7 . * Seminar notes on simply connected surgery
LN _;by Peter Orlik
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During the fall of 1967 we studied simply connected surgery in . _
Professor Montgomery 8 seminar by reading Milewsr [15], Kervaipsand Mllnor
{u ], and barts of Novikov [17]. At Prmcetorﬁﬁmversny Professor Kervalre .
was lecturlng on Browder -~ Novffcov theory. Since at the time only the original

papers were available for. f’“’arnmg the subject, I decided to write some notes

to serve until an introductory text appears in prlnt_and_hopefully to unify the .

e

= approach. As we proceeded to Wall [24] it became clear that the latter had

been done there, butI was not convinced that his paper would be a_suitable

/ ‘introduction to the topic. Therefore, I wrote these notes based on omitting
: ) -enough in Wall [24] and adding a chapter on preliminary material and a
chapter on applications. | ’

. Simply conneoted surgery offers all the geometric difficulty of the
general case without the complicated algebra. We restrict ourselves to closed
manifolds of dimension > 5 or compact manifolds of dimension, > 6_ for the
usual reasons. For simplicity we treat only the smooth case. The. . PL, case
is- entlrely analogous and it is left to the reader to supply the necessary

\ modifications,

\ 7 Finally I wish to thank the participants of the seminar in general and

Tony Armstrong and Colin Rourke in particular for 1nsp1r1ng lectures and
helpful conver satlons Special thanks are due George Cooke who read the

first draft and suggested many clarifications and improvements.
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I. PRELIMINARIES.

1. Smooth category.

Thr_'ough'o‘ut these notes we are working in the smooth (Coo) category.
Objects are compact smooth manifolds (closed if the boundary is empty} and
maps are smooth maps,.

The main reference for this section is Milnor [13].

Definition 1.1. A smooth m-manifold M isa (topological)
m-manifold with a collection of C* coordinate neighborhoods JJ = {{U, h}}
satisfying

(1) oJ covers M. _

(i) hhy' : hy(U.nU.) —>R™ or R™ is a smooth ma
R I AR RO 4 18 @ Smoolh map.
(iii) & is maximal with respect to these properties.

Definition 1. 2. A map f: Mm —> Nn between smooth manifolds. is

smooth if for every pair (U, h), (V, k) of coordinate systems of M and N

the composite

1

kfh = : h(U) —>R" is smooth.

Definition 1.3, The rank of { at pe M is the rank of the Jacobian
D(kfh'"l) at p. This'is independent of the choice of coordinate neighborhoods
about p and f(p). '

Definition1.4. f: M~ —> N is an immersion if rank f=m at
each point p e M.

f.is an imbedding if it is an immersion and a .homeomorphisfn'of M

onto f(M)(C N,

f is a diffeomorphism if it is an imbedding and f{M) = N (hence m = n).

Definition 1. 5. Q*C M™ is a submanifold if it is 2 subset, a topological

manifold and the restriction.of the coordinate neighborhoods gives a differentiable
structure to Qq.
Lemma 1.6, If f: N —>M  is an imbedding then {N") is a sub-

manifold of M™.



The following result is proved in [13].

Theorem 1.7 (Whitney). M can be imbedded in R2m+1

Smoothlng corners [11]. we shall often be. in the following situation.

Suppose N is a compact, smooth n-manifold with boundary and Sk 1>< D" "k

" s smoothly imbedded in the boundary. We wish to attach Dk x D" n-k along

‘the imbedded Sk 1>< D™ k, 50 that the resulting manifold N' has a differential

structure compatible with the one given on N This is easy except a.t the
"corner!" Sk 1>< s k- 1. A neighborhood of it looks like Sk -1 x 87" “k- I><,Q
where QCR2 denotes the three-quarter disc containing all (r cos 6, r sin 8)
with 0<r <1, 0<6<37/2, To smooth this corner map Q onto the half
disc H, consisting of all (r cos ', r sin ') with 0<r <], 0< @ <7 by

8' = 26/3. Carry the differential structure of H back tg Q making it a
differentiable manifold. The same transformation in the neighborhood of

Sk 1>< s™” ~k-1 makes N' a differentiable manifold., - We shall always assume

that this has been done whenever needed.

2., Vector bundles.

The main references of this section are [ 8 ] and [13].
Definition 2.1. A k-dix:;ensiona,l real vectoi‘ bundle "¢ is a bundle
(E, 7, B) together w1th the structure of a k>*dimensional real vector space
Rk on each fiber 7 (b) such that each point be B has an open nelghborhood
U and a trivialization U X Rk-> T (U) where the restriction ¢ XR —> 7 (b)
is a vector space isomorphism for each c ¢ U. |
The jstructure group is GL(n), the group of nX n .real non-singular
matrices. For paracompact B we may give £ a riemannian metric
[8, p. 36] and use it to reduce the structure group to O(n), the group of
nXn real, orthonormal matrices [ 8, p. 68].

Definition.2.2. The map g.: E(§) —> E(n) is a bundle homomorphism

of two bundles £, 11 over B if it is a vector space homomorphism in each

fiber and the following diagram commutes



E(t) —E&—> E(n)

|+, 1

If g is an isomorphism in each fiber it is called a bundle isomorphism,
g% 7. For paracompact B such an isomorphism has an inverse.

Definition 2.3. The cartesian product of two vector bundles £, n is

defined as £ X 7, where
E(f X n) = E(§) X E(n)
B(§ X n) = B(§) X B(n)
(ﬂ-g X ﬂﬁ)(x’ ‘Y) = '(Wg(x)r Wn(Y))-

Definition 2.4. Given.a diagram

where § = (E, 7, B).is a vector bundle and f a continuous map the induced
bundle f (£) is defined to have total space E' a subset of X X E,

E' = {(x, e)|f{x) = 7(e)}. There is a bundle map g covering the natural
projection A{x, e) = x defined by‘ g{x, e) = e, making the following

diagram commutative:

X ———>B

E' is unique up to isomorphism with this property. If £ is trivial
o
(isomorphic to B X F) sois f (§).
Definition 2. 5. The Whitney sum £ ® n of the bundles £ -and 7

over B is the induced bundle from the diagram,



® n) - == E(§) X E(n)
'
\:]5,5 # BXB
where A is the diagonal map A(x) = {x, Xx)
E@n=AExy
Note that the fiber of £ ® n is F(£) X F(r) and dim{f ® ) = dim £ + dim =
Lemma 2. 6. Whitney sum is commutative and associative.
Definition 2. 7. Let £, n be two vector bundles with the same fiber
dimension. A bundle map f: §{ —> n is a continuous map of the total spaces
which induces isomorphism in the fibers.

E(¢) ———> E(n)

"t L l "
B(¢)—5—> B(1)

The induced map g is continuous. If g =id. then f .is a bundle
isomorphism (see 2. 2).

An imbedding is a bundle map which is an isomorphism into. .

Theorem 2. 8. If the continuous map f : E{{) —> E(n) is a vector
space homomorphism in each fiber then f may be factored into a bundle
hemomorphism followed by a bundle map.

Definition‘2.9. Let Mn be a smooth manifold, X_ € Mn. A tangent

0
vector at x. is a presheaf map X :I{U, xo) —> R X x, from the sheaf of

germs of srgooth maps on M to the constant sheaf B XOM. Thus
{i} X commutes with restrictions.
{ii) X is linear, i.e. X(af +8g) = aX(f) + BX{g). -
Moreover we require that
(i) X(f g) = X(£)- g(x,) + f(x,) X(g).
Notice that X(1) = X(1-1) = X(1) + X(1), hence X(l) = 0 and X({c) = 0.

Equivalently a tangent vector at x_ is an assignment to every

0
coordinate system (ul, ces un) at X, an element (al, caas o.n) e R"
.such that if ((31, e ﬁn) is assigned to (v}‘, “eay vn) then
. i . '
ol =3, Q'u—ﬁ The map X is then just X = Zuli.*.
Jod ? gu



Definition 2.10. For each %, the tangent vectors at X, form an

n-~dimensional vector space with basis _BT . The totality of these is called the
gu
tangent bundle E(7) of M. Define 7 : E(T) ~—3> M to map the tangent vector

X at X, to the point Xq

Definition 2.11. For each {: M1 —> M2 there is a bundle map
Df E(’r}) —> E('Tz) defined by Di(X) = Y where Y(g) = X(gef), making the

diagram commutative

E(’rl) _____Q_f____} E(TZ)

Wll | j .

My > My

D is called the derivative of the function {£.

Definition 2.12. Let {: I\/I1 —> I\/Iz he an immersion; Ml, MZ.
smooth manifolds. The normal bundie vf is defined as follows:
Let T Ty be the tangent bundles of Ml’ MZ' By (2. 8)

Df : E('Tl) — E('rz) may be factored into a bundle homomorphism

h: E('rl) —> E(f*’rz) and a bundle map g.

B(r )~ B(i'7,) —E> E(r)

A

M, d M| —> M,

Since f is an immersion h is 1-]l, hence an isomorphism into, hence

*
an imbedding., Thus f 'rz/image h is a bundle over M,. It is called the

1
normal bundle V.

f
Moreover
0 > > f* v >0
Ll ‘Tl rd 'TZ > i >
¥~
is an exact sequence of bundle homomorphisms, thus f{ 72 - "rl ® vf.



{The splitting of an exact sequence of bundle homomorphisms requires only a

paracompact base, )

Definition 2.13. £ and 7 are stably equivalent, £ 3 7y _if there exist

trivial bundles 81 and ez such that

E@e, T n®c¢

1 2

Note that 3 is an equivalence relation.
Theorem.z. 14. If M is a compact manifold the s-equivalence classes
of vector bundles form an abelian group under @,
{The above theorem holds for a much wider class of spaces.)
Let Mn be a smooth manifold. By (1. 7) we can immerse M® ina

large euclidean space RN with normal bundle v. Since RN has trivial

tangent bundle {2.12) implies that

TM®D'=:-:N

-and therefore the normal bundles of any two immersions are s-equivalent.

Definition 2,15, A smooth manifold M is parallelizable if it has

trivial tangent bundle. It is s-parallelizable if it has stably trivial tangent
bundle. A

An s-parallelizable manifold is also called a #7-manifold. Note that
Sn with the standard differentiable structure is s-parallelizable, since
adding the trivial line bundle gives the tangent bundle of Rnﬂ_

Lemma 2.16, M is a m-manifold if and only if it immerses in
some RN with trivial normal bundle,

Proof. Clear from TM Ov= sN.

The following three lemmas are proved in {11 ].

Lemma 2.17. Let § be a k-dimensional vector bundle over an
n~-dimensional complex, k > n. If £ is stably trivial then it is trivial.
Lemma 2.18. If M~ is a submanifold of Sn+N, N>n, then M is

s-parallelizable if and only if its normal bundle is trivial.



Lemma 2.19. A connected manifold with non-empty boundary is
s-parallelizable if and only if it is parallelizable.

The proof of (2.17) uses a fact about classifying spaces, which we
do not want to introduce here, (2.18) and (2.19) are immediate corollaries.

Definition 2.20. If £ = (E, =, B) is a trivial bundle of dimension n
a framing of ¢ is a given bundle isomorphism £ % B X R",

Definition 2.21. A framed manifold (M, F) is a 7-manifold with

o ck. Note

OT
M.
» N>n (for example as a submanifold of Rn+N+1),

a fixed trivialization F given for its stable tangent bundle,
that if we frame Sn-l-N
then the framing of M gives an essentially unique framing of the (trivial}
normal bundle of any imbedding M® —> Sn+N.

Definition 2,22, Let f, g: X—>Y, where Y has a metric d, and
let 6 be a positive, continuous function defined on X. Then g is a

6-approximation to f if d(f(x), g(x)) < 6{x) for all x e X.

Theorem 2.23. Given a smooth map {: Mn —> E\{p, p>2n anda
continuous positive function & on M" there exists an immersion
g: M™ —> RP whichisa §-approximation to f.

Definition 2.24. Let f: M" —> N’ be a map of smooth manifolds,
wP™4

wp-q “a submanifold of Np. Call f transverse regular to if for

each xef-;(W) with (ul, caes un) a coordinate system at x and

! - vp) a coordinate system at f(x} such that on W,

V =V = ,.. = vq = 0 the Jacobian of f has rank g and the induced map

(ry), = (g B )

Mx N)f(x) &

£ W ()

is an epimorphism for each xe¢ M. Here ('TM)x means the .fiber of the
tangent bundle at x and pr is projection. (For Df see (2.11)).

Lemma 2.25. If f: M —> N¥ is transverse regular to Wp-q,
then V = fal(W) is a submanifold of dimension n-q and the normal bundle

s
of V in M, v_, is isomorphic to { (vw), where v is the normal

v W
bundle of W in N. Thus there is a bundle map g making the following



diagram commutative

E(.,) — £ E(,)

1o,

v —m—m/m W

Theorem 2.26. Let {: Mn —-—-:*NP be smooth, let wp-q be a closed,
smooth submanifold of N. Let A be a closed subset of M such that { is
transverse regular to W at each xe An f—l(W). Let § be a positive con-
tinuous function on N. Then there is a smooth map g M" — Np such that

(i) g is a 6-approximation to f{.

(ii) g is transverse regular to W,

(iii) g|A = f]A.

Definition 2.27. Let £ be a vector bundle with compact base. We
may assume that it has a Riermannian metric and the structure group is
reduced to O(n). Consider the unit disc bundle El(g) with boundary F:)l( £),

the associated unit sphere bundle. The Thom complex T(§) is defined as

the identification space El(g)lél(g).

An equivalent definition is the one point compactification of the total
space of the bundle, T(£) = Eve. Note that T(f) is a smooth manifold
except at the identification point e, hence maps into it can be made

transverse regular on manifoids missing e.

Lemma 2.28 (Thom isomorphism). Let Mn be an orientable smooth
manifold and W the normal bundle of M for some imbedding with

codimension N. Then for all i we have an isormorphism
' H, —> H. v
o H (M) —>H,_ (T )

Proof, Define ¢ by the diagram
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H(M) ---=--- > Hy (T, ) <———H (B, ), E (0, )

<%.
\

{(Using a different proof this theorem applies for more general spaces.)

Definition 2. 29. A regular homotopy of an immersion FO : M —>N

is a homotopy F : M XI—> N such that for each t, Ft is an immersion

and the induced homotopy F* of 'TM into ‘TN is continuous.

The following theorem of Hirsch [6 ] will be needed as improved by

. Haefliger [5 ].

Theorem 2.30. Let VV and Mm be smooth manifolds v <m, and
f: V—>M a smooth map. Suppose V has a handle decomposition with no
handle of dimension > m-2. Then regular homotopy classes of immersions
homotopic to f correspond bijectively (by the tangent map) to stable
homotopy classes of stable bundle monomorphisms 'TV —> f*TM'

For handle decomposition see Milnor [14].

3. Poincaré complexes.

The main references for this section are Wall [22, §2] and Wall [24, §2].
We shall only give the simply connected definitions, hence assume

that each component of every space in this section is simply connected.
Let X be a finite CW complex.

Definition 3.1. X is a Poincaré complex of dimension n if for some

homology class [X] e H (X; 7)
[X]a : H'(X; 2) —>H_ (X 2)

is an isomorphism for each r. Call [X] the fundamental class of X. Itis
determined up to sign in each component of X.

Clearly for any Z-module G we have isomorphisms

gn (H (X G)—>H__(XG) .
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Similarly if (Y, X) is a finite CW pair then (Y, X} is calleda

Poincaré pair of dimension (n+l) if thereisa [Y]e H_ (Y, X; Z) such

+1

that
]
[Y]a : 5 P(y; 2) —H___(Y, X; 2)

is an isomorphism for all r and each component of X is a Poincaré
complex with fundamental class 8*[Y].

Again for any Z-module G we have the isomorphisms
r+i
[Yln : B (Y; Q) _>an-r(Y’ X; G)
Moreover the diagram below commutes up to sign

—swXa — 'Y, x50 — By e — 5N —

j [X]n l [¥]n l (¥l [X]n

H (X, g—> H (Y;G —H (Y,X;GQ—H {(X; G) —>
n-r n-r n-r n-r-1

hence A[Y]: Hr+1(Y, X; Q) _--)Hn-r(Y; G) is an isomorphisrh for each r.
A finite Poincaré triad is a finite CW triad (Y; X_, X-i-) with

X+n'X_ = W (possibly empty) such that each of the pairs (Y, X_v X-F}’
(X_, W), (X, W) isa Poincaré pair with j 3 [Y]= [X+] - [X_]. Here
d, and j, are given by
a* j*
Hrﬂ(Y, X; Z) —> H (X; Z) —>H (X, W; 2) =

H (X, W; 2) ®H (X_, W; 2)

where the isomorphism at the right comes from the relative Mayer-Vietoris
sequence of the triad (Y; X+, X ) modulo W.
Here is a result of Wall [23] on the geometry of a Poincaré complex.
Theorem 3.2. Let X bhe a comnected, simply connected Poincaré

complex of dimension n > 3. Then X is homotopy equivalent to a complex
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K Uy e’ with dim K < n-1. The pair (¥, f) is unique up to homotopy type
of K and homotopy and orientation of f.

Next we need the notions of homotopy groups and homology groups of
a map, square, etc., For details see [16].

Definition 3.3. Let ¢ : M —> X be a map. The homotopy group

ﬂk_l_l((p) is defined as homotopy classes of commutative diagrams preserving

k+l
D+
X

base point:

Sk' i

——
v
M—Fes
We have the exact sequence

. —>T )—-—>=7rk(M)-—-:'rfrk(X)——>7rk(cp)—::r... .

41

Definition 3.4. Let ¢ denote the commutative square

q02
N—™——>Y

T

M—> X
?

The group 7rk+1(q0) is defined by taking homotopy classes of the image of the

model square

Dk Dk +1

k-1 ]\k

s ———>D

in ¢. Again care must be taken to preserve base points to yield the exact

sequences
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L (@) = ()~ () T (@) >

Similar definitions apply to cubes, etc. (see [24]).
Definition 3. 5. The ‘homology groups of the map @ : M—> X are

defined as Hk+1(qu’

M) where MQD is the mapping cylinder of @. Thus we
make ¢ an inclusion up to homotopy type and consider the relative group.

We have the exact sequence

. > H_ () —> H (M) —> H (X) —> H (¢) —> ...

Definition 3. 6. Consider the square ¢

Make all maps inclusions up to homotopy type. Define }1k+1(qa) = Hk+1(Y’ N v X}.

We have the exact sequences of a proper triad

—>H_,(¢) —> H (@) —> H (¢,) —>H (@) —> ...
—> }[1(+1(g0} —> Hk(il) g Hk(iz) — Hk((p) —_—> ...
Similarly for cubes, etc.

We shall alsc have opportunity to use the homology exact sequence

connected with a triple of squares.

A > B > C
Al > B! > C

Let qol be the left square, (,02 the right square and ¢@ the outside square.
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Then we have
—> I (9) > HU() ~> H () > H (@) —>

Definition 3.7. A map ¢ :M—>X of Poincaré complexes is of
degree 1 if ¢ [M] = [X]. )
" Lemma 3.8, Let Mm, X" be connected Poincaré complexes,
@ :M—>X amap of degree 1, B a {finitely generated Z-module. Then

the diagram

%
H (M; B) «—f— H'(X; B)

[M]nl l [X]n
@

H (M B) ——> H_(X; B)
m=-T m-r

is commutative. Moreover [M]n induces an isomorphism of the cokernel
K"(M; B) of ¢ on the kernel K___(M;B) of ¢, Thusif ¢ is k-connected,
then @, and (p* are isomorphisms for r <k and r > m-k:

Similarly let ¢ : (N, M) ~—> (Y, X} be a map of degree 1 of Poincaré
pairs. Then P gives split surjections of homology groups for M — X,
N—>Y, (N, M} —> (Y, X) with kernels K, and (p* gives split injections
of cohomology groups with cokernels K*. The duality map [N]n induces

isomorphisms
»® \ *
K (N) —>K*(N, M}, K (N, M) —>K*(N)

The homology (cohomology) sequence of (N, M) is isomorphic to the direct
sum of the sequence for (Y, X) and a sequence K*(K#).

Proof. Commutativity of the first diagram follows from the naturality
of cap products. The fact that each Hr(M) —_— Hr(X) is onto irmnplies that
Kr(M) = Hr+1(90). Hence the assertions of the first paragraph.

Now (pl = ([M]n)n:,(;’;‘([X]r))-=I is a right inverse for @, 80 Hm=r(M; B)

splits into- Km_r(M; B} and an isomorphic copy of Hmmr(x; B). Similar
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considerations apply to cohomology and for pairs.
- Suppose we have a Poincaré triad (Y; X+, X_). Then the commutative

diagram

—>  H(X;B) —> " Yy, X, B) —> gy By —>

l[xgn J/mn | lmn

. —>H (X,, W; B)—>H (Y, X;B)y—™ H (Y, X; B) —>
m-r  + : m-=r - , m-r .

shows that the middle vertical map is an isomorphism.

Let ¥ : (N; M+, M )} —>(Y; X+, X ) be a degree 1 map of Poincaré

triads. In addition to ¢ [N] =[Y] it follows that d/*[M-l—l] = [X-i-l]' Also the
diagram - B
r+l v r+l
H N, M, B) «———H (Y, X; B)
[N]nl l [Yln
w*
H (N, M;:B)———>H (Y, X;B)
m-r - . m-r -

is commutative. Using the argument of (3. 6) we have
) r+l S
[N]Jn : K YN, M,; B) TK___(N, M_; B)

Lemma 3.9, The direct sum splittings above are preserved in any
of the homology or cohomology sequences of the triad.

This is immediate.

Assume now that (N, M+, M ) is a proper triad with M+u M =M
and M+n M_= L. Combine the homology exact sequences of the triples
(N, M+1’

L) and (N, M, M+1) into the diagram
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H (M, L) Hn,rl(N,i_) H (M,M)¥H (M_,L) H(NM)
H_,,(N,L) H L (N,M) H (N, L)

H_,(M_,L) H (N, M) H (M,M)¥H (M,L) H(N,M)

\\/ \‘a.‘//? \/

By a change of gign in the boundary map I—In+1(N, M) —> HH(M.,' L) we can
make the above diagram commutative. A further adjustment of signs shows
that —> Hn+1(N’ Ly — Hn+1(N, M})® Hn+1(N’ M-Q —> Hn+1(N, M) —> Hn(N, L) —>
is exact., A sequence of this kind is just a relative Mayer~Vietoris sequence.

By (3. 8) the kernels split off the diagram. In particularif ¥ :L—>W
is a homotopy equivalence, then all Kr{L) = 0 and the homology exact sequences
of pairs involving L show that Kn(M—) = Kn(M-’ 1) and similarly for M+

and N. Thus we have

K. atM) n (N, M) K (M_ K_(N,M,)
N \ / \ /
(*) K atN _ Kn+1( AN
SN N
n+1(M)\/ n+l )\/K ) K (N M)

Lemma 3.10. Let ¢ : (N, M} —> (Y, X) be a map of finite CW pairs.
Let Y be connected and assume that Hi((p) =0 for i<y, H Hr+l(q0) =
then Hr((P) is free (with Z coefficients).

Proof. Replacing (Y, X) by the mapping cylinder of ¢ we may
suppose that ¢ is an inclusionand M = N nX. Now all spaces are simply
connected and I—Ik(cp) = H.k(Y, N u X). The result follows from the universal
coefficient theorem.

Note that the same applies to cohomology.

Corollary 3.1, Let 0-—> C;: > C* > C; > 0 be a short exact
sequence of free chain complexes over Z, each with finite total rank.

Assume that H(C) = 0 for i £ or, H(C") = 0 for i # r+l and
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1 pA
Hr+ (C) = Hr+ (C'"y=0. Then Hi(C‘) =0 for i# 0 and we have an exact

sequence of free Z-modules

s\

Tt t
0—>H_,(C") —>H_(C') —>H_(C) —>0 .

Corollary 3.12. Let ¢" : (N, M) —> (¥, X) be a map of finite CW
complexes,l Y connected. Denote the induced maps by ¢ : N—> Y and
@' : M—>X. Assume that H/(¢") =0, i £ ril, Hi((p) =0i#r and
Hr+2((p”) = Hr+1((,0) = 0. Then we have the short exact sequence of free

Z-modules

0 —>H_,(¢") ~>H (¢') —>H (¢) —> 0
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1II. SURGERY ACCORDING TO WALL

1. Description

In this chapter we follow Wall [24] to describe surgery and define the
obstruction groups. One basic difference is the assumption that we are working

only in the simply connected case. This will be frequently omitted from state-

ments although tacitly assumed throughout these notes.

Let X be a simply connected topological space, M" a closed smooth
manifold and ¢ : M —> X a map. The objective is to alter the map ¢ and the
manifold M to make ¢ as near a homotopy equivalence as possible.

For the following description of surgery see also [15], [I1] and [i4].

Let £: 8 XD —> M™ be an imbedding. The operation surgery

replaces M by the manifold M' obtained by deleting the interior of f(Sr X Dm-—r

and replacing it by Drﬂl_1 X Sm—r—l.

)
Now we want to define ¢': M' —> X,
In order to do this we shall look at the trace of the above surgery. Con-

sider M X1 and form a new manifold N by attaching DH—l x D to

{£(s” x D™, 1}.

Call this attaching an (r+l)-handle to M XI. Now we shall define a map

¢ + N—> X such that dJIM = ¢ and the required ¢' is then defined as ;D' M,
Defining ¢ is a homotopy gquestion. Up to homotopy N is just M
with an (r+l)~cell attached to f = f]Sr X 0. Hence up to homotopy the con-

struction is defined by
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(1) the map 1 Sr —> M
(i1) a nullhomotopy of ¢ o1

Let a denote the commutative diagram

#Sr_______>Dr+1
7 | e
M—2 5 x

then equivalence classes of these diagrams define the relative homotopy group
1rr+1{¢). Our surgery is therefore a surgery on the class a ¢ ?Tr+1{¢).
Given a class @ it gives an imbedding f: 8" —> M. Inorder to perform

surgery, however, we need an imbedding £ : s* x DM T — M. Now s*x D™
is parallelizable., Hence if TM is the tangent bundle of M we need f*’rM
trivial {(see I, 2,12).- Thus we have the following requirement:

(i) There is an orientable vector bundle v over X such that ¢*v
is the stable normal bundle of M (in some Sm+N), or equivalently that there
is a stable trivialization F of ™ @ ¢*v. Since we want to preserve this

property under surgery we require in addition that F extends to a stable

trivialization of TN @ y*y. Thus we have the commutative diagram

SN

_—

- 1
where TNlM_ TM€B£ .

Assume we have X, v, m satisfying (i), Consider triples (M, ¢, F)

where M is a smooth m-manifold ¢ : M—> X a map and F a stable triviali-

: *
zation of ™M & ¢o*v.

Disjoint union defines addition of triples. It is commutative, associa-
tive and has a zero (M = #). Define an equivalence relation (Ml’ d)l, Fl) -~
(MZ' ¢2, FZ) if there exists a compact {(m+l)-manifold N such that

IMMZ = d)z and a stable

ON= M,UM,, amap ¢: N—>X, !,!)]Mlz ¢1,

trivialization of TN @ y*r  extending Fl and FZ' (Use the inward normal
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along Ml in N and the outward normal along MZ')

Let Qm(X, v} denote the set of equivalence classes. It is an abelian
group under the above addition. The inverse of (M, ¢, I} is (M, ¢, F & (—s}‘))
in M X1,

This equivalence is the same as equivalence by a sequence of surgeries
[15].

Similarly we can define a relative version. Let (Y, X} be a pair of

topological spaces, X, Y simply connected and (N, M) a pair of compact,

smooth manifolds, M = 8N. Let
¢ : (Ns M)_> (Ya X)

be a map of pairs. Assume that
(i) there is a vector bundle v over Y and a stable trivialization F of

TN @® ¢*v as before.

The cobordism group Qm(Y, X, v} is defined by the equivalence relation:

1u P UNZ,

oP = Ml U MZ and an extension of qSlU (j)z to ¢¥:{(Q, P)—> (Y, X) and an ex-

tension of F, and F, toa stable framing of T @ yrv.

We can describe bounded surgery by first doing surgery on the boundary

(Nl’ ¢l, Fl) ~ (NZ.’ (bz, Fz) if there is a manifold Q such that Q= N

and then in the interior, (|
Doing surgery on M we obtain a cobordism P, where P = MuM!',
Now attach P to N along M to obtain a manifold V, where 8V = M'.
The cobordism of N is V X1 with the corner along M' X 0 rounded and a

corner introduced along M X 0,

M' X1
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To see that the cobordism O of our equivalence relation is obtained this
way, first construct V as above and the cobordism V X1 of N to V, then
find Q as a cobordism of V to N with boundary (M') fixed. (The shaded

part is the cobordism of the figure above.)
Nl

.

7

p

7777 L L y
N

AN

N

The description of bounded cobordism has one disadvantage, it is not

symmetrical with respect to N and N'. We shall return to this in the next

section.

2. Surgery below the middle dimension

In this section we shall describe a necessary and sufficient condition
for doing surgery on a class a ¢ ﬂr+1(¢) and show that no difficulty is encountered
below the middle dimension.

Theorem 2.1. Let (M, ¢, F) ¢ Qm(X, V)., Any a ¢ wr+1(¢), r<m-2
determines a regular homotopy class of immersions s x p™-Tt —» M. We
can use the imbedding £ : sTxDT T —s M to do surgery on a iff {f is in
this class.

Proof. Let

Sr i r+l

—_—
£ L &
M—2

Pe— U
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represent a. The stable trivialization F of ™M & ¢*v pulled back by f{,

. . 1
gives a stable trivialization of fi“ ™M GB fi“(ﬁ*v = fi“ ™M & ix gi“v . Since Dr+ _
is contractible we have a natural trivialization of gi"v , which induces a stable
trivialization of i* gi"v . Thus we obtain a stable trivialization of fi“ T ! which
we view as 2 stable isomorphism with the trivial tangent bundle of s" x Dm-r.

By (I. 2.30) this determines a regular homotopy class of immersions
if r<m-2.
Now let f: 8 XD ¥ —> M be an imbedding. If it can be used for
surgery on a, then its homotopy class must be that of 8 a, 8, : 1Tr+1(¢) — ﬂr(M).

Assuming this, we can take fl to be f[Sr X 0. Construct N as described and

extend to ¥ usin . More precisely
g g P

UM X t) = ¢(M) and
l,D(DrH % Dm-r) _ (gl(DrH)’ d)f(Dm-r)).

Clearly ¥ extends to a trivialization of TN & y*rv on M XI. The handle

1 - . . . c ot 1s : .
Dr+ X D™ is contractible and therefore it has a unique trivialization, This

. Y . r m-r sy sk
agrees with the trivialization {*F on S XD because it is induced by the

. 1
contraction of Dr+ and the stable isomorphism of f*'rM and T I By

s*XD
our discussion these agree precisely when f lies in the regular homotopy
class of a.

Corollary 2.2, If m >2r, we can do surgery on a.

Proof. Since we have enough codimension general position gives an

immersion § XD ' —> M which defines an imbedding fO 8" —> M
representing a. Let Tq denote the tangent bundle of s’ and £ its normal

bundle in M. By (I. 2.12)

f ':.-:7'86}5

*
0™ M
By the theorem we have a stable trivialization of f’BTM and Tg is clearly
stably trivial, hence § is stably trivial. By (I. 2.17) we have that § is

trivial, since m > 2Zr, Thus we have an imbedding f: s'xp™ Tt —s M

representing a.
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We use this to obtain

~ Theorem 2.3. Let (M, ¢, F)e Qm(X, v) and assume that X is a finite
simplicial complex. If m > 2k then we can perform a {inite number of surgeries
on M with handles of dimension < k to make ¢ k-connected.
Proof. As in (I. 3.5) replace X by the mapping cylinder of ¢ so that
¢ : M —> X is an inclusion, Enumerate the s simplices of dimension <k in

X -M. Let X, = M andlet X, be the result of attaching the first i simplices

0
of X-M to M. Let N0 = M X1, Now use induction on i, Suppose we already
c. 8 = . 3 -
have a manifold Ni—l’ Ni—l MuU Mi-l' "”1-1 : Ni-l — Xi-l a homotopy equi
valence and let wi—l' I‘\JI:.L 1= ¢i-—l : Mi 1 —> X. Suppose the i-th simplex is of

dimension (r+l). It determines an element a € 1rr+1(X, Xi-l)' Since Ni-l is
formed from M by attaching handles of dimension <k, starting from the other
boundary it is formed from Mi—l by attaching handles of dimension

> (m+l~k) > ktl > r+2. Thus (Ni-l' Mi-l) is (r+l)-connected. Consider the

homotopy exact sequence:

M, .} —

M a2 M

—_— y—=> 1 (X, M,

Wr+1(Xi-1’ i-1 r+l1 i-1

1 tt 1t n

9;)) = A X X N My )= 0

y— 7 & X )= (X

7fr-l-l(Ni-l’ IMi-l) T4l

Q=

Let a' map onto a and perform surgery on a'. This completes the induction.
We end up with Xs = MUXk and (X, XS) is k-connected. By the above

argument (Ns’ MS) is k-connected and NS is homotopy equivalent to XS.

Thus Q5S : Ms —> X is k-connected.

Now consider the relative versions., Our data consists of a pair of simply
connected spaces (Y, X) with bundle v and a smooth pair (N, M), M = 8N

and a commutative diagram of maps
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N——Y

¢:T ]

M—X

and a stable trivialization F of ‘TN @& otv,
Theorem 2.4, Let (N, ¢, F) ¢ Qm(Y, X, V), Any ac ‘Jrr+l(¢), r<m-2,
determines a regular homotopy class of immersions

(Dr x Dm—r’ Sr-l % Dm-—r) s (N, M).

An imbedding f can be used to do surgery on a iff f is in this class.
r-1

Proof. The first part is similar to the proof of (2.1). If { : (D', s
—> (N, M) represents the class 0_a, then using f*F and the contraction
of Dl_-'{.1 X Dm-—r we can define a stable trivialization of (f1| Sr-l)*(TM) which
extends to a stable trivialization of f* TN° A relative version of {I. 2.30)

1
proves the first statement. Now suppose we have a nullhomotopy of ¢of

given by a.
(Dr+l % Dm-r’ Sr x Dm-r) i (Dr—l-l x Dm—r, Di x Drn-—r)
£
R s
(N, M) —> (Y, X)

We regard this as a nullhomotopy of q5|imf and extend it to a homotopy of ¢.

Thus assume that ¢(Dr X Dm-r) = ¥ and that the nullhomotopy is constant

at the base point * in X, Form NO by deleting the interior of D_r x DT

from N. Then ¢ induces a map c,‘bo: (NO’ BNO)———-—> (Y, X) and N is obtained

from N_ by adding an m-r handle. Obtaining N from N this way will be

0
called handle subtraction,

0
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Thus N X1 can be regarded as a cobordism between N and NO (after straighten-
ing corners). Finally the stable framing on D]: x Dot agrees with the one induced
by contracting the handle iff the tangent bundle pulled back by { has the properties
described, i.e. f is in the class of a,.

Again this implies:

Corollary 2.5, If m > 2r, we can do surgery on a.

In order to obtain an analogue of (2.3) we have to assume that a k-connected
map of the boundary M —> X induces a bijection ’]TOM —> 1r0X and a k-connected
map of each pair of components.

Theorem 2.6. Let (Y, X) be a finite simplicial pair wl(X) = 7T1(Y) = 1
and (N, ¢, F) ¢ Qn(Y, X, v). We can do surgery on ¢ to obtain

(i) if n= 2k, ¢ induces a k-connected map N-—> Y anda (k-1)-
connected map M —> X, hence it is k-connected

(ii} if n = 2k+l, ¢ induces k-connected maps N—> Y and M—> X,
moreover ¢ is (ktl)-connected.

Proof. First restrict to the boundary, (M, q&!M, FiM). By (2.3} we
can find a cobordism (P, ¥, FO) to (M', ¢', F'} such that ¢' is (k-1)-
connected if n = 2k and k-connected if n = 2k+l, By adding P to N we ob-
tain a cobordism to (N', ¢', F'") where ¢'" has the desired connectivity on
M' = 8N'. Now apply {2.3) to N' keeping M' fixed. This shows that we can
make ¢" k-connected obtaining (N™, ¢", F"), This proves the theorem for
n = 2k and it oniy remains to pfove that for n = 2k+l ¢'" can be made
{k+1)-connected.

The proof of (2.3) shows that if ¢, = ¢|N: N—> Y, then (8 is
represented by a finite number of cells, Choose a finite set of generators for
(d:l). By (2.2) each can be represented by a framed imbedding of S_k. Con-

T4l .
nect each one by a tube to M so that we have framed embeddings of D , Now
perform surgery as in (2. 4). -

Let H denote the union of the handles of this surgery and NO the con-

structed manifold, qbo : (NO, MO) —> (Y, X) the resulting map. Note that
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(N, M )= (N, HUM) is an excision map. From the squares
0’ Mo | q

> N y [3] . N——>N——>7Y [6]
TD 1= ] [ 1T
—> HOM —>X M ——> HuM —> X

0
we Bave that H* = {, hence H*(qfao) = I—I* E~d H*. Moreover

oo —n A —n, 6w Bl—nE]—..
.

oo > H 4] —> B ) —> 00 —> H[a]— .

From the exact sequence of l 4 ] we have that Hn(N, N) = 0, hence
Hn’:Hn 1(Ht.JI\.fI, M) thus the sequence reduces to

— I—Ik(H UM, M) — Hk+1(¢} —> I—Ik+1(¢0) — Hk_l(H UM, M) —>

Note that d)o and ¢ are k-connected, {H, HnM)—> (Hu M, M) is an exci-

Ko phtl kel g piekly

sion map and (H, Hn M) is just a collection of copies of (D XD
Thus H'k—l(HUM , M) = 0. In dimension k the original k-discs le
represent images in Hk_H(é) of generators of ﬂk-l—l(qbl) = Hk+1(¢l)' Now
Hk+1(¢1) — Hk+1(q5) is onto because the map M —> X is k-connected and
therefaore Hk(HUM, M) —> Hk+l(¢) is onto. This proves Hk+1(¢0) = 0,
Corollary 2.7. If n= 2k+l and M —> X is already k-connected,
then all further surgery can be performed in a prescribed (non-empty) open

subset. The effect on M is just that of surgery on spheres which have trivial

framed imbeddings.

3. The bounded case

Up to this point we had a map ¢ : M™ —> X and a bundle v over X
together with a stable trivialization F of ™ ® ¢*v. This enabled us to
simplify ¢ considerably. If we are to make d) a homotopy equivalence,

however, we need additional assumptions.
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Since M satisfies Poincaré duality, a homotopy equivalent space will
do the same, thus we must assume

(ii) X is a finite Poincaré complex of virtual dimension m and the
Thom isomorphism corresponding to v takes [X] to a spherical class.

Moreover if ¢ : M—> X is a homotopy equivalence then the proper
choice of sign for [X] makes it a degree 1 map. This is preserved under
cobordism, hence we may assume

(iii) ¢ : M —> X is a degree 1 map.

Similar considerations apply to pairs (Y, X).

Definition. A map ¢ : M—=> X [resp. ¢ : (N, M} —> (Y, X)] satisfy-

ing (i), (ii), (iii) will be called a surgery map.

In this section we shall give a complete solution for the case when
8N = M#Zf. We restate our data as follows:
(Y, X) is a connected finite Pc;incaré pair of virtual dimension n > 6, WI(Y) = 1,
wl(Xi) = 1 for each component Xi of X; _there is a smooth manifold pair
(N, M), M = 8N with a degree 1 map ¢ : (N, M) —> (¥, X) and thereis a
vector bundle v over Y with spherical Thom class and-a stable trivialization
F of TN & ¢*r which reduces to the boundary.

Theorem 3.1. In the above situation we can perform surgery on (N, M)
to make ¢ a homotopy equivalence; moreover, the resulting manifold pair
(NO, MO) is unique up to diffeomorphism in the bordism class (N, ¢, F) ¢ Qm(Y, X,V

Proof. Uniqueness follows immediately from existence applied to the
cobordism between two solutions mapped into (Y X1, Y X 9I). Since the end re-
sult is a simply connected h-cobordism, the assertion is proved,

Now we proceed with the construction. The proof naturally breaks up
into two cases according to the parity of n.

The case n = Z2k.

By (2.6) we can perform surgery on ¢ to make the induced map
¢2 : M —> X (k-l)-connected and d)l : N—> Y k-connected. By (I. 3,10)

Kk(N' M) is free. In fact we have the isomorphism
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T8 = H(6) = K (N, M) .

1f we choose generators e, for Kk(N’- M), they determine classes a, ¢ wk+1(¢)
and by (2.4) these in turn determine regular homotopy classes of immersions

£, : (D~ x DX, aDX x DX) —> (N, M) .

We claim that the fi are regularly homotopic to disjoint imbeddings, and hence

we can perform surgery to kill 7.  .{¢}. It is enough to show this for the "cores",

k
'fi : (Dk, SDk) —> (N, M) and usef‘lsmail” neighborhoods of these discs.

_ We shall use a technique called "piping'. Put the ;f-l ‘in mutual general
position. The only intersections {and self-intersections) are isolated points ‘B
in the interior of N. At each point the intersecting sheets meet transversely,.
Choose arcs P, B' from B along the sheets to M, meeting no other singu-
larities, Then P v B' is anarc in N with both ends in M. Since wl(N, M) =0
we can find a singular disc A with boundary B, B' and an arc B' connecting
the endpoints inside M. Put A in general position. Since k >3 itis then
imbedded disjointly from the discs ?i(Dk), except along B and $'. Now con-
struct a regular homotopy of fi leaving everything fixed except a neighborhood
of B, Itpulls B across A past B' eliminating the intersection B and intro-
ducing no new intersections.

By induction each %1 {and fi) is converted to disjoint imbeddings.
Now perform handle subtraction as in (2. 4) to complete the argument,
The case' n = 2k+l.

By (2.6) we may assume that qﬂl t: N—> Y and d)z :M—> X are

k-connected and wk+1(¢) = Kk(N, M) = 0. We have the short exact sequence

0—> H L8) —>Hy (9,) —> H,(6)—>0

It " (3

00— Kk+1(N’ M)— Kk(M) —_— Kk(N)- ———>

where each group is free {see I. 3.12).
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Bv a theorem of Namioka [16] since ¢, ¢., ¢, are k-connected
4 L)

($)y — H, . (¢) = K}W_l(N, M) is an isomorphism, hence we can apply

Txt2 K42
(2, 4) to obtain framed immersions

— k k
F, (D oKy (N, M)

to represent basis elements of Kk-{-l(N’ M).

Next we shall modify fi by regular homotopy to obtain disjoint imbeddings
of the boundaries Sk —> M. Put the f_1 in general position and consider the
Jintersections and self-intersections, These are l-dimensional and along any
two sheets meet transversely. They form certain circles {of no interest) and
arcs P with both ends of M. Find in each sheet at § a disc Ai whose other
side, {Si, lies in M. 'The loop ﬁlu {32 is in M. It spans the disc Alu AZ
in N, hence it is null-homotopicin N and (WlM = 1) also in M, Span [SlU [32
by a disc A in M. Since k>3 we may suppose that A is imbedded meeting
the images of the f; only in ﬁlu {32. Deform a neighborhood of fil across A
to eliminate the intersections at the ends. By induction all intersections and
self-intersections of E;(Sk_) on M are eliminated,

Recall (I. 3.8) that we have the isomorphism

IN]n : KN(N) —> K, (N, M)

k+l
where Kk(N) is dual to Kk(N) with dual base,

Since K, .(N, M) injects into K _{M) we have represented a base of

k+1 k

Kk+1(N, M) by imbedded framed spheres T.E'-i(Sk) in M. Attach corresponding

(k+l)-handles to N, Let U be the union of these handles and the resulting
pair (N', M'). Since the 'f_i(Sk) are nullhomotopic in N, Kk(N) is unchanged.
In fact up to homotopy N' is just NU a bouquet of (k+l)-spheres, thus

0o .
Kk+1(N ) is again free.

The exact sequence of the triple MCMuvUCN is

. —> K (N}, MuU)—> K (MU, M) —> K. (NY, M') —>

k+2 k4l

— Kkﬂ(N" Mip U) —> Kk(M'u U, M} —> Kk(N', MYy —> Kk(Nr, MuU)—>...
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Here by excision Kr(N" Mty U):‘:Kr(N, M) =0 r # k+l and Kr(M‘UU, M)
'::Kr(U, UnM'Y = 0 r # k thus the above sequence reduces to

0 —> K. (N', M'} —> K (N', M') —> 0

t
kil (N, M) —> K (U, UnM') —> K

k+1 k

Moreover Kk(U’ UnM') is free with one basis element corresponding to each
= K

handle (represented by the fiber of the normal disc to fi(S ) or equivalently by

the core of the dual handle)., The map

:K_k-[*].(N, M) —> I{k(Us Un M')

is dual to

Kk_H(U, Ua M) —> Kk(N)

representing the attaching maps, and hence zero. " Thus KkH(N‘, M'}) =~ Kk+1(N, M)

and we have a new free kernel Kk(N', M!') dual to K, _(N'}. The attached handles

k+l

correspond to a basis of Kk+ (N, M), hence we have an isomorphism

1

1 | 1
K (N —> K (N, M)

The map of the duals
H 1 1
Kk(N)-——>Kk(N, M)
is also an isomorphism, hence the exact sequence

0 —> K (N —K (N, M') —> K, (M') —> K, (N') —> K, (N, M') —> 0

k+l
yields Kk(M') = 0, and ¢’2 : M! —> X is a homotopy e\quivalence.
Now choose a basis for Kk(N'), Using interior surgery on_ the elements
1} A~ H 3 3 ] ] + 3
of 1rk+1(¢1)_ Kk(N) we obtain a2 cobordism P from N'! to N'. Consider the

induced map of Poincaré triads
(P; N'u M!'X I, N") —> (Y XI, YX0UXXI, Y X1)
Identify N' with N'w M! XI. In the exact sequence

02 Kpn(N) = K g (P) > Ky (B NO) = Ky (N') —> K, (B) —> 0
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' . . : — [
the map d is an 1som0rphls'rn by construction, so Kk(P) = 0 and Kk+l(N y —> K'k-l»l(P)

is an isomorphism, On the other hand in

d
] M 1"
0 —> Kk+1(N y —> Kk-l-l(P) e Kk+l(P’ N'") — Kk(N y —> 0
3 3 Y "y =
d is dual to d, hence Kk(N ) = Kk+1(N } = 0.

Thus ¢i' : N''—> Y is a homotopy equivalence, which together with the

fact that i‘ | M = d)'z implies the homotopy equivalence
¢! (N, M'}—> (Y, X}

completing the proof.

At this stage we could deduce the results fof'closed manifolds by removing
a disc (care must be taken how to alter the Poincaré space), performing bounded
surgery and looking at the obstruction to puttiné the disc back. Thus we would only
need to compute the groups P as for example in Kervaire and Milnor {l11]. On the
other hand more insight is gaiped by doing the closed case as a genuine surgery ’
problem. Moreover it resembles the non-simply connected case instead of empha-

sizing the advantages of simplé connectivity., We shall return to the computation

of Pn in chapter III.
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4. The closed case, m = 2k.

Here we shall consider the case when X is a Poincaré complex of
dimension 2k > 6, M a closed, smooth manifold and ¢ : M —> X a surgery
map. We could assume that M has boundary which is fixed throughout and
all results would be valid but the statements and proofs more complicated.

By (2. 3) we may assume that ¢ is k-connected.

By (I.3.10) we have G = Kk(M) = 7rk+1((p
induces an isomorphism of G and G = Kk(M). Since @ is k-connected
&= Hom,, (G, ).

An element of G=17, (@) is represented by a well defined regular

k4l
homotopy class of immersions of S X Dk in M. Through the isomorphism

) free and Poincaré duality

ﬂkﬂ(q)) = Kk(M) we may identify it with the homeology class of the core and use
homology intersections to define a bilinear pairing A : GXG —> Z. This is
clearly well defined.

Represent elements of G by immersions f: Sk—> M (which may be
'"fattened' when needed). Such an immersion will not necessarily preserve the
base point but we can run an arc from the base point of M to the base point
. of the sphere, ‘f(l). Addition is represented by joining by an arc thickened to
a copy of Dk'X I with ends I)k X @I on the two spheres and using aDk X I
for piping (i.e. based connected sum).

Theorem 4.1. Intersections define a map )\ : GX G—> Z such that
if %, yeG, a e Z we have

(i) A is bilinear

(i) My, x) = (-1)¥\x, v).
Z Ik even

k . . .
Let Vk = Zf {1-(~1) 1Z = ZZ Kk odd Then self-intersections define a map

M G—> Vk such th.:::,t

(1) Mx %) = ulx) + (1) ulx)

(iv) u(xty) - u(x) - uly) = Mx,y)

(v) mixa) = a u(x).

Finally x is represented by an embedding iff u(x) = 0.
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k
Note that in (iii) although u(x) e V., u(x) + (-1} y(x) is well defined in Z.

k
In fact w(x) is half the self-intersection number for k even and the Arf-Kervaire

cohomology operation for k odd {see [11]}. In (iv) \x,y) is taken mod 2 if k
is odd. (v) shows that u is a quadratic form, again take mod 2 for k odd.

Proof, Let S1 and S2 be two immersed k-spheres in M put in

general position. They intersect transversely in a finite number of points P.

To each P assigna sign g_= 41 as follows. Orient M at the base point *

P
and transport the orientation to P by the path chosen above to fl(l) 3 Sl. Since

WI(M) = 1 the choice of this path is immaterial. Define Ep to be the sign of

intersection of S1 and S2 with respect to this orientation at P.

Define MSl,SZ) = Epsp over all intersection points P. Clearly )\ is well
defined for elements of G and it is bilinear. To compute \(y,x) note that the
sign of the intersection changes by (=1)k by interchanging the order,

el = (=-1)k,s

P P’

Now let S1 be an immersed sphere in general position, so it has only a

finite set of transverse self-intersections. At each P two branches of S1

cross. By using the above procedure and specifying on ordering of these
branches we can compute £pe If we interchange the order ab = (-l)ksp.
Consider the sum EPEP over all self-intersection points with an arbitrary

ordering at each, Define ,u(Sl) to be the element of Vk defined by EPEP.

Note that ,u(sl) is unchanged by a change of any of the above choices.

Changing S, by a regular homotopy can be done so that the self-intersections,

1
~hence u, vary continuously except at a finite set of points where two self-

intersections appear or disappear together. At such an occurrence the two

self-intersections determine opposite € thus u is constant. Hence

P’
H:G—> Vk is well defined.

Since the self-intersections of the connected sum of S1 and S2 consist

1 those of SZ and the intersections of S1 with

SZ. (iv) follows. For (iii)} note that \({x, X) is the intersection of two different

of the self-intersections of S

spheres S1 and Si representing x. In particular choose S1 as above, take

a tubular neighborhood and let S{ be a cross-section of the normal bundle of
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S1 (fiber Dk). This does not intersect the zero section (Sl) since our
immersions are framed, Kach self-intersection of Sl gives rise to two

intersections of S1 and Si with opposite order. (v} follows from (iii} and

{iv).

Finally note that p{x) = 0 is clearly a necessary condition for finding
an imbedded representative for x. We want to show it is also sufficient for
k> 3. |

Let u{x) = 0 and let S represent x such that its self-intersections
are in pairs (Pi’Qi) with s(Pi) = -e(Qi) = 1 (with appropriate choices of
order of the two branches at each intersection). Join Pi to Qi by an arc
ﬁi along one branch and an arc ﬁ; along the other. The loop defined by
ﬁiu [3; is nuil-homotopic and Pi and Qi have opposite signs on it, Such
singularities are removable, see [14].

Definition. A free Z-module G together with maps X\ and u as above

will be called a special Hermitian form (G, \, H4).

5
If the special Hermitian form G is generated by two elements {e,e }

* %
with p(e) = u(e ) = 0, AMe,e ) =1 itis called a standard plane.

Define the direct sum of special Hermitian forms by (Gl, Al,,ul) ® (Gi’ )‘2"“2) =
= (Gl-® Gz, )\1 ® )‘2’ By + uz).

A direct sum of standard planes is called a kernel.

Lemma 4.2. A special Hermitian form (G, \,4) is a kernel if and only
if G has a free submodule H with a base extending to G and hence defining
a basis for G/H, suchthat MHXH) =0, u{(H) = 0 and the map G/H —> Homz(H, Z)
induced by )\ is an isomorphism. Such a submodule H is called a subkernel.

Proof. If (G, \, i) is a kernel then the conditions are satisfied. Con-
versely let {e } be a base for H. There is a dual base of Hom (H Z},
which 1nduces by the above 1somorph1sm a base of G/H. Choose representative
elements {e } in G. By hypothesis {e , e* } is a symplectic

base of G and we have

L2
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# ok
Let My o= ju(e:i ) and
3 B k-1 Bk o
e, =e, +(-1) Jeu +Z ee, e )]
i JI ey B

it gives
* -0 # 6 4 ¥ O¥ -0
“(ei) - ¥ k(ei, ej ) - ij an k(ei’ ej) -

&
hence G is a kernel. The base {ei, ei} provides an isomorphism of G with a
direct sum of standard planes. This also proves that if Hl —_— HZ. is an

isomorphism of subkernels of Gl’ GZ, then it extends to an isomorphism

C:1 — Gz.
Call two subkernels H'l’ H2 of (G,\,u) complementary if Hln HZ = 0,

H, ® H, = G. Then there is an obvious isomorphism of H, with G/Hl. By

the above argument we can lift a base of G/H1 to lie in Hz. Hence any two
complementary subkernels are isomorphic to the pair described above.
Lemma 4.3. If (G, »u) is a special Hermitian form, then
(G, u4) © (G, -\, ~u) is a kernel,
Proof. Let {ei} be a base of G. Write ei, ei’ -for the corresponding

elements of the two summands. Then

! 1t 1 1y — ! l ] "y — - =
X(ei + ei ¥ ej + ej ) k(ell ej) + k(ei » ej ) k(ei-’ ej) )\(eii ej) O
] 1y — 1 1y — - _
“(ei + ei) - M(ei) + “(ei) - “(ei) u(ei) - 0

The submodule H of G® G freely generated by e; + e;‘ is a subkernel since
‘A induces an isomorphism of {G ® G)/H and HomZ(H, Z). Letthe e/ give
a basis for (G ® G)/H and the dual of {e"i + e:i'} for HomZ(H, Z). The
matrix of the map is
a,, = NMel,e!l +e')= Ne,,e,
ij (e j J) (e, ;)
which is also the matrix of G—> HomZ(G;Z). This map is an isomorphism

by hypothesis,
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Definition 4.4, The groups PZk are defined as follows., Consider the
semi-group of special Hermitian forms under ®. Write X ~ X' if there are
kernels X,K' suchthai X® K and X' ©® K' are isomorphic. Since the sum

of kernels is a kernel this is an equivalence relation. Divide out and consider
the quotient semi-group. By (4.3) {(G,\, i) has an inverse in the gquotient,
hence it is a group. Call it PZk'

The addition of kernels is described geometrically as follows,

Lemma 4.5, If ¢ : M—> X is a k-connected surgery map, then
performing surgery on a (k-l)-sphere corresponds to adding a standard plane
to (G, \u).

Proof. ﬁk(qo) = 0, hence we are doing surgery on the zero element,
Thus the (k-l)-sphere is regularly homotopic and by general position isotopic
to an unknotted one inside a disc DZkC M with standard framing. Surgery
replaces M by the connected sum M = Sk x Sk. G is replaced by the

orthogonal direct sum of G with a standard plane whose basis elements

*
{e;e } correspond to s¥x1 and 1x 8%

Now suppose that ¢ : M —> X 1is a surgery map. Its surgery obstruction

o{M, ¢, F} is defined as follows. Use (2. 3) to ﬁake ¢ k~-connected. Let

@' : M' —> X be the resulting k-connected surgery map. Define 0 ¢ PZk to be
the equivalence class of Kk(M’) =G in PZk' Naturally, we have to prove that
it is well defined, i.e. independent of the surgeries employed to obtain

(M', @', F).

Theorem 4. 6. The surgery obstruction 8(M, @, F} depends only on the
bordism class of (M, @, F). This class has a representative with ¢ a homotopy
equivalence if and only if 6 = 0. ,

Proof. Suppose we have bordant triples (M_,QD”,F_) and (M+,¢?+, F+}
where @, and ¢ are k-connected and (N,¥, F) is the cobordism. Regard

¥ as a map of triads, Y = XXI

Y (N M, M) —> (Y XX 0, XX1) .
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By (2.6) we can do surgery on N relative to ON to make N —> Y k-connected.
We can obtain Kk(lll) = 0 by using handle subtraction {(2.4) keeping for example
M fixed. The only effect on Kk(M+) is adding standard planes, leaving ©
unchanged. Thus all Ki of M_ and M+ vanish except for i = k and the

same is true for &N = M+U (-M _). In fact the only nonzero groups are
0 —> Kk-{-l(N’ gN) —> Kk(aN) —_— Kk(N) —> 0

Moreover Kk(M+) and Kk(M_) are free, hence Kk(aN) = Kk(M+) © Kk(M_) is
free and therefore its subgroup Kk+1(N; dN) is free, Since

4 0,IN] = [M+] ~ [M_] the special Hermitian form defined on K, {8N) by using
immersed spheres in each component and connected surms of spheres in the
same component is the sum of a form representing the surgery obstruction for
M+ and the negative of a corresponding form for M _. To prove that these are
equal we show that K_k(aN) is a kernel. This is clear if we can show that
Kk+1(N’ dN) is a subkernel. This we shall prove in (4. 7). Assume therefore
that © only depends on the bordism class.

Clearly if ¢ is a homotopy equivalence, then 8 = 0. Conversely assume
© = 0. This means that we may assume that Kk(M) is a kernel with standard
base {ei’ e:‘, 1<i<r}. Since ,u(er) = 0 the class e ¢ Kk(M) = 1rk+1(cp) is
represented by a framed embedded sphere Sr CM by (4.1). By (2.1) we can
do surgery on M wusing this sphere. Let N be the trace of the surgery. Up
to homotopy N~Mu eak+1 and if M+ is the resulting manifold then

N ~M+u ek. The homomorphism n
K, (M) —> H, (N) ~ H (N,M)) ¥ Z

has an immediate geometric interpretation by intersection numbers with e
Since )\(er,e:) =1, n is surjective. So (p+ is still k-connecttle{d, t};e surgery
from M+ to M is on a trivial (k-l)-sphere and M ™ M+# (S X8).

Now Kk(M+) may be identified with the kernel with base

*
{ei, e, 1<i< r-1}. by the diagram (see I.3. %)
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K, (N, M) K, (M)

\/\ 2N

Ky 4y (N, 0N

K(N/
\/ NN
N

Here Kk-f-l(N' M) and Kk(N, M+) can be identified with Z. We can

Y
\/
/

icientify Kk+l(N’ ON) with the submodule of Kk(M) generated by all e, and
e, except e: and Kk(M+) with Kk(M)/{er}. Moreover the geometric
description is mirrored in the algebra. In fact this construction is the reverse
of taking connected sum with st x s". The result now follows from induction
on the rank of Kl;(M).

Let us return to invariance under cobordism.

Lemma 4.7, Let ¢: (N,M) —>(Y,X) be a surgery map., M £ ¢,
dim N = 2k4l > 5. Suppose ¢ induces k-connected maps (pl : M——> X,
¢,  N—>Y and that Kk(N. M) = 0, Then Kk+1(N’ M) is a subkernel in
Kk(M).

Proof. By assumption the only non-zero groups are
(1) 0 —> Kk+1(N' M) —> Kk(M) — Kk(N) — 0,

By duality K (N) k+1(N, M). Since Kk(N, M) = 0 by assumption,

k
K +1(N,- M) = Hom(K (N, M); Z) and hence Kk(N) is free. Therefore (1)

k+l
splits.

We want to apply (4.2). In addition to the isomorphism



39.

Kk(N) & Hom(K, ,,(N,M); Z) we need to know that » and u vanish identically

on K, (N, M).

Since (,01 t M —> X is k-connected, K

k+l

k(M) ~ ﬂkﬂ(cpl) is generated by
classes represented by maps of spheres. These were used to define the special
Hermitian form of Kk(M)' Let x¢ Kk+1(N’ M). Represent Ox e Kk(M) as a sum
of maps of spheres, each being a framed immersion. These spheres have

classes in wk(N) and we claim that the sum of these classes is zero. By the

exactness of (1) it is zero in Kk(N). Now consider the square of ¢

?,
N —5> ¥

Lo ]

M—>X .
The homotopy exact sequences of ¢ and goz and Hurewicz homomorphisms

Kk(M) ———>Kk(N) —> 0

n ﬂ i

T A T e ) Ty
j

T+l

() —>0

-

o (V) ) —> m (N) > (Y) —>0

TkHl

give us a map Kk(N) S ﬂk(N) proving the claim. (Note that goz is
k-connected, hence ﬁrk+l((p2) = I-Ik_l_l((pz) z Kk(N).)

We now have a map into N of a {k+l)-sphere with discs removed such
that the boundary spheres are mapped by the above framed immersions. Thus
the framed immersions of the Sk in M extend to a framed immersion of a
punctured Sk'*'1 in N. Let T and T' be representatives for x and x!
obtained this way and moved into general position. They meet in a finite
set of circles and arcs with both ends representing intersections of

dx and ox'. Homologically all such intersections cancel in pairs, thus

Aox, ox') = 0.
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The self-intersections of T can be computed as follows. Along each
arc choose an order of the two branches of T meeting there. Note that the
self-intersections of 48T at the two ends have oppc;site signs, so they cancel
in pairs and u(dx) = 0. This completes the proof.

We have proved (4.7) under weaker assumptions then needed for (4. 6),

but the full strength will be utilized in the next section.

b, The closed case, m = 2k+1.

Assume X is a finite Poincaré complex of formal dimension
m=2k+l >5 and ¢ : M—> X a surgery map, where (M,®, F)e ﬂm(x,v). By
(2.3) we may assume that ¢ is k-connected.

Choose a set of generators for wk+1(go) = Kk(M). By general position

they can be represented by disjoint framed imbeddings fi S X thl-1 — M,

k 1

k
each connected to the base point by a path. Let U = Ufi(S XD ¥ )
' 1

M. =M - Int U. Since the fi are trivial in X with given null-homotopies,

0
we can replace ¢ by a homotopic map such that @(U) = * and the null-

homotopies of .fi are constant.

The troube is that performing surgery may not reduce Kk(M). We
need to study the effect of surgery on Kk(M).

By (IL.3.2) we may suppose that dim X =m and X has only one
m-cell, so we have a finite Poincaré pair (xo,sm'l) and X = X U D™, Using

a cellular approximation of go]M we may suppose after a further homotopy

0
that ¢ is a map of degree 1 of the Poincaré€ triads

¢ (M My, U) —> (X; X, D™
Combine the exact sequences of groups Ki for the pairs (M, Mo), (M, U),

(MO,‘ oU) and (U, dU) with excisions to the diagram
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K (M, MO) = Kk+l(U' ou}

(1)

Now ¢ maps (U, 0U) to (Dm, SmEl) and the latter has trivial absolute and
relative middle homology. Thus we can replace Kk+1(U' ou), Kk(aU), Kk(U')
by Hk-[-l(U' oy, Hk(aU;, Hk(U) respectively.

By (I.3.10) the groups Kk+1(M0,aU) and Kk(MO) are free. Let
H= Hk(BU). By (4.7) H is a kernel and S = I{k+1(U, gU) and A = Kk+1(M0, ou)
are subkernels. In fact we have an explicit representation of the former since
U is a disjoint union of copies of Sk X Dk'l-1 and we can take the classes of
Sk X1 énd 1 X BDk-En1 as basis for H to identify it with the standard kernel.

Let 3{’ denote the standard kernel with basis {E Ei ;1<i<r}
andu(E)—#(E)—O ME,, E) )\(E E)~0 ME,, E) ('1)?\(}3 B, = i3
Let Jo denote the subkernel generated by {E }.

Let I—I be glven the basm obtained from the imbeddings f, (S X DkH)
where e = £, (1x aD ), i = {, (S X 1). If we identify H —> 9€ by
ei—_>Ei' f—?Er, then it sends S — j 1somorph1ca11y Thus Sr
is generated by {ei}.

Qur aim is to kill Kk(M)' One way to do this is to show that
d: K (M'MO) —> Kk(MO) is an isomorphism. Equivalently we could show

k+l
that Sr and Ar are complementary subkernels of Hr'
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By the remark following (4. 2) any isomorphism of Sr onto Ar extends
to an automorphism Hr —> Hr and through the above identification to
Jer <> 9(; We need to study the effect on a of admissible change of choices
made so far. .
First we introduce some additional notation.,
Definition 5.1, In the following
SU_ denotes the group of automorphisms of B'Er, ({i.e., Z-module automorphisms
preserving )\ and wu}.
TU_ denotes the subgr'oup leaving ,701_ getwise invariant (and induces an
automorphism on it).
UUr denotes the subgroup leaving ‘fr pointwise invariant {i.e. induces the
identity automeorphism on it).
SL.  denotes the group of automorphisms of fr'

The following sequence is split exact:

1—>Uu > TU > SL,_ —>1
T r r

The last map is surjective since we can define a splitting homomorphism
h SLr —> TUr. Let V= (V1 } *) be a matrix representing an element of SL

and Vt=(vji) its transpose, (Vt 1. Let

% *
h{V) 1e, —>e,v,,, e, —2>¢e w,,
i joiiboi

J i
and note that t is an involutory anti-automorphism of SLr. A matrix
representation of UUr is given by maps of the form

% %
e, —>e, e —>e, +e.,c,,
1 i 1 1 3oL

since an element of UUr induces the identity on fr hence also on its
dual, which is the same as the quotient module. Now such a transformation

*
preserves ) only if C + (-l)kC = 0. In order to preserve U we need

&
)matrices act on the right.
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in addition that C = D - (—l)kDﬂt for some D. The last restriction affects only
the diagonal elements. Thus for k even C is anti-symmetric with zeros on
the main diagonal and for k odd C is symmetric with even entries on the
main diagonal,

Given the imbeddings f the subkernels are already determined., The
particular 1dent1f1cat10n H ———> aF determines a. If a different one gives
141020

hence Pao - lies in TUr. Thus the set {fi} determines uniquely a coset

P then ﬁa preserves the subkernel ‘Jar corresponding to K

TUr' a in SU . _
Next consxder the change induced by a regular homotopy of f A

regular homotopy of Sk in M2k+1 is an immenrsion of S X1 in

M2k+1 X I. Since the ends are imbedded, we can calculate the self-intersection
in Vkﬂ(? Z or Zz) of a regular homotopy or the mutual intersection (in Z)
of two such as in §4. Denote the regular homotopy by {Tl} and the end results
by —. Let the self- 1ntersectlon of n be v, and the intersection of n, with
"3’ be pij' Then Py =Y + ( 1) v, z;mdk,oj = (- 1) ij for 1<i,j<r. Thus
= (pij) is a matrix of the form D - (-1) D* and hence P determines an
element y of UUr. We claim that the result of the regular homotopy replaces
a by avw.

Consider the new diagram (1) with U, MO,BU replaced by I—J, —IV-IO, aff. We
wish to show that the result of the regular homotopy corresponds to the change

of cosets from TU,'a %o ’I‘Ur'o.y, where

— E3 — —
Yyie —>e, e —>e -Xep.,
i S A iy g

Clearly «: Hr — I_ir is an isomorphism since P is invertible, moreover
vt Sr '—->-S_r is naturally an isomorphisfn. Thus we investigate
v Ar — Kr' In particular we wish to show that 7(Ar) CAr'

If xe Ar then x is represented by a ck'xain in dU such that x = dc,

¢ chain in MO' Let

*
x=Xeu +Xe, v, .
;] it i'i
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We need to show that x = ¥(x) can be represented as a chain in BfJ—, x = 8::-,

¢ chain in MO.

—_ —_ e —
x = y{x) =Zi)eiui +}§}(ei - ?ej

v, =

pji i
_ — % -
=Yeu +Xe, v, - Xep.,vV,
g 110 1 i ] i

Now ;-&- z :e".p,iv,1 = gr bounds in M (namely the regular homotopies capped
1] — k+1 -
off with c¢). Let s denote the chain X { (1X D )pjivi' Clearly x = g{r-s).
i, ] .
We need to show that r-s is represented by a chain in MO. Now r-s8 isa

chain in M and it is a cycle in M let it be represented by

09
W _I—_Ik-pl(M’ MO)' Similarly x is a chainin M
Hk(MO'). We also have the intersection pairing

0 and 0w = x regarded in

(M, M
|

H (U) @ H _ (U,80) —> 2

Hk-!—l 0)

—
Let us calculate et-w. If this is zero for each t, then we can pull w off
interior U and represent r-s in IT’IO.

Recall that

r-s=c¢c+Zfu +Znv, - X ?.(1 X Dk+1)p..v.
iCii g 1 1, J Hi
where gi and n, are the obvious chains in M such that agi = ;i e

— %
aqi e -e (qi is the regular homotopy, gi moving the framing).

In order to compute the intersections we need to consider U and U
in M simultaneously.

Let MXI—>M be projection onto the first factor. By an isotopy
we may assume Un U= ¢. Next we claim that the intersection of " and
n in M X1 is the same as the intersection of E: and n in M. This
follows by moving all intersection points of n and n, to a small straight

—d
collar near et in M. Hence
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¢ T k+l
L et"?fj(lx D ey =pyy mpy = 0
Thus we have proved that a sequence of r elements generating
G= Kr(M) determines a double coset TUr'fl'UUr C SUr and that a can be
replaced by any element of the double coset.
Now assume that both {xl, caey xr} and {yl, chees ys} generate G.

We can pass from the first to the second by a sequence of operations, Write

y, = Xx.,\... Then
N I

{xl, ...,xr}—>{x .,xr,O}—B'{xl,...,xr,yl}———-av

. xr,yl,O}--—? {xl, e ees xr,yl,yz} —> ...

DR 3 3 4 e ey 3 s ey ¥ 2 s ey ——
ot By L3 Bl ¢! (! - %, )

Ll I ‘}{Yl, ey YS}

Each operation is one of:

(Tl) Adjoin or delete a zero.

(T2) Permute the elements.

| (T3') Add to the last element a linear combination of the others.

This can be reduced to a combination of:

(T3) Replace the first element by + itself.

.(T4) Replace the first element by the sum of the first two.
Consider the effect of (T1) - (T4) on 'o..

(Tl) This adds an imbedding of Sk X Dk+1 whose image lies in a DZkC MO'

It takes the direct sum of (1) with the diagram (with all the natural maps)
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VALY
/N
\/

z

\/‘Z\/
Thus the effect of (T1) is to form the direct sum of a with

0] 1
g =
5% o

(T2) has the effect of altering the defining basis of Hr’ i.e. conjugating o

by a permutation. i1 0

(T3) only alters the basis of Hr’ it conjugates a by the direct sum of

with the identity, 0

{(T4) join the two copies of Sk X DM1 by a thickened arc to obtain an imbedding

of a trivial handlebody J{ (i.e. handles unlinked). The effect of the change of
basis is performing a diffeomorphism of H. Consider H as the thickening

of the join of Sk~=1 in Rk with the vertices of an equilateral triangle in R2

(the join is taken in a smooth neighborhood of Rm). The required diffeomorphism
is rotation in R2 by 27x/3. Adjoining the thickened arc to U does not change

(1). The above diffeomorphism changes the preferred basis of Hr and hence

conjugates a by the automorphism

ol e 4 Kt
1-%1 7% 1 7% .
T b *__
ez—ez ez ..ez el
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The effects of (T2), (T3) and (T4) combine to an elementary basis change
of rZ and hence generate Er’ the group of r X r matrices with 1 on the
main diagonal and one other non-zero off-diagonal entry. Since Er C SLr
for any £ ¢ Er we can conjugate a by h{f) ¢ TUr' From above a is
equivalent to any member of the double coset TUr‘cr UUr. Provided Er = SLI_
the effect of (T2) - (T4) is to replace o by an arbitrary element of the double
coset TU *a-TU_ C SU_. If welet r go to infinity in the limit we certainly
have E = SL.

The effect of (T1) is to stabilize, but rather thana —2> a ® 1 by
a—>a ® o, '

The natural inclusions a —>a ® 1 give

su Csu (.
I T

+1
where the limit is SU.
The inclusion a —> a ® ¢ gives rise to

S —>5uU —_—> ...
r r+l1

where the inclusions are not group homomorphisms but compatible with the
natural left and right actions of SUr. Taking limit we obtain SU' admitting
left and right actions of SU. It has a natural base point, X, the direct sum
of copies of o. _
Liet RU be the subgroup of SU generated by TU and ce SUl'
Theorem 5.2. Surgery can be completed to a homotopy equivalence
iff: a is equivalent to Z under the two-sided action of RU.

k

Proof. Let fl(sk x D™} be one of the framed imbeddings of U.

Performing surgery leaves the groups of the exact sequence

0 —>K, (Mg, 00 —>K (3U) —>K, (M) —>0

unchanged, but the basis of Kk(aU) is altered, since Sk-Xl and 1X Sk are

interchanged. Hence a is replaced by ac. Thus the class of ¢ in RU is
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invariant under surgeries on k—s.pheres. Now suppose ¢ : M —> X and

@' : M' —> X are k-connected maps which are cobordant. In order to show a
a éurgery invariant we need to go from ¢ to ' by surgeries on k-spheres
alone. Let (N,/,G) be any cobordism between (M,@, F) and (M',¢', F').

By (2.3) we can assume ¥ is (k+l)-connected, thus (N, M) and (N,M') are
k-connected pairs. Now by a relative handle decomposition theorem N is
built up from M with no bandles of dimension < k and another with no
handles of dimension > k+l. These two can be satsified simultaneously since

(N, M) is free. Attach handles representing basis elements of K, (N, M)

Kl K+l
to M, then the restof N is an h-cobordism of the resulting handlebody to

M'. (See [14].)

Thus the class of a is a surgery invariant.

If @ is a homotopy equivalence, then take U = ¢, a is a zero matrix,
hence stably a = X.

Conversely suppose that for §,ne¢ RU, a = £Zn Choose r solarge
that £, n e RUr' Then a = £§Xn = z(z"lgz)n. Note that ¥ operates on 2rZ
as a finite product of conjugates by permutation of summands (which belong to
TUr) composed with copies of g, hence X ¢ RUr' Similarly 2-152 € RUr'
Thus a=XB, Be RUr' Again choosing r large we may assume that g is
a product of elements of the form o,V,hi{e), where Ve UUr’ e Er'
Multiplying a on the right with ¢ corresponds to a surgery; by the other
elements just a change of basis. Thus by induction on the length of p we
may assume o = Z. This, however, implies that: 0 : Kk+1(M'U) — Kk(U)
is an isomorphism, hence Kk(M) = 0 and ¢ isa homotopy equivalence.

It can be shown [24] that RU is a normal subgroup of SU containing
the commutator and hence P = SU/RU is the obstruction group. We

2k+1
shall see in the next section that it turns out to be zero.
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Ir. APPLICATIONS.

1. The groups P
m

In this section we shall compute the simply connected surgery obstruction
groups from the algebraic definitions given in Chapter II. Since again the
results are well known and available in the literature, only an outline is

given for the difficult case, P We shall remedy this by giving an

alternative proof, which is moi:+g1eometric, in the following section.

Ll P, = Z.

Proof. Recall the data from (II.4). We have (G, \,4) a special
Hermitian form consisting in our case of a free Z-module G, a bilinear
pairing X : G X G—> Z which is symmetricand a map 4 : G—> Z such
that \{x,x) = 2u(x), hence )\ is even. Since ) is just the intersection
pairing its matrix is unimodular. Let A denote the matrix (ﬁnimodular,
even, symmetric) of N and o(A) its signature. If o(A) = 0 it is possible
to choose a basis for G such that it becomes a sum of standard planes
(Milnor [15]). On the other hand the signature is an invariant of (G, \,u)
under stabilization. Since there exists a special Hermitian form with
o(A) = 8 and since every unimodular even, symmetric bilinear form has

signature divisible by 8 we conclude that ¢/8 : P, —> Z is an isomorphism.

4n
For completeness let G=Z +Z+Z+Z+2Z +2Z + Z + Z. Define )

by the matrix

D e N = OO Q
Qe N = OO0 OO
[ BN e = 2 = B o B o Y
NOOMEOODOO

DO O 0O e N
O OO O RN =0
OO0 O —~NFOO

rTDC')OCDC:)(:)'-'-‘II\-‘

and u(x) = %)\(x, x). Then o(A) = 8.

.

ant2 ~ %o

This time VZn-H = %2, thus our data give (G, M\ H), A: GXG—>Z

1.2, P
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a bilinear, skew-symmetric pairing with \(x,x) = 0 for all x and

4+ G—> Z_ a quadratic form with

2

p{xty) = u(x) + u(y) + \Mx,y) mod 2
Every such form is the direct sum of only two types (see [11])

H = Ce,e’s mle) = u(e’) = 0, Ne,e') = 1)
H1 = e, e*;',u(e) = ,u(e*) =1, we, e*) =1> .

i 1
Here HO is the standard plane. One can prove that H @ H = HO ® HO, hence

only the parity of the number of Hl-s in a decomposition of G matters. The

latter is a stable invariant and is called the Arf-invariant c(G, X, #4}.

LS
Let {ei, ei} be a symplectic basis for (G,\, u), i.e. A(ei,ej) = 0,

%
e, ,e ) =0, ne,,e,) =5&,, and define
1) 13 1
*
c(Gn,u) = ;}p(ei)-p(ei) mod 2 .
i

Clearly c¢ is zero on a kernel, on the other hand c(Hl) = ] and the

geometric interpretation of 4 shows that we cannot complete the surgery.

Thus c i P4n+2. — ZZ is an isomorphism,.
1.3, P2k+1 = 0..
Since P2k+1 = SU/RU it would be desirable to be able to show that

SU X RU. To my best knowledge there is no direct proof of this fact in the
literature. Rather, the proof proceeds as follows. Recall that we have a

diagram
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/\/\/\

H/A

\/\/\/
/\/\/\

H/S

\/\/\/

where H is a kernel with subkernels S .and A and GO is the free part of
G by duality.

Clearly G = H/S+A. Wall [2]] defines a complete set of invariants
for (8,A) in this situation by studying a bilinear form on G* = G/ GO,

k3 -
b: G XG —>Q/Z

induced by .

It is a matter of direct computation {see Wall [20]) to show that the
allowable changes (T1) - (T4) enable us first to make GO = 0 and then reduce
the order of G* to 1. We shall do this in the next section in a more

geometric way.

2. Thé Kervaire-Milnor proof for P2k+1 = 0.

In this section we are going to interpret Pm as the group of framed

cobordism classes of framed m-manifolds with boundary a homotopy sphere.
The cobordism is interior, i.e. it leaves the boundary fixed., The group
structure is given by connected sum along the boundary {see [11]).

First reca\li the closing remark of (II.3). Suppose we are givena

surgery map ¢ : N —>X, m > 6. Choose a small m-disc D in the top
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dimensional cell of X (see 1.3.2) and approximate 901 by a map which is
smooth in a neighborhood of D. Thus R : cplrl(D) is a compact manifold with
boundary. Perform bounded surgery {as in il.3) on R to make it homotopy
equivalent to D so that each time we subtract a handle from R we add it

-1
to the complement. Call the new map (pz : N? ~—> X and ¢, (D) = B.
Now cpZ : (B, 0B) —> (Dm, sm—l) is a homotoi)y equivalence (and since
m > 6 we have Smale's Poincaré theorem). Let N0 =N - int B,

. -l _ .
X, =X - int D. Then aNO-.. 2B, axo =8 and <p2|- @y ¢ (N BNO) — (X, axo)
is a surgery map, where (XO’ axo.) is a Poincaré pair of dimension m. Notice,
moreover, that v is trivial over D and hence over the sphere BXO, thus

%
(pov and F give a stable framing of TBN .

Use theorem (II.3.1) to obtain a homotopy equivalence

ro. ' 1y —= ,
Py (N0 BNO) (X0 BXO)
Consider the trace of the boundary surgery, V: 38V = aNOU aNb. We have a map
¢ vV—> BXO

covered by the stable framing we carried along and ¥ is a homotopy equivalence
restricted to either end since MBNO = ¢O[BNO and IﬂlaNb = @ |BN6. Attach

B to 9N, and D to 8X_, call V VY B=M, oM = dN' and define a new map
0 0 aNO 0

¢ : (M, 8M) —> (D™, g™

)
using ¥ and §00|8N0 = <p2| dB. Clearly @ is a surgery map where the bundle

over D is trivial giving a stable framing of 7 By {I.2.19) this shows

that M is in fact parallelizable. Notice moreovlc\:r that (plaM = (p‘0|8Nb is
already a homotopy equivalence.

Thus N is homotopy equivalent to X if and only if M is (interior}
framed coberdant to a contractible manifold.

Boundarylconnected sum gives a group structure to framed manifolds

with boundary a homotopy sphere and the differentiable pair (Dm, Sm-l)
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represents the zero element, hence we have
Theorem 2.1. Pm can be identified with the group of (interior} framed
cobordism classes of framed m-manifolds with boundary a homotopy sphere,

In view of this P 0 is established by showing ([11])

2kl
Theorem 2.2. If m is odd we can use surgery in the interior of M to

make ¢ a homotopy equivalence.
Proof. By (IL.2.5) we can perform interior framed surgery to make ¢

k~connected. We want to kill Kk(M’ aM) = KkM = HkM‘ Let f: Sk X Dk-l-1 ~—> M

be an imbedding and M!' the result of surgery on f, Let MO =M = int f (skx Dk+,1]

Then there is a commutative diagram

B M

\
3
N

H M-—f>z £!>H.kMO—i->HkM——_>O

N
4

M

:

such that the horizontal and vertical sequences are exact. It follows that the

guotient group HkM/p(Z) is isomorphic to HkM'/p“(Z).

Here p is the class of f(SkX 0) in HkM and p: ZﬁPH{M is
p{l) = p. The map -p: H'k+1M —> Z carries T H'k+1M into the inter-
section number  T:p. (Similarly for p!', the class of {0 XS} in HkM'.)

The horizontal sequence comes from the exact sequence of the pair

(-M,MO). By excision
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Z  j=k#

~ k kit k_ ko
HJ.(S XD 7,8 XS)~{O P<kH .

Hj(M’ MO)
It corresponds to GO —> S—> H/A—> G—> 0 in sectionl. Since the
generator of HRH(M,MO) has intersection number +l with the cycle
f(Sk X 0) which represents p, the homomorphism H‘k+1M —> Z may be
described as 7T —> T:.p. The element &' = e£'(1) ¢ HkMO corresponds to
f(* X Sk). ~ Similar description yields the vertical sequence. Thus e = (1)

is the class of f(Sk X *#). Also i{e) = p and i'(e') = p'. The isomorphisms

H, M/ p(Z) = HkMOIs(Z) +e{Z2) ™ H.kM’/p'.(Z)

/

follow from the diagram.

If we define a primitive element p ¢ HkM to be one for which there is
a Te I-I.k+1M such that 7.p =1, then i: H'kMO — H](M is an isomorphism
and hence H.kM' = HkM/p(Z). Thus any primitive element can be killed by
surgery. This implies that HkM may be reduced to its torsion subgroup
(i.e. G0 may be killed and only G* remains). For suppose p generates an
infinite cyclic summand of H‘kM' By Poincaré duality there is a
T, € Hk_H(M,aM) such that TP = 1. But Hk+1M —> Hk_l_l(M,aM) —_— 1-1k+1(aM) =0
shows that T, - can be lifted back to H'k+1M'

L.et W be an orientable homology manifold of dimension 2r and K a

F-3
field. Define the semi-characteristic xy (dW; K) to be

r-1
%
x (6W; K}= £ rank Hi(aw; K) mod 2
i=1

Lemma 2.3. The rank of the bilinear pairing
Hr(W; K) @ Hr{W; K)— K ,

#*
given by intersection numbers, is congruent modulo 2 to x (dW; K) plus

the Euler characteristic x(W).

Proof. Consider the exact sequence (all coefficients in K)
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H_W LI H(W,0W) —>H__(0W) —> ... —> H (W, 8W) —> 0

Counting shows that the rank of h is equal to the alternating sum of the ranks
of the vector spaces to the right of h. Reducing modulo 2 and using

rank H.(W,0W) = rank H, W we have
i 2r-i

r-1 2r
rank h = T rank Hi(BW) + £ rank HiW
i=0 i=0

* N
=¥ (W3 K) + x{W) mod 2
On the other hand the rank of
h:H W—>H (W,dW) = Hom, (H_W; K)
r r k'Vr

is just the rank of the intersection pairing.
Assume k = 2n, m = 4n+l,

Lemma 2.4. If k is even surgery on f changes the k-th Betti

number of M.

Proof. Put a cone over M to obtain a closed manifold M. Similarly
let M' be the result of the surgery and W the trace, dim W = 2k+2,
W =M XOuM' X1. W has the homotopy type of M with a (k+1)~cell
attached. Since dim M = 2k#l, x(M) = 0, hence x(W) = x(M) + (-)¥ = (-1)¥*,
Since k is even the intersection pairing

H ,(W; Q) @ H_ (W; Q) —>Q

is skew-symmetric, hence it has even rank. Setting K = Q in Lemma 2.3

we obtain
* — p—
MuM; Q) + (-1 =0 modz
% — # — — —
hence x (M; Q)# x (M'; Q). Since HiM = HiM_‘ =0 for 0<i<k we have

rank I—Ik-(l\—/l; Q) # rank Hk(ﬁ'; Q)
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but then also
rank Hk(M; Q) # rank Hk(M'; (@)

This lemmma suffices to finish the argument for k even., By above
we may assume that HkM is a torsion group. Let {: Sk X Dk+1 —> M

represent a non-trivial p e HkM We have
s 4 t
HkM/p(Z) H M [ p'(Z)

Since the group p(Z) is finite it follows from the above lemma that p'(Z)

is infinite. Now
1
0—> z £> H M'—> H M'/pH(Z) —> 0

is exact, hence the torsion subgroup of HkM' injects into Hk-M’/p'(Z) and
therefore it is strictly smaller than HkM By further surgery we can kill
the infinite part of H.kM’ to obtain M" with

o i b
HkM torsion subgroup of HkM HkM

Induqtion on the order of H](M completes the argument,

Assume k = 2ntl, m = 4n+3.

We shall now use ther move of (II.5) we have not employed yet -=
changing f by a regular homotopy. Suppose f: Sk X Dk-tb1 —> M isan

imbedding, If B : Sk —> SO is a smooth map then we can define a new

k+1
imbedding
£y ¢ s*x o — M
by fﬁ(u, v) = f(u, v- B{u)) where - denotes the usual action of Sok+l on

Dkﬂ. Clearly f represents the same homotopy class as f. They extend

B

to the same stable framing (given by F) of 7.  if and only if B is in

M
the kernel of
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s, + 7 (SO

S ) —> 7, (SO

k+l 2k+2) ‘

This kernel is infinite cyclic for k odd.

Choose P in the kernel of s, and denote by Mé the result of

surgery on fﬁ' Note that M0 is independent of B. So is the class of
fﬁ(* X Sk), i.e. ee HkMO' On the other hand the classg fB(Sk X %) depends

on B, in particular its class Eﬁ € I—I.kM0 is given by

tg =€ +ilP)e!

where the homomorphism

. ~ k
Jg Wk(SOkH) —_—> 7 = Wk(S )

is induced by the canonical map j: SO —> Sk defined by j(€) = x- €, x ¢ Sk..

k+1

We may identify the stable group Wk(SO ) with the stable group

2k+l
7Tk-(SOk+Z). The exact sequence

8

%*
y > 1 (50, o)

arises from the fibration Sok+1 — Sok+2 — Sk+1. Recall that B is in the

k+l @
MentS ) T TS0

kernel of s*.

The composition
k49 Iy K
7rk+1(s )y —> ﬂk(sok-ﬂ) —_—> ﬂk(S )

is known to carry a generator of Tfk

+1(SRH) onto twice a generator of
Wk(Sk-) for odd k. Thus the integer j*(ﬁ) can be any multiple of 2.
Next we shall conside_r‘ the effect of replacing ¢ by 8{3 + j(ﬁ)e‘
on the homology of Mé. We have
!

i
> > —> —>
0 Z HkM 0 HkM 0

from the beginning of the proof, where i carries te HkMO into an

element p of order r.>1. Clearly re is a multiple-of &', say
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re + r'e' = 0, Since &' is not a torsion element, these two elements can

satisfy no other relation. Now e, = ¢ 4 j(B)e', hence

p

1'8[3 + (r'-rj(ﬁ))c' =0

Using the exact sequence

€ it

B £
Z-—>HM —>HM —>0

we see that Ié carries ¢! mto some p@ H.kM' of order |r' - r;(ﬁ)[

t T
Since H M /pﬁ(Z) H.kM/p(Z) we see that H'kM is smaller than
H'1<Mf3 if;
0< frt - ri()| <r
From above j(f} can be any even integer, thus j{f) can be chosen so that

- <zt -ri(p) <r

This choice of ‘j(ﬁ) will give HkMES < H'kM[S unless r' is divisible by r,
We need to study the residue class of r! modulo r.
Recall the definition of linking numbers ([18, §77]). Let pe HPM,

T ¢ HqM be homology classes of finite order, with dim M = p+q+l. Consider

the homology exact sequence
i*
a
. —>H (M;QZy—/>H M—7H (M; Q) —m>.
ptl P P

associated with the coefficient sequence

0 >7 —>0 >Q/z—>0

Since p is of finite order, i*p =0 and p = a(v}) for some Ve HPH(M; Q/ z).

The pairing

Q/IZz0© zZz—>0/7



59,

defined by multiplication induces a pairing
H (M QZYOH M—> Q/Z
ptl q

defined by intersection of homology classes. Denote it by a dot.

The linking number L{p,7T) is the rational number modulo 1 defined by

Ip, Ty =v-T .
This linking number is well defined, and satisfies the symmetry relation
Lip,7) + (-)PL(r,p) = 0

In fact for p = q = k this is just the bilinear form b derived from )\ we
referred to at the closing of section 1.

Lemma 2.5. The ratio r!'/r modulo 1 is, up to sign, equal to the
self-linking number L(p, p).

Proof. Since re +r'e! = 0 in HkMO’ the cycle re + r'e' on BMO
bounds a chain c¢ in MO' Let c = f(* X Dk"'l) denote the cycle in f(Sk bd Dk+1)

C M with boundary e'. The chain c = r'¢c, has boundary re, hence

1
(c-—r'cl)/r has boundary e, representing the homeology class p in HkM.

k
Taking the intersection of this chain with {(S X 0), which represents p

we obtain +r'/r, since c¢ is disjoint from £{§ X 0) and < has intersection

number +1 with it. Thus L(p,p) = + r'/r mod 1.
Now if L{p,p) # 0, then r's Omod r, hence p can be replaced by

a class of smaller order via surgery. Hence, unless L{p,p) = 0 for all

p e HkM’ HkM can be simplified., Recall that we assume that k is odd.
Lemma 2, 6. If HkM is a torsion group, with L(p,p) = 0 for
every peH M, then HM isa direct suzéu of Z, - s.

Proof. The relation L{g, n) + (-=1)k I{m &) = 0 and k'2 = 1 mod 2 show

that L is symmetric. If all self-linking numbers are zero, the identity

L(§+T}3 g+f]) = L(g: £) + L(TI’ ‘ﬂ) + L(gl 7]) +'L('Q: g)
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implies that
ZL(g: T}) =0

for all £ and 7. But, according to the Poincaré duality theorem for torsion
groups [18, p. 245], L defines a completely orthogonal pairing

T, M ® TkM —0/Z

Hence the identity 2L{£,n) = L(2£,n) = 0 for all n implies 2{ = 0.
Thus a seqﬁence of surgeries reduces H'kM to a group of the form

ZZGZZG... @ZZ=SZZ.

Note that M and M| are p'arallelizable and so is the trace of the

P
surgery, W. It follows from the formulas of Wu that the Steenrod operation
k
qu+l ' H +1(W, awW; ZZ) —_—> sz+z.(w, oW ; ZZ)

is zero (see [10, Lemma 7.9]). Hence every £ e H1<+1(W; ZZ) has self-
intersection number §-§ = 0.

Lemma 2.7. _Suppose' that every mod 2 homology class £ ¢ HkH(W; ZZ)
has self-intersection number £'£ = 0. Then surgery necesgsarily changes the
rank of the mod 2 homology group Hk-(M; ZZ)'

Proof. Analogous to (2.4). The hypothesis £:§ =0 for all §,

guarantees that the intersection pairing
; s ——
I_Ik-lvl(W’ ZZ) ® Hk+1(W ZZ) ZZ

has even rank.

By (2. 7) surgery on fB

of this surgery on Hk(M; Z), provided B is chosen properly, will be to

changes the rank of H.k(M; ZZ). The effect

replace p of order r =2 by an element pé of order r!, where

p’

“2<rl <2Z, rl =0 (mod 2)

P p
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Thus r! is 0 or 2., Now using the sequence

P

1

p
where the right hand group is isomorphic to (s-l)Za, we see that H‘kai is

0—>2z  —> H.kMé —_— HkMﬁ/pﬁ(Z) —> 0

one of the following extensions:

Z-&»(s“l)fz.2
Z,+(s-1)Z

o 2 2

H Mg = z +(s-2)2,
Z4+(s-2)z2

The first two possibilities are excluded By {(2.7). In the last two further surgery
will replace H‘kM['S by a group which is definitély smalier than HkM

This completes the case .k odd and proves the theorem.

3. A braid. _

In [I12] Levine constructs a sequence of braids. We shall describe the
stable version originally due to Kervaire and Milnor. For perofs and details
the reader should consult [12]. )

Consider the following groups, whose elements are the objects under
the given equivalence relation. Let n > 5.

Pn: Objects: framed n-manifolds with boundary a homotopy sphere.
Equivalence relation: framed (interior) cobordism. Group operation: bounded

framed connected sum. These groups were computed as

Ul

n=0 1 2 3
P =Z 0 Z,0 -

Bn: Objects: homotopy n-spheres. Eguivalence relation: h-cobordism.
Group operation: connected sum. Kervaire and Milnor [11] showed that the Qn
are finite and computed them for n < 18. Only partial results are available
for n > 18,

Fﬁn: Objects: framed homotopy n-spheres. Equivalence relation:
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framed h-cobordism. Group operation: framed connected sum. For n<14
these groups are listed in Novikov [17, p. 386]. They are finite except for
n =3, 7mod8 when FBn = Z + finite group.

An: Objects: closed n-manifolds, framed in the complement of a
finite set of points. Equivalence relation: cobordism framed in the complement
of the trace of these points. Group operation: connected sum framed in the
complement of the above points, Again the structure is unknown except that

the An are finite for n# O mod 4 and A, = Z + finite group.

4k

rn(O): Homotopy groups of the infinite orthogonal group O. Let O(k)
denote the group of k Xk real orthogonal matrices and define the inclusion
O(k) —> O(k+l) by ry—> (g ;)). The direct limit of O{k) is O. Its

homotopy groups were computed by Bott [1]:

n=0
wn(0)=z

i 2 3 45 67
ZZZO'ZOOO-Z

-ﬂ-n: Objects: framed closed n-manifolds. Equivalence relation:
framed cobordism. Group operation: framed connected sum. We can identity

. these groups with the stable homotopy groups of spheres as follows.

Thom-Pontrjagin construction:

Let M" be a closed n-manifold with 7 stably trivial. For sufficiently

large N > n we can imbed M in —Sn+N:

M

'{: Mn ___> SN+n

o, - ~7 >
and the normal bundle of f(M ) is trivial. (’rM ®vc=i 'rS, ('TM. © sl) Ov =f T ® €0

thus v is stably trivial, By (I.2.17) v is trivial,) Thus we have an imbedding
£: M x DN > gN

Define a map

N+n N
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by sending SN-*Fn - int f(Mn x DN) to the base point.

Conversely let

- SN+n —_— SN
represent an element of the stable n-stem. We can approximate a by a
-1
smooth map transverse regular at, say x. Then a (x}) = M is a smooth

n-manifold in S0

and if Fx is a framing of the tangent plane at x then
the pullback gives a framing of M.

Finally we need to know that the correspondence is well defined. This
follows, since two closed framed n-manifolds are framed cobordant if and
only if the corresponding maps a, are homotopic. (See [9].)

Now consider the exact sequences:

! @) %
(1) coe —> 7rn(0) > FBn > 8 > 7{n__1(0) —_— ...

n

wy sends an element of wn(O) into the standard sphere whose usual framing

is twisted by this element

ng forgets the framing

81 is the obstruction to framing 6 _. By Kervaire and Milnor [11, 3.1]
every homotopy sphere is s-parallelizable, hence. 81 is zero.

Thus (1) splits into short exact sequences

0 —> 7 (0) —> F6 > 0 > 0
n . n I

w — P
(2) v, —> FB _Za,ll .-i}P __+¢2 8 —
n : n : n n-1

w., the natural inclusion
(pz cut out a disc. Clearly qoz is zero for n £ 4k+2. Recent results of
Browder [3] show that 9, is zero except possibly when n = 27-2.

d., restrict to the boundary with framing
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W, give the complement of a point the natural framing
(p3 cut out a disc containing all points without framing

83 restrict to boundary (no framing preserved)
(4) eor > 7 {O) W4>TT g04>A a4>7r (Q) —> ...
n n n n-1

W, is the Hopf-Whitehead J homomorphism defined as follows. Let N > n.

For Benw (O) represent B by a smooth map P : s — 50 . The

n+N Nitn
has trivial normal bundle, thus we

have an imbedding f: s™ x DN —> Sn+N. Use $ to twist the standard

standard subsphere s Cs

framing (as in section 2) and the Thom-Pontrjagin construction to obtain

a map

n+N N

q04 natural inclusion

84 obstruction to completing the framing. We may think of an element of

An as framed on the complement of a disc (containing all the unframed

peints) and then the obstruction is clearly in Wn_l(O).

The four exact sequences can be collected in the diagram; which is commutative

up to sign.

N AUA/

(o)

,/\/\/\
\/\A@/

g (O)

,/\/\/\\
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The reader familiar with G and PL will recognize the braid as the

homotopy exact sequence of fibrations of O PL( G.

4. Browder-Novikov theory.

The idea of surgery on a map was invented by Browder [2] and Novikov
[17} in order to solve the problems below. The present description is based,
in addition to these papers, on a talk by Browder at the Tulane Conference on
Transformation Groups and the earlier mentioned lectures by Kervaire.

1. Problem: Suppose we have a topological space X. Is X of the
homotopy type of a closed smooth manifold?

Certainly, we need some assumptions,
{i) X has the homotopy type of a finite complex,
(ii) X is a Poincaré complex for some n,

Now recall the situation of a surgery map, ¢ : M —> X, In addition .
to (i} and (ii) we also had a bundle ¥ over X and a stable trivialization F
of 7. © (,D*v. Since M~ imbeds in some large sphere SnilﬁN with normal

M

"
bundle VM and 'rM@vM is stably trivial, ¢ v and vM are stably

equivalent. Let E (v ) denote the unit disc bundle of v, and El(vM) its

M

boundary. The Thom complex of v_, T(vM) is defined by (1.2.27)

M
T(v),) = Bj(v, ) E W, )
Lemma 4.1, The Hurewicz homomorphism
: —>
o T) Ho it T

is onto (spherical}.

Proof. By the Thom isomorphism (I.2.28)
n
3 : H(M) —> H (T )

we need only to show that a generator, +&[M], is in the image of h. The
map gt T(VM) collapsing [SN+n\ E(UM)] U E(VM) to a point certainly
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represents a class in ﬂn+N(T(vM)) whose image is + [M].

In view of (4.1) we must require that
(iii) there is an oriented vector bundle v over X (of fiber dimension N >> n)
such that Wn{-N(Tv) —— Hn+N(T1/) is onto. We say that v has a spherical

Thom class.

Theorem 4.2. Suppose X is simply connected and satisfies (i), (ii)
and (iii) above. Then there is a smooth manifold M" and a surgery map
@ M” —> X. The obstruction to making ¢ a homotopy equivalence is an
elgment of Pn. .

Proof. Imbed X in a suitably large euclidean space R . Let U be
a smooth neighborhood of X in Rk such that i : X —> U is a homotopy
equivalence with inverse r : U-~——>X. We have the homotopy equivalence of
Thom complexes Tr T(r*v) —> T{v) with inverse s. Let a: Sn"*-N —> TV

represent a spherical class. Consider

%
sPtN_2 5 1y Bv> T(r v) .

Approximate this map by a map g transverse regular at U, the zero section
of T(r'¥). Now g '(U)=M is a submanifold of S*TN. Since U is closed
in T(r*v), g-l(U) is closed in Sn+N, hence compact. Since 83U = ¢, IM = ¢.
Finally codim M = codim U = N, hence dim M =n. Let

¥
(p:rog|M:M——>U-——>X. Clearly ¢ v = v and ¢ is a (degree 1)

surgery map. Application of Chapter II yieldsbfhe desired result.

Thus the above theorem answers the 1 Problem in the affirmative when
n is odd. For even n the situation is the following. If n = 4s we have an
additional cobordism invariant of M, its signature o(M). Recall the

definition: we have a bilinear form

HoS(M; R) © HOS(M; R) —> R
u®v > (u o v)[M]

‘defined by cup product evaluated on the orientation class. It is a well-known



67.

theorem of Hirzebruch [7] that there is a universal polynomial LS in the

Pontrjagin classes p, € H41(M; Z) with rational coefficients such that

Ls(pl, ceay ps)[M] = o{M) .

Recall {7, p. 65-66] that the Pontrjagin classes of M are just the Pontrjagin

classes of the tangent bundle 7

M
# %
Now by assumption TM © @ v is stably trivial, hence ¢ Vv is the
stable inverse of 7_... Let -V denote the stable inverse of Vv, Define the

dual Pontrjagin classes Ei(v) = pi(-V) € H4i(X; Z). Define the signature of
X, o{X) by the bilinear pairing in the middle cohomology as above. Let [X]
denote the fundamental class of the Poincaré complex X,

Theorem 4. 2 (continued). Suppose X is simply connected and
satisfies (i}, (ii), and (iii}. Then
(a) if n is odd X has the homotopy type of a smooth manifold,
(b) if n=4s then X bhas the homotopy type of a smooth manifold if and

only if
L (p/(¥), ..oy PYNIX] = o(X)

The problem is undecided for n = 4k+42. For any given bordism class

the obstruction lies in Z but it is not clear how it depends on the choice of

s
a. This naturally raiseszthe guestion:

2. Problem: How unique is the above construction?

Theorem 4.3, Suppose a and a' are homotopicand ¢ : M —> X
and @' : M!—> X are homotopy equivalences. Then for
n even M and M' are diffeomorphic

n odd there exists a homotopy sphere =" bounding a parallelizable

manifold such that M and M'# X are diffeomorphic.

N

Proof. Let A be the homotopy between a and a', A: Sn+ X I —> T(V).

Define the map

A SN s Ty X1



68.

by AYx,t) = (At(x),-t). Now use the above construction and a relative transverse

regularity theorem to obtain a map
¥ :N—> XXI1I

where N is a compact (n+l)-manifold, N = M u{-M') and l/J{M =@,
!/J]M' = ¢' are homotopy equivalences. Moreover ¥ is a surgery map.

It follows that the obstruction to making ¥ a homotopy equivalence
keeping the ends fixed lies in Pn+1' hence the claim when n is even.

For n odd there may be an obstruction. But this can be eliminated if
we allow changes in the boundary (see theorem II.3.1), It is quite clear from
section 2 that the obstruction may be killed by adding a 7-manifold with |

boundary a homotopy sphere. The h-cobordism theorem provides the

transition from the homotopy statement to diffeomorphism

5. Further topics.

There is a great wealth of applications of the theory. For example:

Homotopy smoothings of manifolds.

The object is to study the collection of smopth manifolds homotopy
equivalent to a given manifold. The idea is present in Browder~Novikov
theory and roughly one has the following:

- Let hS{M) denote the set of manifolds homotopy equivalent to M

under the equivalence relation
M
1%
f l M
/
[
MZ 2

g and g, are the given homotopy equivalences, f is a diffeomorphism
making the diagram homotopy commutative,
Let nm(M) denote the set of normal maps of M. An element is a

vector bundle ¥ over M of fiber dimension N >> n and a homotopy class
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n+N .
of maps a : 8 —> T(¥) whose image generates Hn+NT(V). From (4. 2)

this corresponds to a surgery map

*
Qv v
@ : M —>M

*
where M' is smooth, ¢ of degree 1 and 7. © @ Vv stably trivial.

M
For M simply connected there is the exact sequence

P s hs(M) 2> nm(M) = P_ .

The map s sends the surgery setup into the obstruction to making ¢ a
homotopy equivalence. The map # just adds a homotopy sphere which bounds
a w-manifold to a manifold M'. (See 4.3.) The map n associates with the

—_—i —
homotopy equivalence ¢@: M'—> M a vector bundle v = ¢ v where @ is

M!
a homotopy inverse to ¢ and VM! is the stable normal bundle of M'., We
shall not prove that the maps are well defined and exact. The reader should

consult Sullivan [19] for details.

Transformation groups.

The study of free involutions on homotopy spheres using surgery was
initiated by Browder and Livesay [4]. Several other papers have appeared
&long those lines.

The free actions of SI and 33 .on homotopy spheres can also be
investigated by surgery methods. One has to clagsify homotopy smoothings
of complex and quaternionic projective spaces.

Hauptvermutung.

An outstanding application of the PL-theory is the result that if two
simply connected PL-manifolds of dimension > 5 withno 2-torsion in
3-dimensional homology are topologically homeomorphic, then they are

PL-isomorphic (Sullivan [19]).
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