chains with stratified coefficients
there are quasi-isomorphic to the ones discussed here, and they are isomorphic for any efficient perversity.
See [28, Appendix A] for more details.

14Technically, they allow p̄(2) < 0, but in this case their theory is trivial; see [35, Corollary 4.8].
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formula (1) holds locally for King’s singular intersection chains (i.e. we can use the cone

formula to compute the local intersection homology groups in a distinguished neighborhood).

For strata of codimension < c, the perversity p̄ is in the “super” range, and the cone formula

fails, as observed in Section 5. So, the idea of Habegger and Saper, building on the Goresky-

MacPherson-Deligne axiomatic approach to intersection homology (see Section 4, above)

was to find a way to axiomatize a sheaf construction that upholds the cone formula as the

Deligne sheaf does for GM perversities, but only on strata of codimension ≥ c. This idea is

successful, though somewhat complicated because the coefficients now must live on X −Xc

and must include the sheafification on this subspace of U → I p̄S∗(U ;G).

In slightly more detail (though still leaving out many technicalities), for a fixed p̄, let

Uc = X − Xcp̄ . Then a codimension c coefficient system E∗ is basically a sheaf on Uc that

satisfies the axiomatic properties of the sheafification of U → I p̄S∗(U ;G) there with respect

to some stratification of Uc. These axiomatic conditions are a modification of the axioms

AX2 (see [6, Section V.4]), which, for a GM perversity, are equivalent to the axioms AX1

discussed above in Section 4. We will not pursue the axioms AX2 in detail here, but we

note that the Habegger-Saper modification occurs by requiring certain vanishing conditions

to hold only in certain degrees depending on c. This takes into account the failure of the

cone formula to vanish in the expected degrees (see Section 5). Then Habegger and Saper

define a sheaf complex P∗p̄,E∗ by extending E∗ from Uc to the rest of X by the Deligne process

from this point.

Among other results in their paper, Habegger and Saper show that the hypercohomology

of their sheaf complex agrees (up to reindexing and with an appropriate choice of coefficients)

with the intersection homology of King on PL pseudomanifolds, that this version of intersec-

tion homology is a topological invariant, and that there is a duality theorem. To state their

duality theorem, let q̄(k) = k − 2− p̄(k), and let q̄′(k) = max(q̄(k), 0) + cp̄ − 2. Then, with

coefficients in a field, the Verdier dual DXP∗p̄,E∗ is quasi-isomorphic to P∗q̄′,DUc (E∗)[cp− 2 +n].

Roughly speaking, and ignoring the shifting of perversities and indices, which is done for

technical reasons, this says that if p̄ + q̄ = t̄ and we dualize the sheaf of intersection chains

“by hand” on Uc from E∗ to DUcE∗, then further extensions by the Deligne process, using

perversity p̄ for E∗ and perversity q̄ for DUcE∗, will maintain that duality. If p̄ is a GM per-

versity and X is a pseudomanifold with no codimension one strata, this recovers the duality

results of Goresky and MacPherson. Unfortunately, for more general perversities, there does

not seem to be an obvious way to translate this duality back into the language of chain

complexes, due to the complexity of the dual coefficient system DUcE∗ that appears on Uc.

One additional note should be made concerning the duality results in [35]. As mentioned

above, Habegger and Saper work on cs-sets. These are more general than pseudomanifolds,

primarily in that X−Xn−1 need not be dense and there is no inductive assumption that the

links be pseudomanifolds. These are the spaces on which King demonstrated his stratification

independence results in [41]. Thus these results are more general than those we have been

discussing on pseudomanifolds, at least as far as the space X is concerned. However, as

far as the author can tell, in one sense these duality results are not quite as much more

general as they at first appear, as least when considering strata of X that are not in the

closure of X −Xn−1. In particular, if Z is such a stratum and it lies in Uc, then the duality
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results on it are tautological - induced by the “by hand” dualization of the codimension c

coefficient system. But if Z is not in Uc, then the pushforwards of the Deligne process cannot

reach it, and P∗|Z = 0. So at the sheaf level the truly interesting piece of the duality still

occurs in the closure of X −Xn−1. It would be interesting to understand how the choice of

coefficient system and “by hand” duality on these “extraneous” strata in Uc (the strata not

in the closure of X − Xn−1) influence the hypercohomology groups and the duality there.

We also note that the closure of the union of the regular strata of a cs-set may still not be a

pseudomanifold, due to the lack of condition on the links. It would be interesting to explore

just how much more general such spaces are and the extent to which the other results we

have discussed extend to them.

We refer the reader again to [35] for the further results that can be found there, including

results on the intersection pairing and Zeeman’s filtration.
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