Some free actions of cyclic groups on spheres

J. Milnor, December 1963

Let $p \ge 5$ be prime and let $n \ge 5$ be odd. This note will show that the cyclic group Π of order p can act differentiably on the n-sphere, without fixed points, in infinitely many different ways. These actions are "different" in the sense that the corresponding quotient manifolds $M = S^n/\Pi$ can be distinguished by their Reidemeister-Franz-de Rham torsion invariants. Hence two such "different" manifolds M, M cannot have the same simple homotopy type, cannot be piecewise-linearly homeomorphic, and cannot be diffeomorphic. (It is not known whether or not M and M can be homeomorphic.)

First let me review the basic properties of the torsion invariant, following [3], [4]. Let K be a finite, connected CW-complex and let II denote the fundamental group of K. Let

$f: Z[\Pi] \longrightarrow C$

be a ring homomorphism from the integral group ring to the complex numbers. If the homology groups $H_1(K; \mathbb{C}_f)$ are all zero (homology with local coefficients twisted by f) then the torsion invariant $\Delta_f \ K \in \mathbb{C}_0/+ f\Pi$ is defined. (Here K denotes the universal covering complex, \mathbb{C}_0 the multiplicative group of non-zero complex numbers, and $+ f \ \Pi$ the subgroup generated by $f(\Pi)$ and + 1.) To simplify the notation we will henceforth leave off the tilde, and write simply $\Delta_f \ K$.

Similarly, given a pair K, L with $H_*(K, L; C_f) = 0$ the torsion $\Delta_f(K, L)$ is defined. This satisfies the identity

$$\Delta_{\mathbf{f}}(\mathbf{K}, \mathbf{L}) = \Delta_{\mathbf{f}} \mathbf{K} / \Delta_{\mathbf{f}} \mathbf{L} ,$$

providing that the three terms are defined. (If two out of three are defined, then the third is automatically defined.)

If W is a triangulated manifold of dimension n with boundary bW, then the following duality theorem holds. We must assume that |f(t)| = 1 for $t \in \Pi = \pi_1(W)$. Then

(2)
$$\Delta_{\mathbf{f}}(bW) = (\Delta_{\mathbf{f}}W)(\overline{\Delta}_{\mathbf{f}}W)^{\varepsilon(n)}$$

where $\overline{\Delta}$ denotes the complex conjugate and $\epsilon(n)=(-1)^n$. We will also need the following variant form. If M is a triangulated manifold without boundary of dimension n-1 then

$$\Delta_{\mathbf{f}}^{\mathbf{M}} = (\Delta_{\mathbf{f}}^{\mathbf{M}})^{\varepsilon(\mathbf{n})}.$$

Now consider an h-cobordism (W; M, M'). That is, assume that W is a smooth manifold with boundary M + M', and that both M and M' are deformation retracts of W. Choosing a C^1 -triangulation of (W; M, M') we will assume that the torsion

$$\triangle_{\mathbf{f}} M \in C_{\mathbf{O}} / \underline{+} f \Pi$$

is defined.

いろとも

Lemma 1. Then $\triangle_f^{M'}$ is defined, and equal to $(\triangle_f^M) \triangle_f(W, M)(\overline{\triangle_f}(W, M))^{\epsilon(n)}$.

<u>Proof.</u> Since M is a deformation retract of W it is clear that $\Delta_{\mathbf{f}}(W, M)$ is defined. Thus $\Delta_{\mathbf{f}}W$ is defined, and similarly $\Delta_{\mathbf{f}}M'$ is defined. Consider the duality statement

$$\Delta_{\mathbf{f}}(\mathbf{b}\mathbf{W}) = (\Delta_{\mathbf{f}}\mathbf{W})(\widetilde{\Delta}_{\mathbf{f}}\mathbf{W})^{\varepsilon(\mathbf{n})}$$
.

Since $\triangle_{\mathbf{f}}(\mathbf{bW}) = (\triangle_{\mathbf{f}}\mathbf{M})(\triangle_{\mathbf{f}}\mathbf{M}^*)$ and since $\triangle_{\mathbf{f}}\mathbf{W} = (\triangle_{\mathbf{f}}\mathbf{M}) \triangle_{\mathbf{f}}(\mathbf{W}, \mathbf{M})$, this can be rewritten as

$$(\triangle_{\mathbf{f}}^{\mathsf{M}})(\triangle_{\mathbf{f}}^{\mathsf{M}^{\mathsf{t}}}) = (\triangle_{\mathbf{f}}^{\mathsf{M}}) \triangle_{\mathbf{f}}(\mathsf{W}, \mathsf{M})(\overline{\triangle_{\mathbf{f}}}^{\mathsf{M}})^{\varepsilon(n)}(\overline{\triangle_{\mathbf{f}}}(\mathsf{W}, \mathsf{M}))^{\varepsilon(n)}.$$

Now dividing through by

$$\triangle_{\mathbf{f}}^{\mathbf{M}} = (\overline{\triangle}_{\mathbf{f}}^{\mathbf{M}})^{\varepsilon(n)}$$

we obtain the required formula

$$\triangle_{\mathbf{f}}^{\mathbf{M'}} = (\triangle_{\mathbf{f}}^{\mathbf{M}}) \triangle_{\mathbf{f}}^{\mathbf{(W, M)}} (\overline{\triangle}_{\mathbf{f}}^{\mathbf{(W, M)}})^{\epsilon(n)}$$
.

Henceforth we will assume that the dimension $\, n \,$ of $\, W \,$ is even. Thus Lemma $\, l \,$ can be rewritten in the form

$$\Delta_{\mathbf{f}}^{\mathbf{M'}} = (\Delta_{\mathbf{f}}^{\mathbf{M}}) |\Delta_{\mathbf{f}}(\mathbf{W}, \mathbf{M})|^{2}.$$

Suppose that we are given the manifold M with fundamental group Π , and wish to construct the h-cobordism (W; M, M').

Lemma 2 (Stallings). If $\dim(M) \geq 5$ then the h-cobordism (W; M, M') can be constructed so that $\Delta_f(W, M)$ is equal to the image, in $C_0/\pm f$ II, of any unit of the ring Z[II].

Proof. Stallings actually observes that the h-cobordism can be constructed so that the Whitehead torsion invariant $\tau(W, M)$ is any desired element of the Whitehead group

Wh(
$$\Pi$$
) = GL(∞ , Z[Π])/(Commutators, $+ \Pi$).

(See Stallings [6,§2].) In particular if u is a unit of $Z[\Pi]$ then W can be chosen so that $\tau(W, M)$ is the element of $Wh(\Pi)$ corresponding to the matrix

It is then clear that $\Delta_{\mathbf{f}}(W, M)$ is equal to the image of u in $C_0/\pm f$ N . (Compare Cockcroft [1], or [3, pg. 589].) This completes the proof.

Thus in order to construct examples of h-cobordisms, we need only look for units in $Z[\Pi]$. To be more specific, let us now assume that Π is cyclic of order p with generator t. Define $f\colon Z[\Pi] \longrightarrow C$ by $f(t) = \exp(2\pi i/p)$.

Lemma 3 (Higman). If $p \ge 5$ is an integer of the form 6k + 1 then Z[H] contains a unit u with $|f(u)| \ne 1$.

Proof. This follows easily from Higman [2]. Alternatively, here is a direct proof. Let

$$u = t + t^{-1} - 1$$

so that $f(u) = 2\cos(2\pi/p) - 1 \neq \pm 1$. To see that u is a unit it is only necessary for the reader to verify the identity

$$u(1+t-t^3-t^4+t^6+t^7--++...-+t^{p-1}) = 1$$

for $p \equiv 1 \pmod{6}$; or

$$u(-1+t^2+t^3-t^5-t^6++--...-+t^{p-3}+t^{p-2})=1$$

for $p \equiv -1 \pmod{6}$. This completes the proof.

Now combining the three lemmas we have the following.

Theorem. Let M be a smooth manifold of odd dimension ≥ 5 whose fundamental group is cyclic of order p = 6k + 1, $p \geq 5$. Then there exist infinitely many manifolds M_1 , M_2 , M_3 , ... which are h-cobordant to M, but such that no two have the same simple homotopy type.

 \underline{Proof} . For each integer m we can choose the h-cobordism $(W_m; M, M_m)$ so that

$$|\Delta_{\mathbf{f}}(\mathbf{W}_{\mathbf{m}}, \mathbf{M})| = |\mathbf{f}(\mathbf{u}^{\mathbf{m}})|$$
.

$$\triangle_{\mathbf{f}}^{\mathbf{M}}_{\mathbf{m}} = (\triangle_{\mathbf{f}}^{\mathbf{M}}) |\mathbf{f}(\mathbf{u})|^{2\mathbf{m}}.$$

Since $|f(u)| \neq 0$,1 the real numbers $|\triangle_f M_m|$ are all distinct. This does not yet prove that the M_m all have distinct simple homotopy types, since the invariant $|\triangle_f M_m|$ depends on the choice of f. But there are only finitely many homomorphisms from $Z[\Pi]$ to C, so out of the infinite sequence M_1, M_2, \ldots one can certainly extract an infinite subsequence consisting of pairwise distinct manifolds. This completes the proof.

In particular let us apply this theorem to a Lens space

$$L = s^{2k-1}/\pi.$$

The resulting h-cobordant manifolds L_1 , L_2 , ... will all have universal covering spaces diffeomorphic to the sphere. (See Smale [5].) Thus we have infinitely many distinct free actions of the cyclic group Π on S^{2k-1} . But there are only finitely many orthogonal actions of Π on S^{2k-1} . Thus we have:

Corollary. For $2k-1 \ge 5$ and p prime ≥ 5 there exist infinitely many smooth fixed point free actions of the cyclic group of order p on s^{2k-1} which are not smoothly equivalent to orthogonal actions.

It would be interesting to know whether any corresponding phenomenon occurs in dimension 3.

References

- W. H. Cockcroft, Simple homotopy type torsion and the Reidemeister-Franz torsion, Topology, 1 (1962), 143-150.
- 2. G. Higman, The units of group rings, Proc. Lond. Math. Soc., 46 (1940), 231-248.
- 3. J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Annals of Math., 74 (1961), 575-590.
- 4. _____, A duality theorem for Reidemeister torsion, Annals of Math., 76 (1962), 137-147.
- 5. S. Smale, On the structure of manifolds, Amer. J. Math., 84 (1962), 387-399.
- 6. J. Stallings, On infinite processes leading to differentiability in the complement of a point, to appear.