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Microbundles and differentiable structures

J. Milnor

Princeton University, September 1961

A piecewise linear microbundle is an object something like a
vector space brindle, but having only a "germ" of a piecewise linear
n-cell &s fibre. This paper develops a theory of such bundles, and
uses 1t to study piecewise linear manifolds.

In § 1 +the concepts are defined, and mesny standard -constructions

for vector bundles are modified so as to apply to microbundles. In

- particular every PL-manifold ™ has & tengent microbundle < . Any

M

microbundle over M determines & homotopy class of maps from M té
a classifying space B(Ppm).

§ 2 shows that mierobundles have inverses with respect to the
Whitney sum operation, and § 3 describes a theory of normal micro-
bundles. In § 4 the problem of swoothing a PL-wenifold (i.e. imposing
a well behaved differentiable structure) is considered. It is showm
M is swmoothsble if and only if there exists amap f from M to a

certain "universal" manifold U so thet the dlagram

M mmeme=e> U

|

B(PLm) C B PLn)

is homotopy commmutative, where the vertical arrows are classifying maeps
for the tengent microbundles. This manifold U is egssentially a

clasgifying space for the orthogonsl group 0(n). It follows that one
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can set up an obstruction theory for the problem of smoothing a
PLe~manifold. (Compare Thom [18)}, Munkres [13].)

In & later paper these methods will be used to show that the
tangent vector bundle of a certain differentiable manifold is not a
topological invariant. (Compare § 4 Corollary 6.4.)

I am indebted to useful discussions with M. Hirsch, B. Mazur,

A. Shapiro, and . T. ¢, Wall.

1. Microbundles

This pdger will work in the category of locally finite simplicial
complex and piecewlse linear maps. (Briefly: PL-maps.) However the
definitions, and many of the theorems, would also make sense in the
larger category of topological space and maps.

Definition: A function £ : K —> 1. between locally finite

simplicial complexes is piecewise linear if there exists & rectlinear

subdivision K' of ¥ so that f maps each simplex of Kf linearly
into & sirplex of L. (Compare Iemma 9 on page 27.)

Note that any open subset of a locally finite simplicial
complex can be triangulated so that the inclusion map is piecewise
lineer. (See Alexandroff and Hopf [1, pg. 143].) The resulting
simplicial complex is unique up to PL-homeomorphism,

‘Definition: A PL-microbundle &t of dimension n {or briefly
a "bundle")} is a disgram |

B—ts>g-dsp
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vhere B, E are locally finite simplicial complexes and i, j are
PL-meps; -such that the following local triviality condition is

setisfied. For each b € B , there should exist neighborhoods BO
of ['B, E0 cf i(b) eand a PL-homeomorphism h: E, —> B, X RY so

that the disgram

1|, %o ile,
B/ h

O\X(Sl pVPO

By X R
ls commitative. Here the notion X O stands Tor the map
b — (b,0), P, denotes the projection into the first factor, and
Rn denotes euclidean n-space.
B will be called the base gpace of ¢ , E the total space,
i the injection map, and j the projection map. Note that the
composition Jji : B —> B is the identity mep of B.

Definition: A second PlL-microbundle

g: B——>p 453

over the same base space is isomorphic to & (written &' ~ &) if

there exist neighborhoods E, of i(B) and E!' of 1i'(B) , and a

1 1

PL-homeomorphism E, - E} so that the diagrem

S
g, A

’

is commutative.
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Example 1., For any B and any n > 0 the trivial Bundle

aIBl is defined to be the diagram
b
B 205 pxE* 2B,

Any bundle isomorphic to Eg is also called a trivial bundle.

Example 2. A simplicial complex M will be called a PL-
1 .
manifold 1f each point has a neighborhood U which is PL-homeomorphic

to Bn. The tangent microbundle ?M is then defined to be the diagram
T
A 1

M—>MXM—>NM ,

where A denotes the diagonal map.

Proof that Ty 1s a mlcrobundle. First consider the special

cese M =R'. The PL-homeomorphism h(x,y) = (x,x-y) makes the diagram

R » R
’//,/h ! Pl
Rn

commitative. Thus T , 18 a microbundle. {(In fact = n is 8 brivisl
R R
microbundle.) Since each point of M has a neighborhood which is

PIL-homeomorphic to Rn it follows that TM is also A -mlerobundle.

Just as in the theory of vector space bundles, there are a
number of ways of building new PL-microbundles out of old ones. Given

two bundles

i J

£, B >, %58 , o=1,2,

over the same base space, the Whitney sum

'\lThe terms "formal manifold” and “combinatorial manifold" have
also been used for this concept.
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g, @ty B-2>p-dsp

is obtained as follows. Iet E( By X E, be the set of (el,e

o)

with Jlel = 3262 3 and let
ib = (ilb,ieb) s j(el,ee) = Jy8y
It is easily verified that gl & 52 is 8 PL-microbundle.

Given a microbundle

£: B-L1sp-dsp

and given s subcomplex B 5 C B the restricted bundle ngo is defined

to be the diagram

vhere Eo = j-lEO. More generally given a complex Bl and a PL-nap

f: Bl —> B  the induced bundle

PR . B, -5

is obtained as follows. Iet ElC By X E be the set of (bl,e) with
f(bl) = j{e}; and let
1l(bl) = (leif(bl)) 2 ’jl(bl’e) = bl‘
The verification that f ¥t is a microbundle is straightforvard.
Theorem 1 (Covering homotopy theorem) Iet £ and g be

two homotopic PIL-maps from B, to B. Then the induced bundles

1

are isomorphic.

1
The proof given in Steenrod [15, § 11] applies without essential

T* and g* over B

change., It is only necessary to be sure that all maps occuring in the

the proof can be made piecewise linear. In particular, one must show
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that there exists a homotopy
h: Bl'x I —>B

between f and g which is a PL-map. [Proof, Starting with any
homotopy Bl ® I —>» B and spplying the simplicisl approximation
theorem one concludes that there exist simplicial approximations £!
to £ and g' %o g so that £' is PL-homotopic to g'. But it is
easily seen that any PL-map is PL-homotopic to its simpliclal approxi-
mations.] TFurther details will be left to the reader.

Theorem 2. (Universal pundle theorem). There exists &

PL-microbundle

I
H B(=» —> B —3 By,
Y B(er) (1) (21,)

which is "universal" in the following sense. For any locally finite

complex B and any bundle & over B of dimension n there is a

unigue homotopy class of maps f: B — B( 71, } such that f*yn =~ £,
e

A proof based on the theory of gemi-semplicial complexes will
be given in § 5 at the end of this paper. (A. Shapiro has pointed
out that an eagier proof could be given using the methods
of E. Brown [2].

A theory of characteristic classes can also e developed for
microbundles. For example the Thom definition of Stiefel-Whitney
claesses {see (16]) spplies easily to microbundles. The conmbinatorial
definition of Pontrjagin classes (see Thom [17], Rohlin and Svaf; {1k])

can be used to define Pontrjagin classes

24(8) e Hi(s 5 )
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for a PL-microbundle. No details will be given, since these character-

istic classes will not be used in the present paper.

2. Inverse bundles

Definition Two bundles £, § over B are inverse to each
other if the Whitney sum & & 1 is trivial,

[Note: Inverses are not unigue. For example the tangent micro-
vundle 7 5 of the 2-sphere can be considered as an inverse to & trivial
bundle ovzr g2, Yet 7, is not trivial.]

8
Theorem 3. Every PL-microbundle £ over a finite dimensional

complex B has an inverse.

It is sufficient to consider the cese of an orientable
microbundle. For even if ¢ 1is not orientable, the sum & @ &
clearly is orientable.

First suppose that B is a suspension. It is necessary to be
careful here since the usual double cone construction destroys loecal
finiteness. However if one imbeds a given complex B' in a contractible
locally finite complex C(B') and thm takes two cobies of C(B')
matched along B', one obtains an scceptible substitute for the
suspension of B!':

et B have this form, and let r: B ~—> B be the "reflection”
vhich interchanges the two copies of ¢(B').

Lemma 1. If & is an orientable microbundle over such &

complex B, then £ & r*t 1is trivial.
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Froof. Ilet BVB denote the union with s siqgle roint bo in
common. (iven oriented microbundles & and 1 over B with the
same Tibre dimension q , let £ v 3 denoté an oriented bundle over
Bv B whose restriction to the first summend is £ and whose
restriction to the second surmand is 1. This construction is well
defined up to orientation preserving isomorphism: +the only choice
involved in forming & v 77 is the choice of how to identify the fibre

of & over bo with the fibre of 7 over bo’ But according o

Gugenheim [6, Theorenm 3], this identification is unique wp to plecewise
linear isotopy.

Note that
(1) (vne(erva)=(tet)v(qgen').
Iif theée four bundles all have the same fibre dimension ¢ then,
since n @& 7' =n' @ N, thig iozplies:
(2) (Evne(t va)=(tvn)e (& vn)

let ¢ : B —> BvB be such that the composition with each of

tha "orojection .eps"”

BVB — Bvbo = B or BvVB ~> bOVB =B
is homotopic to the identity. Then clearly
(3) ¥t ve)mer(eve) ~
Furthermoxe
(B) otk vreg) ~ et

since £ v r¥t is isomorphic to I%¢ for a suitible map f: BvB —> B,

with fe¢ homotopic to zero.
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Now combining (2) and (4) one has
e 0 el m ox((e v r#e) 0(e% v V) ~ox(e v €1) 6 ox(e® v vve) .
Together with (3) this implies that
elg el = E o r¥t |,

which proves Temms 1.

Proof of Theorem 3 by induction on the dimension of B. If
B has dimension 1 then it has the homotopy type of a suspension and
the conclusion follows. Suppose that B has dimension n + l, sand
that &£ restricted to the skeleton Bn has an inverse 7. First we
will show that 1 @ g2 can ve exbended in some way over B ; where
q 1s the fiber dimension of ¢&. C(learly a bundle over 8" can be
extended over a given (n + l)-simplex if and only if its restriction
to the boundary n-sphere X is trivial. Thus £|5” is trivial.
Hence {3 & aq)[zn is isomorphic to (n @ g)]z; which is known to
be trivial. This proves that 17 @ e? extends to some bundle 1!
over B.

Consider the complex B U C’(Bn) obtained from B by adjoining
a contractible complex over the n-skeleton. Since ¢ & 7' restricted
to B" is trivisl, it follows that £@ n' extends to some bundle
¢ over B UCHEB"). But B U C(B®) has the homotopy type of a
suspension: namely of a bouguet of (n + 1)-spheres. Hence t has
an inverse {¥ ; and & © n' 6 ((*|B) is trivial. This completes

the proof of Theorem 3.
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Definition. Two PLe-microbundles £ and &' over B balong
to the same s-class if ¢ @ 8% is igomorphic to &' @ Sg for some
4, r. We will also say that ¢ 1is s-isomorphic to s's The s-class
of & will be denoted by ().

As an immediete consequence of Theorem 3 we have:

Corollary 3.1. The s-classes of PL-microbundles over a finite

dimensional complex B form an abelian group under the composition

operation:
e ettt

(S)+(n) =(ten) .

The proof is striaghtforvard.
Definition. This group will be denoted by kPL(B).

Clearly the correspondnece

B mmen- >k, (B)

defines a contravariant functor from complexes 4o abelian groups.
The analogues of Theorem 3 and of Corollary 3.1 for vector
bundles are well known. Ve will use the notation kO(B) for the
group of s-classes of vector bundleg over a finite dimension complex
B. 1Individusl vector bundles will be denoted by lower case Iatin letters.
Tt will be secen later (§ 4, Lemma 6) that there is a natural

transformation
. k)
T ; kO(B) — APL(B)

between these two functors. Intuitively, wT(v) 1is obtained by

triangulating the vector bundle v 80 as to make a PlL-bundle out of it.
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3. Normal bundles

Consider PL-manifolds M(C N with inclusion map i: M —> N.

Definition. M has a normal microbundle v in N if there

exists a neighborhood U of M in N and a retraction Jj: U —> i

8o that the diagram
i J
Vi M— =M

is a PL-microbundle over M. TIn particular M has a trivial normal

bundle in N if U and j can be chosen so that v isae trivial bundle
It is not known thet M has a normal bundle in N even ir

the imbedding MC N is locally flat. Furthermore, even if the normal

bundle doeg exist, it is not known to be unique up to isomorphism.

However the following two results will be proved.

Theorem k. Given PL-menifolds M N there exists an integer

4 80 that the submanifold M X oC N X rY has a normal microbundle.

Theorem 5. If MC N has a norma) microbundle v then the

Whitney sum TM ® v is isomorphic to the restriction TN,M.

This result implies that v is at least unique up to s~isomorphism:

Coroliary 5.1. If MC W hes two distinct normal bundles

v, v! (corresponding to two distinct choices of J : (neighborhood) —> M)

then v and v' belong to the same s-class.

The proofs will depend on the concept of the composition of
two microbundles.

t: B ~E—> E-dsg y and

N E-+spdap
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where the total space of & coincides with the base space of 1.

This composition is defined %o be the microbundle

B 13 > B 3 > B.
Example. @Given bundles £ .and €' over B, consider the
induced bundle j*£' over the total space E of B. Then it is
easily verified that the composition of ¢ and J%&% 1ig exactly the

Whitney sum ¢ @ &'. In fact this example is the most general one:

Temma 2. Given & and T as sbove, the composition of ¢

and 1 is isomorphic to the Whitney sum & @ i¥y,

Proof. let Ey be ameighborhood of i(B) in E which is

sufficiently small so that the nap

iyt By —> B

is homotopic to the inclusion map (where Jo = j]EO). Thus the
bundle j *i# over E,y will be isomorphic to n]EO. But the
composition of & and jg(i%n) is isomorphic to the Whitney sum
£ ® 1*). (Compare the example sbove.) This proves Iemma 2.

Proof of Theorem 5. The bundle

A Py
TN|M: M—=>MNXU-—=>H
can be considered as the composition of the tangent bundle
A P1
g M—3MXM—>M
and the induced bundle

DAV Mx M oy B o
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Hence by Lemma 2 we have

—rNIM STy @ MPEV =T B v
which completes the proof.
The corollary 5.1 follows immediately. For if v' is g

second normal bundle, then choosing 1 so that ™ 0 = Eq, we have

v! SSQ%KV‘@TH)@q'm(v@r“)@ ne~ye e,
Proof of Theorem 4. Replacing N by & neighborhood of M if

necessary, we may assume that some Pl-retraction o: N—=>HM exists.

Consider the induced bundle
b
rée O 050 NV R ;

where (I,r) denotes the map x —> (%,2(x)). Choose a bundle n

over N s0 that T*TM & 1 is trivial;

r%TM &N~ ;g.
Thig implies that the bundle §§ is isomorphic to the composition of
r*TM and the bundle pl*n over N X M.
If V is a sufficiently small neighborhood of (I,r)N in

N X M, it follows that we have a commutative diagram

N X0 > W x RY

I,r) i
v

where 1i' is the inclusion map of the PL-microbundle pl*q. On the
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other hand the composition

ity (Lar)y o

is also the inelusion map of & microbundle. In fact this composition

1s the diegonal map A: M ~>V(C N XM, which is the inclusion map

for TNIM. Now the map M X 0 -2 5 iy x R? is equal to the composition
i1'4 of the inclusion maps Of two microbundles. Hence M X O has a
normal bundle v in N x Rq which is isomorphic to the composition

of these bundles. This completes the proof of Theorem k.

(Remark: By Lemma 2, Vv is isomorphic to
TNIM & njM:)

Combining Theorems 4 and 5 we have:

Corollary 5.2 M X 0 has a trivial normal bundle in N x R

for lavrge q if and onlty if TM and TN[M belong to the same s-rlegs.

Definition (J. H. C. Whitehesd [20]) A PL-manifold M ic of

class I if for any imbedding of M in a high dimensional Euclidean
space, the regular neighborhood of M is PL~homeomorphic with the
broduct M X (simplex).

Corollary 5.3 (Theorem of M. Curtis and R. Iashof.} M is of

class I if and only if its tangent bundle Ty is s~trivial.

Proof It is only necessary to observe that every imbedding
of M in a high dimensional euclidean space can be deformed so that

it lies ina (2m + 1)-dimensional hyperplane. Thus Corollary 5.2

applies.
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h.  Dpifferentiable gtructures

The notation M& will be used for a PL~manifold M together
with & differentisble structure ¢ of class Cr on ¥ which sgtigfies
the following:

Compatibility condition. For some rectlinear subdivision M!'

of M, the identity map
M —
o

should be a ¢'-trisngulation of the smooth manifold ¥ . (See
J. H. . Whitehead [19]. ¢ must induce the usual differentiable
structure on each simplex of M'.) Here r denotes some fixed
integer, 1 Sr <,

Definition. If such a g exists then M will be called a
smoothable PL-manifold; and o will be called a smoothing of M.

According to Cairns [3] as corrected by Whitehead [p22], every
PL-manifold of dimension <k 1is smoothable. On the other hangd
according to Thom [17] ang Rohlin-g;aré'[lh] there exists a Plrmanifold
of dimension 8 which is not smoothable.

The following basic result is due to S. Cairns [4] and
M. Hirsch [8].

Theorenm C-H. A PL~menifold M is smoothable if and only if

the product M X R is gimoothable,

Tt follows by induction that M 1is smoothsble if any product
MxRY ig smoothable. Since an open subset of R4 is certainly

smoothable, this implies the following.
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Corollary C-H.1 Every manifold of class I is smoothable.

If the manifold M is contractible then its tangent micro-
bundle Ty 18 trivial (Theorenm 1), hence M is of class I . fThis

gives a new proof of the following result.

Corollary ¢-H.2 (Theorem or A, Gleason [5].) Every contractible

PL-manifold ig smoothable,

The theorem of Cairns and Hirsch can also be stated in the
following slightly sharper form. Iet g& denote the trivial vector
space bundle over M.

Tneorenm C-H#. If Mx Rq' has a smoothing Ul with tangent

vector bundle tl then e smoothlng g of M can be chosen so that

the tangent vector bundle t(M ) is s-isomorphie to tl]M.

Proof  This follows immediately from the argument in {h] op fa].

In order to study the smoothing problem for PL-menifolds, the
following concept will be ugeful.

Definition, A PL-manifold U of dimension n with g
smoothing K will be ecalled m~universsl if the tangent veetor bundle
t(U ) is sn m-universal bundle for the orthogonal grwoup 0O{(n), in
the sense of Steenrod [15,$ 197,

(Note: the dimension n  is necessarily > 2m, )

Iemma 3. For every m there exists an m-universal manifold

Proof Start with the Grassmann manifold G(m,m) of m-planes
in 2m~space. Thig has the right homotopy type to be an m-universal

manifold: +that ig there exists g smooth me-universsl vector bundle u
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over G(m,m). However the tangent bundle t of G{m,m) is not the
right bundle, o correct this, choose a smooth vector bundle v over
G(m,m) so that the Whitney sum +© @ v is trivial, Now consider the
totel space E(v @ u) of the Smooth vector bundle v ¢ u., Tt is
easily verified that the tangent bundle of this smooth manifold
E(v @ u) is an m-universal vector bundle. Choosing s Cr-triangulation
f: U—>2%(v e u), and letting u  denote the induced smoothing of
U, this proves Lemma 3.

Iet M be a PL-manifold of dimension m, and let Uu be an
m-universal manifold of dimension n > 2m + 1,

Theorem 6, M is swoothable if and only if the Whitney sum

TM ® eﬁ m ls isomorphic to f*TU Tor some PL-map f£: M —> [,

The proof will be based on two lemmas.

Iet M and M' be PL-manifolds of dimensions m, m + k, and

suppose that M* 1ig smoothable, with smoothing .

Lerma 4  If there exists g PL-map £: M —> M' such that

f*TM, is s-isomorphic +o TM, then M is also smoothable. In fact

there exists g smoothing o of M 80 that the tangent vector bundie

(M) is s-isomorphic to f%t(M’u).

Proor. Replacing i’ by some product ' ¥ Rq, the map f
1s homotopic to a PL-imbedding £0 M—> ' X RY. Since the restricteq
tangent bundle TM,XRqIfl(M) is s~isomorphic to To

(1) it follows

1

from Corollary 5.2 that the submanifold ¢ Mx 0CHM XREx BT pas
X

a trivial normal bundle, broviding that »r is sufficiently large. In

other words the Product M x Rk+qfr can be Pl-imbedded as an open subset




of the smoothable manifold M' x RQ*T. Thus M X R

18.

khgrr is smoothable.

Using the Cairns-Hirsch theorem it follows that M is smoothable.

The smoothing of M X RV obtained in thic way will

evidently have a tangent bundle tl" such that

3 e P ' T .
&, i x 0 = f*lt(M“ X RE'T);

where € denotes the standard smoothing of Buclidesan space. Therefore

t1|M X 0 is s-isomorphic to f*t(Mﬂ). According to the sharpened

form of the Cairns-Hirsch theorem, it follows that ¥ has a smoothing

6 with t(ME)

s~-isomorphic to f*t(M&). This proves Lemms L.

Conversely suppose that M and M! are both smoothable, with

smoothings o,

respectively. Iet f£: M —> M' be such that the

induced vector bundile f*t(Mﬁ) is s~isomorphic to t(M&).

Lemma 5,

22 T In fact

Then the induced miercbundle f*TM, is s-isomorphic

if the dimensions m+ k and m satiafy m+ k > 2m 4+ 1,

M’

then P*T =T & E

m' M

X
M L]

Proof. Replacing Mﬂ by some product Mﬁ_x Rg the map f

is homotopic to a smooth imbedding .

4 t
Since fi@t(Mu X R

mal vector bundle

T

1

. ' q
: k% — MH X RG'

g) 1is s-isomorphic to (M) 1t follows that the nor-

of flMa in Mﬁ X Rg is s<trivial; and hence ig

trivial. (Compare [10, Iemus 4}.) fTherefore a tubular neighborhood

NX of flmﬁ in

a . . k+g
Mﬁ X Re is diffeomorphic to MG X R6 .

According to J. H. C. Whiteheagd {19, Theoren 8] any - diffeomorphism

kt+q

& h% XIRG

—> N. can be approximated by & PL-homeomorphism

A




AL

[

o '

P . .
lackion. Cut_if:_i‘fa.-:m{_..c_‘_fs-‘,. I - —

18,8

g M X R sy .

[3

Clearly the induced microbundle ngN is isoworphic to T trq

MR
Sinece the diagram

M > M!

X 0 Pl

: g org
Mx RS —— L Cu x Y
kN

is homotopy commutative, this implies that

k2
£ meqm'rMee:k*q )

vwhich proves the first part of Iemma 5.

If the dimension m+ k of M' is >e2m+ 1, then f can
actually be approximated by e smooth imbedding of M& into Mﬁ
itself (rather than M& X Bq).

Proof. Iet £.: M —> M' be a simplicial approximation to

0

f ; and let fl be a differentiable approximation to fo so that
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a) f; is a one-one immersion of M_ooin Mﬁ and
b) the image fl(M) is disjoint from the m-skeleton of M!'.
This is certainly possible if m + k 2 2m+ 1. (Compare Whitney (231.)
Now if the approximation is sufficiently close, then the limit set of
fl will equel the limit set of fo. Since this is contained in the
1 will be an
k

YTy 8

m-skeleton it will be disjoint from fl(M). Therefore f
imbedding.] The argument above now shows that f*ﬁr
which proves Iemma 5.

Proof of Theorem 6. If M possesses a smoothing o, then

since t(UH) is an m-universal bundle, the sum t(M&) @ ea-m is

isomorphic to f*t(Uu) for some f: M --> U. Hence by Lemma 5.
*
nem
Ty ™ Ty o8y

-
S

smoothable. This completes the proof of Theorem 6.

Conversely if f*§T1% T, ® then ILemma b4 asserts that 1 is

Using the universal bundle theorem (§ 5), Theorem 6 can be
reformulated as follows. Iet
c: U -—>B(PLn) s e M —> B(PLn)

be classifying msps for the mierobundles TU

Corollery 6.1. ¥ is smoothable if and only if there exists

snd T, @ eﬁnm respectively,

& mep f: M —>U s0 that the diagram

is homotopy commutative.
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With this formulation it is natural to make use of obstruction
theory. Using a mapping cylinder construction, one can assume that
¢ imbeds U as a subcomplex of B(PLn).

Corollary 6.2. M is smoothable if and only if a sequence of

obstructions

oy € H(; m (B(PL,} ,0))

are all equal to zero.

The proof is standard. (As is usual in obstruction theory, the
higher obstructions need not be well defined.)

On the other hand Munkres [13] has defined a sequence of - obstructions
S
ayhgled (Msr, ) =w(M; T, )

whose vanishing implies that 4 can be given a (not necessarily
compatible) differentiasble structure. A similar theory has been

outlined by Thom [18]. This suggests the conjecture that the relative

homotopy group wi(B(PLn),U), n>> i, is isomorphlec to the group

r considered by Thom and Munkres. Since the Fi-l are novw known

11
to be finite groups, this conjecture would yield quite a bit of

information about the B(PLn).

Still another formulation can be given as follows. Recall
that the s~classes of Pl-microbundles over a finite dimensional complex
B form an abelian group kPL(B)' Similarly the s~classes of vector
bundles over B form an abelian group kO(B). Define a natural

transformation T from the funcior ko to the functor kPL ag follows.
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Given a vector bundle v of dimension g over B, choose

& PLemanifold M with smoothing o, and a PLemap f; B —> M, so that

m—qm W
v @ e f t(MU).

(For example one could choose @U to be a  aniversal manifold.)

Now def'ine
- g .
™o{v) = (f TM)

This s-class T(v) does not depend on the choice of M and
f. Por if Uu is a k-universal menifold, where k > Max(m,dim B),

then there are maps

c ! M—=>U, ¢, : B—U,

1

unique up to homotopy, so that
. =T U=~q
H = * '
o t(Uu) ’G(MG) e 5 clt(Uu) ~ V@

Thus cf is homotopic *o ¢, ; and (c*TU) = (Tﬁ) by Lemnra 5. Hence

(cél%'rU) = (f*e*’L‘U) = (f*TM).

Therefore T(v) is well defined.
For a Whitney sum v @ v' one can use the Product m% X Mé,

of two suitible manifolds to show that
Hveov)=>(v)+T(vt).

Since T clearly commmtes with mappings, and carries trivial bundles

into zero, this proves the following.
Iemma 6. The homomorphisms

T : kO(B) —_ I%L(B)
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constitute a natural transformation from the functor k0 t0 the

functor kPL'
Now Theorem 6 can be reformulated in a ney vay:

Corollary 6.3. The Plemenifold M 1is smoothable if and only

if the s-class TM lies in the image of the homonorphism

T : kO(M) —_ kPL(M).

In fact é given s-class (v) e kO(M) contains the tangent vector
bundle t(MG) of some smoothing of M if and only if (v) ¢ T“l(TM).
The proof is straightforward, meking use of Temma b4.
As a final consequence of Theorem 6&:

Corollary 6.4, Suppose that for some finite complex B the

homomoxrphism

T ko(B) _— kPL(B)

has a non-trivial kernel. Then the tangent vector bundle of any

manifold having the homotopy type of B 1is not a8 topological invariant,

For example s suitable open subset M of euclidean space can be given

& new smoothing o so that N% is not parallelizable.

The proof is irmediate.
In a subsequent bapexr it will be shown that this phenominon
actually occeurs. TFor example if B consists of a T-sphere with an

8-cell attached by a map of degree 7, then the homomorphism

T kO(B) —_— kPL(B)

1s zero. However the group kb(B) is cyclie of order 7 generated by

any s-class (v) with Pontrjagin class pe(v) # 0.
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5. The univegggl bundle theorem.

This section will construct a classifying space B(PLn) for

PL-microbundles of dimension n.

It is first necessary to define the concept of an ¥igomorphism-

germ' between microbundles. Iet

. a\ a\
%1 : B "Eg > B

be two PL-microbundles over B. Recall that gl and g2 are isomorphic

if there exist neighborhoods U, of %I(B) in E, for o=1,2, and

a4 PL-homeomorphism f: Ul — Ué 80 that the diagram

"
N

Definition. Two such PL-homeomorphisms, £ and

is commutative.

te 171 1
' Ul —_— Ué

define the same isomorphism-germ F from ¢ to ¢,, if the two maps
1 2

coincide on some sufficiently small neighborhood of il(B). (Thus an

isomorphism~germ

F: gl — §2
is an equivalence class of such PL-homeomorphisms. )

Now consider the bundles g*gl and g*ge induced by some

PL-map g: B' —> B. Any isémorphisi-gera P gl — ;2 clearly gives -

rise to en isomorphism-germ g*gl —_— g*ga. This induced isomoxphism-
germ will be denoted by g¥w.
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g*gl ——a g*ge. This induced isomorphism-germ will be denoted by g¥F.
For each integer n, construct a c.s.s. group complex?
PLn as follows. 1Iet Ak denote the standard ordered ke-simplex. As

usual let Ezk denote the trivial microbundle
X 0 n P1
A T A xR g
Definition. A k~simplex ¥ of the c¢.s.s5. complex PLrn is an
isomorphisn-germ F: ggl — gzk.
The operation ;f composing isomorphismegerms makes the set

PLn(k) of k-simplexes into & group. For each monotone simplicial

map A A}2 — ék define a homomorphism
g PLn(k) — PLH(E)

as follows. Iet X# carry each isomorphism-germ F 10 the induced
isomorphism-germ A¥P. Thus PL, = [PLn(k),X#] ig & ¢.5.8. group
complex.

Note: PLn seems to play a role for PL-manifolds which is
analogous to the role of the orthogonal group 0O(n) in the theory of
differentiable manifolds. Roughly speaking PLh may be thought of as
the singular complex of the group of germs of PL-automorphisms of the
pair (R",0).

Now consider a PL-microbundle £ of dimension n over s

simplicial complex 3B. Choose some ordering for the vertices of B.

2 For the theory of c¢.s.s. (complete semi- 8irplicial) complexes,
see for example Moore [11], Heller [7].
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Definition. The associated principal bundle E is the
c.8.8. principal bundle with group PLn vhich is constructed as
follows. The base space B 1s the c¢.s.s. complex consisting of all
monotone simplicial maps f: Ck -—~> B ; with K#: E(k) — ﬁcﬂ)
defined by Nfe = £ o A+ A k-simplex of the total space B consists
of

1) & k-simplex £ e 5%, together with

2) an isomorphism-germ P: 821 — %t

<

~ ~l
The functiong N#: E(k) —_— E(L) are defined by the formula

X#(f,F) = {(f © A,A*¥F). The right translation function
EXPL —>E
is just the operation of composing isomorphism germs. Since each group
""" PLn(k) permutes the set ﬁ(k) freely, with orbit set ﬁ(k) HEBAY

follows that £ is a principal PL_-bundle.

Iemma 7. Let B be locally finite. Then two PL-microbundles

E, 1 over B are isomorphic if and only if the associated c.s.g.

principel bundles &, 7 are isomorphic.

Proof. Buppose that an ilsomorphism ¢: E — E of t.5.8.
bundles is given. 1In other words, to each monotone simplicial mep
£ Ak —3 B and each isomorphism-germ »F;sp —> 1%t there is
assigned an isomorphism-germ {F): azk —> f¥1, Note that the composition

L(F)F-l s P¥E —> PEp

does not depend on the choice of F.
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For each k-simplex X of B let f be the unique element of

ﬁ(k) which meps Ak onto X. then there exists a unique isomorphism-germ

I Els — niz

5 ¢
so that f¥I: f¥& —> ¥ is equal to L(F)F“l. If I!' is s face of
£, then it is easily checked that IEIE‘ = IZ" Now, using the fact
that B is locally finite, it follows that these isomorphism-germs

IE piece together to yeild the required isomorphism-germ
I: & —>71 .

Lemma 8. Again let B Ybe locally finite. Then any principal

PLn-bundle x over B 1is isomorphic to § for some microbundls §

over B.

Proof. Construct £ as follows. For each k-simplex % of
B choose a k-simplex [£] in the total space of = which lies over
the corresponding simplex f: 4 —> zCB of ﬁ(k). Passing to the
i-th face Biz note t@at the two (k - 1)-sinplexes [aiz] and Bi[z}

both lie over the same simplex aif of ﬁ(k"l). Therefore
o, [£] = [9,z]-F

for some uniguely defined

F = PF(i,5) € PLn(k'l)
Now form the topological sum of all of the simplexes I of

n
z

8ll together, identifying each Sg 5 with eglaiz using the
i

B, and take the trivigl microbundle €. over each X. Paste these

isomorphism-germ F'(i,Z): Sg 5 —_— aglaiz which corresponds to
i
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Fi,2) @ &8  —» &8

Ak-l Ak—l

under the PL-homeomorphism O;f: A , —> d,Z. It is not difficult to
verify that these identifications are compatible, when one passes to a
face of a face of Z. Therefore, usiﬁg the fact that B is locally
finite, we see that the identification space yields a PL-microbundle
£ over B. Furthermore E is isomorphic to =x. This proves Lemma 8.

According to A. Heller [7] (see also MacLane [9], doore [12])
for any c.s.s. group complex G there exists a "classifying complex",
58y ﬁ(G), with the following property. Any principal G-bundle over
any c.s.s. complex K 1is induced by a unigue homotopy class of maps
K —2 ﬁ(G)- The next two lemmas will be used to show that the c.s.s.
complex ﬁ(PIh) has the homotopy type of some locally finite simplicial
complex.

Iemma 9. Given a PL-map f: X —> Y between finite simplicial

complexes, there exist rectilinesr subdivisions X! of X and Y¥Y' of

Y 80 that the induced map X! —> Y' is simplicial.

Proof. ﬁirst choose a subdivision X of X 80 that each

1
simplex of Xl maps linearly into a simplex of Y. Next choose a

subdivision Yl of Y so that, for each simplex £ of X the

l.!
image f£(Z) 4is a subcomplex of Y;. {The finiteness of X is used for
this step.)

For each simplex £ of X, and each simplex A of Y. con-

1 1
gider the convex cell Z N f'l(a). These cells form a cell-subdivision

Xe of Xl. Let X3 be the first barycentric subdivision of Xe.
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The new vertex v wvhich is selected in each cell = N f-l(A) must be

chosen so that f(v)} is the barycenter of A. Iet Y, be the first

barycentric subdivision of Y.. Then #£: X, —=> Y. is clearly a

1

3 2

simplicial map.

Iemma 10. There are at most a countable number of non=1isomorphic

PL-microbundles over a finite complex B. If B is a circle then

there arve exactly two isomorphism classes of n-dimensional bundles

over B.

Proof. For any microbundle
E: B-tsp-ds B

it may be assumed that the total space E is also a finite complex,
and that 1B is a subcomplex of E. Choose subdivisions E', B' =0
that j is a simplicial mep. Then 1 will sutomatically be simplicial.
Hence the subdivided microbundle &' can be completely described by a
finite scheme of incidence relations and meppings. Thus there are only
& countable number of such bundles &'. Since E=~f%t! where f: B —> B!
is the identity map, and since there are also only a countable number
of homotopy classes of maps B —3 B'. It follows that there are only
countable many £, 4up to ilsomorphism. i

Any bundle over a circle can be obtained from the tiivisal
bundle over a line segment by matching the end fibres. It follows frém
Gugenheim [6, Theorem 3] that there only two essentially different
ways of doing this. Thus there are only two bundles over a circle

(nemely the trivial bundle snd the non-orientsble bundle.) This

pfoves Lemma 10,




di

29.

It follows that the homotopy groups ﬁiﬁ(PLn) are all
countable. Now using {21, Theorem 13] it is not hard to show that ﬁ(PLn)
has the homotopy type of a locally finite simplicial complex B(PLn).

A homotopy equivalence ﬁ(PLn)~—> ﬁ(PLn) induces a principal
PLn~bundle over E(PLn) 3 and therefore gives rise to a PL-microbundle
7n over B(PLn). Clearly 7n is a universal n-dimensional microbundle.

This completes the proof of the universal bundle theorem (Theorem 2).

References

1. P. Alexandroff and H. Hopf, Topologie, gpringer 1935.

2. E. Brgwn, Cohomology theories, (mimeographed) Brandeis University
1961.

3. S. Calrns, Introduction of a Riemannian geometry on a trlangulable
h-manifold, Arnals of Math. 45 {1944}, 218-210.

b ; The manifold smoothing problem, Bull. A.M.S. 67

(1961), 237-238.
5, A. Gleason {to appear),

6. V. K. A. M. Gugenheim, Piecewise linear isotopy and imbedding of
of elements end spheres, Proc. London Math. Soc. 3 (1933},
20-53 and 129-152

T A. Heller, Homotopy resolubions of semi-simplicial complexe's,

8, M. Hirsch, On combinatorial submanifolds of differentiable manifolds,
Conment. Math, Helv. (to appear).

9. S. Maclane, Constructions simpliciales acyclique, Collogue
Henrl Poincard, Paris 1954,

10, J. Milnor, A procedure for killing homotopy groups of dszerentlable
manifolds, Proceedings Symposia on Pure Mathematics III,
AM.S., 1961,

11. J. Moore, Semi-simplicial complexes, Princeton University 1955
(mimeographed).

1z. , BSemi-simplicial complexes and Postnikov systems,
Symposium International de Topo logisa Algebralca, riexilco,.
1958, 232-2h47.




AL

13.
14

15.
16.

17-

i8.

19.

20.

21.

a2z,

23.

30.

J.+ Monkres, Obstructlons to imposing differentiable structures,
{to appear).

V. A. Rohlin and A. 8. Svarc, The combinatorial invariance of
Pontrjagin classes, Doklady Ak, Nauk USSR 11k (19577,
450-93 (Russian).

N. Steenrod, Fibre Bundles, Princeton 1951.

R. Thom, Espaces fibrds en sphéres et carrds de Steenrod, Ann.
8ci. Ecole Norm. Sup 69 {1952}, 109-182.

» Ies classes caractéristiques de Pontrjagin des varidtés
triangulées, Sympos. Intern. Topologia Algebraica, Mexico

1958, SW-57.

, Des varidtds trianguldes aux variétds différentiables
Proceeding. Intern. Congres Math., Edinburgh = 1958, 248-255,

J. H. C. Whitehead, On cl-complexes, Annals of Math. 41 (19k0),
80g~82k .,

s On the homotopy type of manifolds,
Ammals of Math. 41 (1940), 825-832.

, Combinatorial homotopy I, Bull. Amer. Math. Soc. 55
{1949), 213-245,

, Manifolds with transverse field in euclidean
space, Annals of Math. 73 {(1901), 154-212.

H. Whitney, Differentisble manifolds, Annals of Math 37(1936), 645-680.




