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Differentidble Mahifolds Which Are Homotopy Spheres

J. Mllnor®

§$1. Introduction

This paper will study the problem of classifying differentiable
n-manifolds which are homotopy spheres, under the relation of J-equiva-
lence. (See the "dictionary" below.) It is shown that the equivalence
classes form en abelian group which is denoted by @, The only groups
g which I have been able to determine completely are the followlng:

However partial information is obtained in many other cases. TFor ex-
ample (according to 3.7, 5.8 and 6.9);

k-
Theorem. For k > 1 the group ®Lk L is finite but non-~trivial.

Sectlon 2 of this paper will study a sum operation for connected
manifolds of the same dimension, Section 3 defines an invariant A7
for certain (hk-1)-manifolds, Section 4 contains examples of homotopy

gpheres for which the invariant A’ takes on all possible values.

Section 5 describes a construetion for simplifying manifolds,
which was communiceted to the suthor by R. Thom, Using this construc-
tlon it is shown that the invariant A“(M) determines the J-equiva-
lence class of M uniquely. A correspondlng result for éimensions of
the form bk + 1 is stated without proof, Section 6 studles the fol-
lowing question: Is every homotopy sphere the boundary of a Te-mani-

foldt

*The author holds a Sloan fellowship.
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Section 7 contains further discussion and a 1lst of unsolved pro-
blems. Operations of 'pasting together" manifolds and "straightening

angles"” are described in an appendix.

Dictionary of terms used. The word manifold will mean a compact,

oriented, differentiable manifold, with or without boundaries.” (The
phrase "topologicsl manifold" will be used in case the differentiable
structure has not yet been specified,) The symbol -M will be used

for the menifold M with orientation reserved.

Two unbounded manifolds Mi, Mé of the same dimension are

J-equivalent 1f there exists a manifold W such that

1) the boundary oW is the disjoint union of M, and -M and

2}

2) both M, and M, are deformation retracts of W .’

2
Thus J-equivalent manifolds belong to the same cobordism class and to
the same homotopy type. This concept is due to Thom [3]. It is not

known whether J-equivelent manifolds are necessarily diffeomorphic,

By a homotopy sphere we mean a (differentiable) manifold without

boundary which has the homotopy type of a sphere. Similarly a homo-
logy sphere M must be unbounded and satisfy H, (M) ﬁsH*(Sn) . Here
B, -denotes homology with integer coefficients, and s®  denotes the

1 +1L

unit sphere in Fuelidean spaée R¥™.  The notation p" will be

used for the disk bounded by g°.

1.1 lemma, Let M =29 wn+l where M is simply connected and
wP+l‘is contractible, Then Mn 1s J-equlvalant to Sn .

Proof. Choose an imbedding of Dn+l in the interior of wn+l.

o
Then (wn+l-interior (Dn+l)) has boundary equal to the disjoint union

*
Here the symbol - stands for set theoretic subtraction.
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3.

of Mn and Sn + It is not difficult éo see that Both boundaries are

deformation retracts of wn+l-interior (Dn+l) .

A T-manifold Wo is characterized by the following property. If
W 1s imbedded in a high dimensional Fuclidean space R4 ; then the
noxmel bundle v¥ is trivial. Tals concept is due to J. H. C. Vhite-
head (2], If W dis & T-manifold, then clearly d W is also a
T-manifold,

e will be called almost parallelizable 1if there exists a finite

subset F so0 that W -F is parallelizable.

1.2 Lemma (J.H:C:Whitehead) Every parallelizable manifold is a

T-manifold. Evexy m-menifold is almost parallelizable.

Proof. A field of tangent n-frames on WG R-TY {nduces a map f

from Wn to the Stiefel manifold Vh+q n* Note that f d1s covered by
2
a bundle map from v® to a corresponding SO _-bundie over V .
q n+q,n
But the space Vh+q o is (a-1)-connected. (See Steenrod [1] §25.6.)
)

For g >n this implies that f is homotopic to a constant; hence that

q

¥ is trivial,

Similarly a field of normal g-frames on w induces f:w“;—>vn+q’q .
Since Vﬁ+q,q is (n-l)aconnected, the only obstruction to contracting
T lies in o (wn‘ . 1)
> "n ‘ntg,q’’"
But thls cohomology group can be killed by removing a finite number of

polnts from wt .

A similar ergument shows the following,
1.3 Lemma, If efery component of u- has a non-vacuous boundary,
then the three concepts: parallelizable, m-manifold, and almost parallel-

izable, are equivalent,




LA

b,

The J-homomorphism of H. Hopf and G, Whi{ehead wvill be denoted by

. q
J Wh(SOq)—~>-Wh+q(S ) .

(For a definition see Kervaire [4] §1.8. Caution: this homomorphism has
nothing to 4o with J-equivaelence,) It will always be assumed that gq
is large. This homomoxrphism will play a fundamental role in what fol-
iows. |

§2. fThe connected sum of manifolds

Let N&, Mé be connected differentiable manifolds .of the same
dimension n , The sum Ml#-M2 is obtained by removing an n-cell from
each, and then pasting the resulting boundaries together. There are
three difficultles with this:

1) The pasting must be done in such a way that Ml# M; has an
orientation compatible with that of botﬁ Ml and ME .
2) Even sllowing for orientation, not every diffeomorphism be-

tween the boundaries will give rise to the same composite manifold.
(According to Milnmor [1] it is possible to paste together the boundaries
of two T-cells, obtaining a manifold which is not diffeomorphic to ST.)

3) . It is necessary to show that the result does not depend on

which n-cell is chosen.

Definition. Choose an orientation preserving imbedding hl:Rn—bMi

and an orientation reversing imbedding hngn~>-Mé . Let N&ﬁéyb be
obtained from the disjoint union of Ml-hl(o) and Mé«hg(o) by identi-

fying hl(x) with hb,(x/ Hx”g) for each x £ 0 in R .

Remark. It would be sufficient to specify hl(x) ‘and hg{x) for
Izl < 1 + & in order to comstruct this manifold M# M, . In fact by

removing all hi(x) with [x[ <1/(1 + €) from each M,, and then
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ldentifying n)(x) with hy(¢/ [xI®) for 1+e > x > 1/(14e) , wo

obtain the identical manifold M4 M. .
The following will be proved in“a veper by J. Cerf.

2.1 Theorem of Cerf, Iet M be a connected n-manifold. Given

two orientation preserving imbeddings f,f':Dq—é> (interior M), there

exists a diffeomorphism ' g:M—>M which satisfies gf = £* ,

2.2 Corollary. The sum Ml#-Mé 1s well defined up to orientation

' preserving diffeomorphism,

Proof of the corollary. The only choice which occurred in the

definition was the choice of imbeddingé hl,h2 . Given other imbeddings

hi, hé, there exdst dirffeomorphisms 8, of Mi so that

gihi(x) = hi(x) for x| <l+ege,
R , Yy . ., :
These g &lve rise to a diffeomorphism g.Miﬁ~M2~v>(Ml#'M2) ; which
completes the proof,

2¢3 Lemma. Suppose that the unhourded manifolds Ml,Mé are

J-equivalent to M{ and MJ

o Trespectively., Then the sum Mi# M, 1is

J~equivalent to Ml'# Mé' .

- Proof, If the dimension n is £ 2, then the assertion is

clear, Hence we may assume that n 2 3« Choose manifolds Wi 50

that 9 Wy 1s the disjoint union of the deformation retracts M, and

”’ ’ # »,
-Mi » Choose a differentiable arc ay from pieMi to p; € Mi in
wi » 8o that the interior of ay lies in the interior of wi . Ve

will see that the inclusion map

J: Mi-pi———>-wi -a,

1s a homotopy equivalence.
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Since the codimension h of . py in M, is z 3, the homo-

morphisms ﬂi(M

iupi)_4>-nl(Mi) , Wi(wi"ai)—">'ﬂi(wi) are lsomorphisms.

Hence

et Wl(Mi—pi J— Trl(wi-ai)

is an isomorphism,

Let ﬁ%: ﬁi denote the universal covering spaces, and let ﬁf: ai
denote the inverse images of Py, 8 .« The inclusion

FaY

’ ~ ~ ~ ~
(Mi, Mi" ﬁi) — (wi, wi- ai)
glves rise to a homomorphism between exact sequences of homology groups.

Using the Five Lemma it follows that
ey o~ ~ ”~
15 en isomorphism for all k . Therefore J is a homotopy equivalence.

(Compare J.H.C.Whitehead [3].)

Choose ftubular neighborhoods N, of a and let ¥ be a mani.

i i’
fold obtained from wl-Nl and wg—I\I2 by pasting together the boundaries
in such & way that 3 W is the disjoint unien of M # M, and -(M# M) .
Since the incluslons

M, - (Miﬁ Ni) —> W - Ny

are homotopy equivalences, it follows easily that the inclusion
My i My—> ¥
15 & homotopy equivalence, A corresponding argument takes care of the

inclusion (Mi# Mé) —> W , This completes the proof of 2.3.

It is clear that the operation f#f is associative and commutative,
providing thet we do not distinguish between diffeomorphic manifolds.

Furthermore the sphere acts as a zero element: M # s =M .
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2.4 lemma. Suppose that M 1s a homotopy n-sphere. Then MiE(-M }

is J-equivalent to Sn .

Proof. Let U denote the interior of a disk DU M . Consider
the topological manifold (M-U) x [0,1]. This is aifferentiable, ex-
cept along the "angles" 3 U x [0] and d U x {1]. ILet W be & dif.
ferentiable manifold obtaiﬁed from (M-U) x [O;l] by strailghtening
these angles. (See the Appendix.) Then W is a contractible manifold

with boundary M # (~M) . Together with 1.1 +this completes the proof,
Now combining 2.3 and 2.4 this proves:

2.5 Theorem. The set of all J-equivalence classes of homotopy

n-spheres Torws an abelian group under the operation # .

This group will be denoted by ©°. It is clear that @ =0 .
Since Munkres {1] has shown that a 2-manifold has an essentially untoue

differentiable structure, it follows that @2 =0,

[Two subgroups of @ will also be studied. @n(ﬂJ will denote
the subgroup formed by all T-manifolds in @, and (3 7) will de-

note the subgroup formed by all boundaries of T-manifolds., ]

§3. ‘The invariant h'(th-l)

Let M be a (bk-1)-manifold which is (1) a homology sphere, and
(2) the boundary of scme 7-manifold W . The intersection number of
two homology class «,p of W will be deroted by <o, . Let I(W)

denote the index of the quadratic form
O < O, >,

where « varles over the Bettl group Hgk(w)/(torsion). Integer co-

efficienta are to be understocd,
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Define T, as the greatest common divisor of I(M) where M ranges

over all alwost parallelizable mapifolds of dimension bk which have

no boundary, Thls number has been studied by Kervaire and Milnox [1].
{See 3.7.)

3.1 Lemma. The residue class of I(W) modulo Ik is an invariant
of the boundary M .
Proof, If M is the boundary of two parallelizable manifolds wl

and W let ¥ %bve the unbounded Lk-manifold obtained. from wl and

2)
-¥, by pasting together the common bourdary. Clearly

I(E) = I (wl) - I (we) .

Let p be a polnt of M . Then the complement N-p I1s parallel-
izable., In fact N-p is the union of parallelizable manifolds wl-p
and, weup » having an intersection M-p vwhich is acyclic. Given a
field of hk-frames on W,-p and on Wy=p , it is possible to deform one
of the two so that they colncide along M-p . Therefore N is almost
parallelizable; and

I(n)= o {(mod Ik) .

This completes the proof,
lot every residue class can occur:

3.2 Lemma, The index I(W) of an almost parallelizable manifold

is always divisible by 85 providing that O W is & homology sphere,

Proof, First observe that the intersection number < o, x> 1is
always an even integer. This 1s the homology translation of the state-
ment that

2k . Hek (

3q W, oW ; 2) -—-sxﬂl*k'(w, AW 22)

is zero, If 8q2k were not zero then the formulae of fu (see Wu (1],
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Kervaire (2]) would imply that W had & non-trivial Stiefel-Wnitney
class in dimensicn < 2K.

Since OW is a homology sphere it follows by Poincare duality
that the matrix of intersectlon numbers has determinant + 1. But a
quadratic form with determinant + 1 vhich takes on only even values
must have index divisible by 8. (Compare Milnor [4].) This completes
the proof,

Definition. The residue class of %‘- (W) modulo %-g{ will be
denoted by A‘(M).

3.3 Lemma. The properties of being (1) a homotopy n~sphere,and
(2) the boundery of & w-manifold, are invariant under J-equivalence;
end are preserved by the sum operation #.

Hence the manifolds which have these properties give r;se to a
subgroup of e", .

Definition. Thais subgroup will be denoted by €4 7).

3.4 Lemma. The invariant A“(M) depends only on the J-equiva-
lence class of M. Furthermore

A.'(Ml # M2) = ?\'(Ml) + h'(Mz).

The proofs of 3.3 and 3.4 are straightforward. Hence A’ gives
rise to e homomorphism
Fl )'l‘k"“l
A O T) —> gy
8 Tk
It will be proved in Sections 4, 5 that A’ 1is an isomorphiem, at

least for k > 1,
¢

The principal difficulty with the invariant A’ is that it is
extremely difficult to compute. For example it would be very interest-

1ng to evaluate A’ for the topological spheres which are constructed
in Milnor {1, 5] and Shimada [1]. The invariant A which is defined

in these papers is somewhat weaker, but much easier to compute.




dl

lo.

The numbers é Ik can be descriﬁéd as follows, Let Bk denote

the k-th Bernoulll number:

Z L o L -
B}_Hg, 82-3‘6', "rey B6"69l/2730) L ] (]

Define jk as the order of the image

| q
T (SOq) C Wq + bkl (57) for large gq .

Define & tobe 2 1f k i1is odd and 1 1f k dis even. Then accord-

ing to Kervaire and Milnor [1]:

3.5 Lemna. Ik is equal to

22k-l (22k~l 21) B

AN X

The only unknown quantity here is the integer Jk .

3.6 Lemma. is & multiple of the denominator of B, /bk .

Jk
Proof. For k even, this is proved in Kervaire and Milnor [1],

For k odd this follows from the arguments of that paper, together with

the following:

Theorem of Hirzebruch {Not yet published.) If the unbounded mani-

fold th has Stiefel-Whitney class Yy equal to zero, and if &k is

odd, then the K-genus A [th] is an even integer.

On the other hand an upper bound for Jk is giliven by the order of
the largest cyeclic subgroup of Wq + bk l(Sq). The p-primary component

of _l(Sq) is known for k < p2(p-1)/2 for any prime p. (Bee

Wﬁ + bk
Toda [1,2).} The full group is known {to me) only for k =1, 2, 3,
It turns out that the upper bound for the p-primary factor of Jk is

exactly equal to the lower bound in each known case,
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Combining the preceding infbimation, we have:

2k-2( 2k-1

3.7 Lemma. ‘The number % Ik is equal to ak2 2 1)

(numerator Bk/k), multiplied by an integer whose prime factors p

satisfy pg(p~1) < 2k . In particular

gi =2, évIE =28, é‘13 = 992, % I, equals 8128 times

E
g a pover of 2.

§4. Construction of (bk-1)-manifolds

The following is perhaps the simplest example of a symmetric matrix
with determinant + 1, with only even elements on the diagonal, and with

index different from zero, (Compare Milnor [h].)

s i ot e TS T e

2
I

[}
o
—
no
[
>
o

We willl construct a manifold whk which has the above intersection
matrix.

k
2k x 2 .

Let T be a tubular neighborhood of the diagonal in 8 S

say the set of all pairs {x,y) with distance d{(x,y) < e . Thus T is
-------- ; a bk-manifold having the homotopy type of Szk. The intersection number

of the fundamentsl 2k-cycle with itself is +2 .




ERR I R

) 12,

2k 2%

let ¢ : S > 3 he the "twelve hour rotation' which leaves

the north pole p fixed, and satisfied ofx) = -x for x on the
equator. Let T7 = (1L x &) T be the set of palrs (x,y) with
d(x,x y) < €. Then T and 7’ 4intersect only in a small neighbor-

hood of the pair (p,p), and a small neighborhood of the pair (=p,-p).

The universal covering space of TUT’ consists of infinltely many
dlsjoint copies of T and infinitely many dlsjoint copies of T .

Nunbering these copies‘ T& and T{ , Wwe may assume that each T{

intersects only Ti and Ti+l .

Define wl as the subset

¢ ’ ’ ’
Tl u ?l U T2 U TE U T3 U T3 U Th u T&

of this unlversal covering space. Thus Wl is a topological lk-manifold,
having the homotopy type of a union of elght Pk-spheres with a single
point in common, Choosing an appropriate basis for Hgk(wl) , the inter-

section matrix 1s as follows:
21
121
121
121
121
121
121
12

To correct this intersection matrix it is necessary to introduce
an intersection between T{ and T3 , 80 as to obtain an lntersection
R . o2k 2k
number -1 , Choose & rotation of &5 X 5 which carries a reglon

of T° near the "eauator" ontoe & regilon of T

near t h e ‘equator", so as to obtain an intersection number of




-1 . Idatching the corresponding regions or Ti and T3 , We obtain a

topologlcal manifold W with the required intersection matrix.

2}

This manifold V. is differentiable except along eight "angles"

2

which have been intxnduced in the boundary. Let w3 be a differentiable

manifold obtained by straightening 4hese angles., (See the appendix.)
Unfortunately the transition from wl to W2 changed the homotopy
type. In fact the fundamental group wi(w2) = ni(w3) is infinite cyclic.
Next we will ki1l this fundamental group. A generatof can, be represented
by a simple closed differentisble curve C lylng on the boundary of W3 .

Dl‘k'e-——> 3 W.. which carries sl X 0

3
onto the glven curve € . Let wh be the space obtained from the dis-

Cheoose an imbedding h: Sl b4

Joint union

w3 U ° X -2

by identifying s* % 1::1”’{"2 with 1ts image under h . Then W), 1is
simply connected. In fact wu has the same homotopy type as wl; but

the same intersection matrix as w2 or 'w3 .

Thls space wh is a differentiable manifold, except along the
"angle" corresponding to Sl X Shk"3 . Let M, be a differentiable

manifold obtained by "straightening" this angle,

4,1 ‘Theorem. W, 1s a parallelizable Lk.manifold with boundary
4, which is a homology (bk-1)-sphere, In fact for k>1, M isa
homotopy sphere. ‘The index I(wo) equals +8 .

Thus the invariant A°(M ) is defined and equal to +1 .

4,2 Corollary, The homomorphism A from @hk'l(a ) to the

cyclie group of order é Ik is onto, providing that x > 1 ,
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4,3 Corollary. 'The group o is non-trivial, providing

that k>1.

Proof that wo is parallelizable. The only obstruction to

parallelizability lies in the group
2k .
H (wo 3 Wek-l( S”hk) ).

But HQk(wo) 1s generated by eight cycles, each of which is contalned
in & sub-manifold diffeomorphic to T SEKX Sgk. Since 82k is a
T-manifold, it follnws that T is a mw-manifold, hence parallelizable,

Therefore WO is paralleiizahle.

Computation of H*(Mb)' Since the groups Hi(wo) have no torsion,

L}
it follows by Poincaré-Lefschetz duality that Hy (WO,MO) 7 Hl*k‘l(w0 }- is

isomorphic to Hom (Hhkui(wo)"ZJ' The natural homomorphism
Hi(wo) — Hi(wo,mo) = Hom (Hhk_i(wo), Z)

is determined by the matrix of lntersectlon numbers.

Now recall that HO(WO) =~ 7, ; that Hi(wo) =0 for 1 #0, 2k;

and ﬁhat the matrix of intersection numbers in dimension 2k has

determinant +1 . Plugging this information into the exact sequence

of the pair (Wd’Mb) , it follows that Mo has the homology of a

‘(hk-l)usphere.

Proof that MO is simply connected, providing that k > 1. (For
Xk equal to 1 the group 2y (M;) depends on the cholice of the curve
C . If C could be chosen so that m, (M ) =0, then M would

provide a counter-example to the Polncaré hypothesis.)

Let K w3 denote the union of 8 coples of Sek, one in the center

of each T, end Ti' . ..Sinea the dodimension 2k of K is greater
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than 2, it follows that 12

-

| wé(w3, w3- K) =0,

But it ls clear that d Wy is a deformation retract of w3— X . Hence
Hé(w3’ 3 w3) = 0 . From the exact sequence of this palr it follows

that Wl(B w3) is infinite cyclic, generated by the closed curve C .

The manifold O Wy, ' can be obtained from o g in two steps, as

follows, (Compare Lemma 5.3.)

1) Remove a tubular neighborhood of cC o H3 .. Since the cu-
Aimension k4k-2 of € in 93 w3 is greater than 2, 1t follows that

Hi(a W3- ¢) is alsc infinite cyclic.

~) -Ll‘-'
2) FL11 in the resulting hole with a copy of D° x S 70,

The effect of this addition on the fundamental group 1s u’. kill the
generator. Hence Wi( d Wh) =0,

Since the differentiable manifold M = 3 W, is bhomeomorphic t.
3 wh, this completes the proof that Mb' is a homotopy sphere, Since

the index I(WOJ is easily shown to be +8, this proves Theorem h.1.

§5. Simplifying manifolds by surgery

This sectlon will describe an operation, suggested to¢ the author
uy Thom, which can be used to kill off the lower homotupy gruups I a

manifold, To illustrate the method, the following will first be proved.

5.1 Theorem. Let M be an unbounded 4k-manifold which is almost
parallelizable. ({That 1s there exists a finite subset F, so that M-F
is parallelizable.) Then there exists an unbounded Lk-manifold M7

vhich satisfies:

1) the index I(M”) equals I(M} ,
2} M’ 4s alsoc almost parellelizable, and
3) M° 1s (2k-1)-connected.
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Remark 1. It is not possible to kill off any further homotopy
groups: If M’ were 2k-comnected, then the index I(M") would have
to be zero.

Remark 2. The hypother.s that M 1is almost parallelizable is
essentisl here., As an example, for n=12, the complex projectlve space
P6(<-J) has index 1. But for any 5-connected 12-manifold, the index
must be divisible by I3='7936. (This follows sincd the only obstruc-

tion to almost parallelizability lies in H6(M5 w5(8012)) =0 .)

Proof of 5.1. If M has several components, let Ml denote the
connected sum of these components. It is not hard to show that Ml is

almost parallelizable, and that 1(Ml) = I(M) .

Suppose by induction that M 1s (g-1 )-connected, where 0 < ¢ < 2k,

Any given element o€ Wq(m)

can be represented by sn Imbedding
£ 8% —>n.
(This presents no difficulty since the dimension kx is greater than 2q.

Compare Whitney [1].)

5.2 Lemma. Let £ Sq%-> Mn be an imbedding, with q < %n ; and

. *
suppose that the Pundle F (") induced from the tangent bundle of

=

Mn is trivial. Then the normsl bundle v 4 is trivial.

Proof. Let ok denote the trivial Sok-bundle over 8% , eand

let 1% Qenote the tangent bundle, It is well known that the Whitney

sum 1% o- is trivial. We are sssuming that the bundle Vg

¥*
~f*(z") 1s trivial. Therefore

1l n+l

L .oofrgot ~o

n-g w22 4%9 0

v oq+l

is trivial., That is: the inclusilen Son_q-4> Son+l carries the
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50 - pundle y™" % into the trivial bundle, But the homomo rphi sm

-

)

(50

n+l

wq-l(son_q)-—e’ L)

is an lsumorphism in the stable range n-q > 4 . This completes the
proof .,
Let T be a tubular neighborhood of f(Sq). Then T can be

{dentified with the total space of the th-q-bundle which is asso-

ciated with vhk"q; Choosing a specific product structure for th—q)

hx-q

it follows that T 1s homecmorphic to s¥x D Let Ml denote

u differentiable manifold obtained from M by

1) removing the interior of T , and

@+l Shk-q-l

2) pasting & copy of D in its place, ‘matching the

cuommon boundary g4 X Shk“q-l.

5.3 Lemma. The manifold M is also (g-l)-connected. Further-
more “Q(Ml) is isomorphic to FQ(M)/(G), where (@} denotes the

normal subgroup generated by « .

Proof, Since f(Sq) has codimension Uk-q 1in M , it fullows
that 'Jri(M-i‘(Sq)) 1s isomorphic to m (M) for & <lk-g-1 . In
ﬁarticular

'fTi(M-f(Sq)) =0 for 1<q, and

(e (5D) = ()

fhe manifold M - f(Sq) cen be obtained from M, by removing the

e -g- of codimension q + 1 .

sphere 0 X 5
Tnerefore

m (M) =y (M - £(82)) = 0 for 1<gq.

Case 1, @ =1 , fThen Fl(Ml) can be computed as follows. The

mani fold Ml can be vbtained from M-T by first adjoining_g 2-cel.
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D* x (constant) and then adjoining a hk-céll. The first operation

introduces the relation ¢« = 0 into the fundamental group ; while

- the second operation leaves the group unchanged.,

Case 2. ¢ > 1 . Then the group vq}l(Mi,M-f(Sq)) is isomorphic
to Hq&l(Ml’ M-F(5%)) ~ 2z . In the exact sequence
q — Ap—
Z —> T, (M-£(87)) —> T, (MI) >0,

it is clear that o(l) = o, so that Wq(Mi) m'ﬁq(M)/(a) , as reguired.

Tais completes the proof of 5.3.

5.4 Lemma. If the product structure for the normal bundle

Lo
v k-q is correctly chosen, then the manifold M, will also be almost

parallelizable.

Before glving the proof, here is a description of some vector

fields on 8°C pI*, et 12 +o0r g4 be the standard basls for

the tangent vector space of DQ+1. The outward normal vector at a

4 =
point (tl, ces tq}l) g8° ds L=t & t e ¥ bl Sl Let

’

o {nto the tangent bundle of 5%,

denote the projection of &

CThus g = g- t,{, 80 that €, = € + e

&7 % 178
Proof of 5.4, Choose some field o of vectors nomal to £(8%).
The “"endpoints" of the vectors ' ¢, sveep out a subset of & T which
will be denoted by ST X (L, 0, sse, 0). The outward normal veetor to
3T atapoint of SY X (1, 0, +es, 0) will also be denoted by ¢
(since it can be considered as a translate of the vector Py at the
corresponding point of f(Sq)). Now consider the vector fields

4

r'd Fd
E F by @y, BLF Ty By eees Egn F Yo B

along s% (1, 0, +4s, O). These are orthogonal unit vectors in

SRt T

T N = T e T h T
e 5 T G A Rk A Sereb it L e H 5 2
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the tangent bundle of M.
Sinece M 1s almost Parallelizable, there exists a fleld
(b wen, Vig ) ©Of Bk-frames which 1s defined over M-F , Here p

denotes some finite set which we may assume is disjoint from T .

Assertion, It 1s possible to deform this field (wi, cosy wuk)
80 as to obtain a field s .., Vg ) ©of bk-frames such that

’I= > Fd = ’ .
L U T A a+1 T %L1 9

This 1s proved as follows, Define s matzrix aij(tl’ ceey tqfl)

by the formulae
b x

2 a \;f‘, i=l,2,.-.,q+l.
P TR

Ei + ti ?l =

This defines a map from 89 o the Stiefel manifold th .
94+ 1

Tis map 1s mull-homotopic since Wq(th )= 0. Hence it can

y 4+ 1
be lifted to a mull-homotopic map of 5% into Vi by
Ed

(tl’ ALY tq&l) — || ay I, 1= 1y evay b,

Let ¥/ =¥, outside of a neighborhoog of s x (1, o, cee, O) but

IEt Ir o= }
for potnts in 5% x (1, o, ..., o) > and for all 1, The mi.

homotopy can now be used to define w{ throughout the neighborhood,

We may ‘assume that the vectors W{ along £(s%) aye translates

of those along Sq X (l, O’ “say O) .

Now choose the product structure for the normal bundie of r(s)

vhich 1s determinea by the fielqd
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’
o Ve 0 Vi
of normed (hk~q)-frames. 1n terms of this product structure, construct

the manifold

q+l

hk-q-]
M, - M-(iuterior ) u D X8 4t

*

The hk-frame (wi, vy Wik) in M-{interior T} can be extended throughout

Q-+l

D %x (1,0,...,0) as follows. lote that the vector @, along

5% x (1,0,...,0) can be identified with the normel vecﬁor g 8% 4n
p¥  Hence the vectors 7 3£ + ot (1<1<q+1) along

s% % (1,0,...,0) can be identified with the standard vasis for the
tanéent vundle of D¥L x (1,0,...,0). Hence these vectors w{,...,$é+l

can be extended.
QL

i’ ‘o i v
The remaining vectors wq+2’ vevs Yy 8re noxrmal to D The
f projection 8% x Shk'q"l—->-suk‘q" carries these vectors onto &

rixed (bk-g-J)-frame at the point (1,0,...,0) & gHe-a-d,

Hence it‘is
certainly possidle to exbtend (WéﬁQ""’ wik) over Dq+l X (1,0,.4.,0)
as a Tield of normal (ik.g-L)-frames.

Thus & field of bk-frames has been defined ovér the subset

q+l

(M- (interior T)-F) u (DF X (1,0,...,0))

of M1~ F. ‘The complement of thils set in Ml- ? consists of & single
Yk-cell: (interlor DQ+1) ' (Shk-q"l ~point). Let ¥’ comsist of F
together with a single point in this cell. Then it is clearly possible
to extend the bk-frame fleld throughout Ml-F' . Tols completes the

proof that Ml is almost paralleldzsble,

Remark., It cannot be pruved that Ml is parallelizsble, evan Aassum-

ing that M ia pecallelizable. As an evample take M = Sl p e 83, M1 = 98
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5.5 Lemma (Thom). The menifold M, belongs to the same cobordism

class as M.

Proof. Let W be the space obtained from the disjoint union of
M x [0,1] ana p¥ , pH-a by pasting together T x [1] and
k-q

bk~ .
s % D » using the product structure for P constructed above, A

differentiable manifold Wi is obtalned froia W by “straightening" the

hk-q-1

angle o T x [1] = 54 X 8 It is clear that o wl is ‘the dis-

Joint union of M, and -M, vhich completes the proof.

Proof of 5.1L. Suppose that M 1s (q-l)-connected, almost parallel-
izable, and that FQ(M) has r generators. The sbove construction
yields a menifold M, vhich is (g-1)-connected, almost parallelizable,
and such that Wé(Ml) has r-l generators. Iterating the construction
r times, this ylelds a manifold Mr vhich 1s g-connected., Continue by

induction on ¢ until we obtain a manifold M’ which is (2k-1)-connected.

According to 5.5 the manifold M” has the same cobordism class as
M. Therefore the index.I(M') is equal to I(M). (Compare Thom [1].)

This completes the proof of 5.1.

5.6 Theorem. Let M be a homology sphere of dimension hk-1, k > 1,
. & a
which bounds T - manifold. If A“(M) = O +then M bounds dontractible
~
manifold,

2.7 Corollary. If M is a homotopy (4k-l)-sphere with A’(M) = 0O,

then M is J-equivalent to Shk-l; providing that k > 1 .

Y |
Bl-1
5.8 Corollary, For k > 1 the group © (0 T) is cyclic of
order é Ik .

The proof of 5.6 is similar to that of 5.1, but also uses the

following three results.
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5.9, Theorem. Iet W be a simply comnected menifold of dimen-
slon 2n, n > 2. Then every element of ﬂh(w) is represented by an

imbedding £: 8° —> W.

The proof is a modification of Whitney's proof that every n-mani-
fold can be imbedded in 2n<space. {See Whitney {2].) Details will not

be given. I do not know whether this theorem is true for n = 2.

5,10, Theorem. Suppose that a quadratic form over the integers
has determinent + 1, index O,‘ and takes on only even values. Then
1% is equivalent to a quadratic form with metrix diag(U,U,...,U),

vhere U = (g é).

Proof. This follows from theorems 1, 2 of Milnor [4] (making use

of theorems of Eichler, ete).

[The following remsrk is due to H. Sah. In ordexr to prove 5.10
it is sufficient to prove that there exlsts an isotrople vector: that
is an « # 0 such that the value < ¢, > of the quadratic form is
zero. 'The existence of an isotropic vector is not difficult to prove;
using the Hasse-Minkowski theorem that such a vector exists if and only
LF {1) the form is indefinite and (2) for each prime p the correspond-
ing form over the p-adic numbers has an isotropic vector. Given such
en o let o = o/r be indivisible. Since the determinent is + 1,
there exists p with <oy, B> =1. Define

B, =B -2<B B0

Then

=3 = >= L]
<cxl,al> <131,13l> 0,<a,f31 1
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Now cansider the set of all y vhich satisfy < o, 7 > =< 51, Y > =0,

By induction on the rank we can choose a bdsié for thils set so that the

matrix has the required form.)

5.11. Lemmm. Let f: SEk — Wuk be an imbedding, and suppose

that

1)  +the homology class B of f(SEK) has self intérsection
number < B, B > =0 and

2) thé induced bundle f*(fcl‘k) over S°F is trivial.

Then the normal bundle V2k is trivial.

»

Proof. Just as in 5.2 1t is seen that th corresponds to an

element « ¢ L l(sogk) vhich is amnihilated by the homomorphism

LG SN TR

8 : .
ince the group ﬂék*l(802k+l) is already stable, it follows from
the exact sequence
s (SEK) ~Z E’——> T, (s0,. ) —> 7 {s0 )
ok 2k-1'""2k 2k-1"7 2ke1

that @ =0n for some n ¢ 2.

‘The elemeﬁt dl € nék_l(sogk) corresponds to the tangent bundle
of Sgk, wvith Euler class equal to twice the generator of Hgk(Sgk).
Therefore the Ruler class of vgk is equal to 2n times a generator
of HEK(SQK). But this Buler cless can be interpreted as the gelf-

intersectlion number < B, B > times a generator. Therefore 2n = O,

hence « = 0, This completes the procf.
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Proof of 5.6, Let M be a (Lk-l)-manifold with A“(M) =0. #n
argurent similar to the proof of 5.1 shows that M bounds a manifold
W vhich 1s almost parallelizible (hence parallelizable) and (2k-1)-
connected., The index I(W) is congruent to zero modulo Ik' Hence
there exists an almost parallelizable Uk-manifold N, without bound~
ary, which satisfies I(N) = ~I{W). By 5.1 we may assume that N is

also {2k~l)-connected.

Now consider the sum W, = W # N. This is & parallelizable

i
hkemanifold with index zero, and with boundary M. The self-inter=

section matrix of V. has determinant + 1 by the Poincard duality

1

theorem, and has only even elements on the diasgonal. (Compare the
proof of 3.2.) Therefore, according to 5.10, it is possible to choose

a basis {Qi""’ar’ ﬁl,...,ﬁr] for Hek(wl) so that the 1ntgrsection

metrlix is given by:

J J J 1’

{Hexre & is a Kronecker delta.)

13

According to 5.9 there exists an imbedding I 82k

—D ‘f‘fl which
represents the homology class Gi' Acecording to 5.11 the normal bundle

of f(Sgk) is trivial. Hence we can remove a tubular neighborhood

and replace it by pPrtL o SEk"l, yielding a new menifold W,.

2k))

From the pair (Wl, Wl~f(s we obtaln an exact sequence

» 3 ~2K J
R HER(Wl-f(u )) —> H2k(w1) > 7 D
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{ waere  jly) is the intersection number of 7 with the homology class

o of £(5%5y,

generated by {al,,..,ar,ﬁe,...,ar}.

2k .
Therefore HEK(Wl-f(S )) is the subgroup of Hgk(wl)

From the pair (wg, wl-f(sek)) we obtain an exact sequence

3] "of 2K J
—> G, ——> HEk(wl-f(s )} —> HQR(UQ) H> 0 D> e,

where Ol is the class @ - Hence HEk(WE) is freely generated by

the clagses ‘{aé,...,a}, 52,...,ﬁr}. Note that the intersection num-

bers of these classes in We is the same as that in Wl- In fact

any 2kecycle in W, can be deformed so that 1t does not intersect

2
2k-1

the submanifeld #H % S which has codimension 2k + 1.

Now choose an imbedding fe: Sek —_ Wé which represents the

i class C,. We may assume that fe(Sek) is contained in the

parallellzable manifold

2k=-1

W, - (0xs ) =¥, - f(sgk),

1
hence the normal bundle is trivial. Iterating this procedure r times,
.

we obtain a nanifold wr+l which is 2k-connected, and therefore

contractible. This completes the proof of 5.6.
This argument can be modifled slightly to prove the following.

5.12. Theorem. The groups @5(6 T) and 613(8 T} are zero.

Proof. I1et M5 = BW6 vhere W6 is parallelizable, Just as

sbove, we may assume that w6 ig 2wconnected. The self intersection

matrix of H3(W6) is skew symmetric with determinant + 1. EHence 1t

is equivalent to a matrix of the form diag(U'4,U7,...,U') vhere
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(See for example Veblen {1} pg. 183.) The normal bundle
of any 3-sphere in W6 1s trivial since ﬂé(803) = 0., Hence the

argument above shows that we can kill HS(W6).

The argumeht in dimension 13 is similar, using the fact that

v6(so?) = 0. This completes the proof of 5.12.

Remark. The following assertion will be proved in a later paper.
For any n -of the form Uk + 1, the group @™ (dr) is eilther zero
or cyclic of order two. The proof will make use of the Arf invariant

of a certain quadratic form over the fleld ZE'
6, 1h
5.13. Theorem. The groups O (ow) and @ (o) are zero.

Qutline of proof. ILet W2E o K nere P

parallelizable. Just as above we may assume that YR g {k-1)-

connected. Furthermore the group (W2k+l' @) with rational
2

coefficients is not difficult to kill. Thus we may assue that
Hk(wgk+l) is a finite group. Any element of this group is represented
by an imbedded k~-gphere with trivial normal bundle. Hence one can
fO?m w12k+l as before. However the homology group Hk(w12k+l)
depénds on the particular product structure which is chosen.for the
normal bundle. The following question arises: Glven an arbltrary
normel vector field ¢, does there exist a field of nowmal (k+1)-
frames (@l,...,@k+l)? For k equal to i,3 or 7 this is possible,
since the homomorphism

. X
Tl’k(.SO ) >'rrk(s)

Letl,

so that

ts onto. Hence it is possgible to choose (q&;--

\
1 Peyyo
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- wnnl(soq) ~ 7,

a27.

2k+1

g, (W ) is smaller than Hk(w2k+l)

.  However for other values of k

this homomorphism is not onto, so that the proof does not go through.

§6. The group @n/ ™3 )

The maln result of this‘section will be that the factor group
@“/@“(a 7) is always finite. [This is the group of all homotopy
n-spheres modulo those which bound w-manifolds.] Upper bounds for this
group are given, but no lowér bounds, It is possible that every homotopy |

gsphere is the boundary of é T-manifold.

Let MU B be a homology sphere, with q > n. The only obstruc-

tion to triviallty of the normsl bundle is an element

o e K0 w4 (80)) mm ) (80,) |

This coefficient group haes been computed as follows by R. Bott [1]:

Ll

nmodwlo 8 | 0o 1 2
Z

3. b 5.6 7
’ﬂ'n_l(SOq) l Z, 2,0 Z 0 0 0

2

(This table 1s valid for g >n 2 2 .)

If n is congruent to 3, 5, 6 or T modulo 8, this clearly implies

thet O is zero.

If n is equal to bk then'the obstruction class C?égn be identified
with a certein fraction of the Pontrjagin class pk(Mp). (See Kervaire
(3] or Kervalre and Milnor [1].) But Hirzebruch's index formula (Hirze-
bruch [1] p. 85) implies that the Pontrjagin class of a homology sphere
is zero. Agaln 1t follows thetef =0 .

Finelly suppose thet n 1s congruent to 1 or 2 modulo 8, so that

o - A theorem of Rohlin asserts that the obstruction class g

|
=



Al

28,

is annihilated by the homorphism

J sty .

n+q-l(

-1’ Tpop(80y) —>,

(See Rohlin [1) or Kervaire and Milnor [1L].) If Jn-l is non-trivial,
it follows that &' = 0. Tais proves:
6.1 Theorem, Every homology n-sphere is e T-manifold, unless

1) n=1or 2mdulo 8, and

2} the homomorphism g,y is zero.

For n =2 41t is well known that Jl is an isomorphism. TFor

n=9, L0 we have;

6.2 YLemma of Kervaire [5]. The homomorphisms Jg and J, are

9

non-trivial,
Therefore:

6.3 Corollary. For n < 17 every homology n-sphere is a w-manifold.

I do not know whether conditions (1) and (2) of 6.1 are ever satisfied.

However in any case the following is true.
6.4 Lemma. For eny n the homotopy n-spheres which are w-manifolds

form & subgroup @ntn)(: @ which has index at most 2.

2
spondence M ——>» o M) e Wﬁ“l(SOq) is easily seen to be additive, and

Proof. We may assume that Wh-l(soq) ~ 7. . The obstruction corre-

invariant under J-equivalence. This completes the proof.

¢

Now let M™ be any 7-menifold without boundary, and consider the

question; Is Mn the boundary of a w-menifold? The theory of Thom [2]

can be used to glve an answer as follows.

Choose an imbedding of M*  in the Interior of a cube

kg a fleld
f0, 1] Xx vuo x 0,1} =1 , end choose @ of normal q-fremes, Then the
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Thom construction yields a map

(T, 3 I™9)—(s%, vase point),

and hence a homot‘opy class

t{p) eﬂrn+q(8q) .

(See Thom (2] p.3Q, or Kerveire [1] p.223, or Kervaire and Milnor [1],
proof of Lemma l,} Tais class is zero if and only if there exists s

m-manifold W ™ guch that

1) 3w=Mx{[0], and

2) the field ¢ of normal g-fromes can be extended throughout W.

Now let ¢ vrenge over all possible fields of normal g-frames. The
set of ell homotopy classes” t(p) will be dencted by
’, a4
820 Cmy, (5%
Evidently M bounds & T-manifold if and only if

0e t'(Mn) .

6.5 Lemma, If M, ard M, are 7-manifolds, then

2
SO0 #2y) D et ) + 870,)

(I do not knov whether equality holds.) Proof. | Let W be a manifold
fomgd from the disjoint union of M X [0, 1], M, X {0, 1] and D" x Dl
by metehing DO X {~1] with a cell in M) X {1}; matching ‘Dn X [1] with
& cell in MB % [1]; and then straightening corners. If the orientations
are correct, then O W will be the disjoint union of M # My, -M; and
—-M2 « Farthermore W has the homotopy type of the union of Ml and M2
wlth & single point in common.

Choose an imbedding of W in RO x [0,1] so that M, emd M,
go into RYY f0], while J__L# M, goes into R i [1]. Now given
."ielc'is P, P, of normal qeframag. on Ml and M2 respectlvely, there
existe an extension ¥ vwhich i3 defined througﬁout W

o
. i
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If @ denotes the restriction of ¥ +to Ml# My ; then it is clear that

t(p) = t(qi) + %(g,) . This completes the proof of 6.5,

Now consider the special case M = g° , Every fleld ¢ of normsal
q-frames determines en element
Qe ’n‘n(SOq) .
Kervaire has shown that t(p) is equal to + Jnﬁz) . (See Kervaire [5].)

Since any o may occur this proveg:

6.6 Lemms, fThe set t(s™) is equal to Image Jn(f LA (s .

+q
Applying 6.5 to the identity
M 8% = P
this shows that t'(Mn) :)t'(Mn) + {image Jn). In other words t'(Mn) is
& union of cosets of (imege Jn)‘ This suggests that we define t(M?) as
the subset of
cokernel. Jn = Wh+q(8q)/(image Jﬁ)

which corresponds to £ ("),

6.7 Theorem. The Thom construction yields a correspondence

M — (M) C (cokernel Jn)
with the following properties:
a) () is defined and non-vacuous for every unbounded T-manifold.
b) (M) contains O if and only if M" bounds & m-manifold,
¢)  o(My # M) 200) + ().
a)  #(s") = {0}.

e) Ir M, 1s J-equivalent to M, then t(Ml) = t(Mg).

£) 1eM? is g homotopy sphere, then t(Mp) consists of a single element.

Proof. Properties (a) through (d) follow from the discussion above,

Property (e) follows immediately from the definition. To prove (f) recall
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that M # (-) is J-equivalent to S°. Therefore (0} D t(M%) + (=),

But thls would be impossible 41f t(M") contained more than one element.

6.8 Corollary. The factor group o™ (r)/e"(d 7) is naturslly iso-

morphic to a subgroup of (cokernel Jn).

6.9 Corollary. This factor group is finite for every n, Hence the

subgroup @n(a‘n)(: 0™ hes finite index.

To conclude this section, here is a summary of what is known ebout
the group (cokernel Jn). Toda has computed the p-primary component of
the stable group ﬂh+q(8q) for the range n < Epe(p-l)-B. (See Toda [2].)
Combining this informestion with §3.6 the p-primery component of
{cokernel Jﬁ) is determined for the same range. As an exampie (compare
Milnor [3]):

Assertion. The p-primary component of {cokernel Jn) is zero for

n < 2p(p-1)-2, and is Zp for n = 2p(p-1)-2.

The Z2-primary component can be detexrmined for n < 13, making use of
Toda [1], together with §6.2 and §3.6. The following is a tabulation of

the first thirteen groups.

n = | 9 10 11 12 13 1hea19

L 2 3 4 5 6 78
coker J = l 0 Z, 0 0 0 %, 0 %, Z,+ %

ot L 26 o 0 Z3 2-group

2

Since @2 is known to be zero, the first unsolved case occurs for

n =6, Is the group ®6ﬂ36(6 ) non~trivial?
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§7. Discussion

Combining the resulte of' the preceding sedtions, we have the

following estimate of g% for small velues of n.
0" = 6% =0 .o,
6 '
0" i3 either 0 or ZE’
o ils cyclic of order 28,
e’ has order at most 8,
911 is eyelic of order 992,
913 is either 0 or 7

@llL is a 2-group,

3}

o hes order 127 times a power of 2. This group contains an
element of order 8128.

Evidently the biggest hiatus in the results is the following.

Problem 1. Arve the groups ®2k(3w) Tinite for Xk # 1,3,77 A
solution would Probebly be based on a detailed study of (2k+l)-manifolds

vhich are (k-1)-connectead, (Compare §5.13.)

Another outstending problem is the decision as to whether every

homotopy sphere bounds s, T-manifold. (See §6.)

Problem 2. Is there any theory which related the invariant
(M%) C (cokernel Jn) with the topology of M™? 1In particular does

this inveriant vanish for a homotopy sphere?

Another question would be the relationship between this paper

and the Poincare hypothesis,

I
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Problem 3. Does there exist & homotopy 3-sphere M such that
A(M) £ 07

Such a manifold could not be homeomorbhic to 83. In fact

J. Munkres, S, Smale and J. H. C. Whitehead have proved that the

differentiable structure of & topological 3-manifold is unique up to

diffeomorphism.
: Wi-1
Problem 4. Are the homotopy spheres My homeomorphic to
Shk"l? (See §4. Note that k must be >2.)

The followlng seems to be a very deep question.
Problem 5. Are J-equivalent manifolds necesserily diffeomorphic?

An affirmative answer would imply the generalized Poincare
hypothesis for differentisble manifolds. For if M is a
homotopy n-sphere then M # (-M) 1is J-equivalent to s, But if
MM, ds diffeomorphic to S° then an argument due to Mazur [1]

implies that M i1tself is homeomoxphic to Sn.

Most known invarlants of differentiable manifolds depend only on

the J-equivalence class. For example:

Assertion. If Ml is Je-equivalent to M2 then some homotopy

1s covered by a bundle map < Y TEn

equivalence M, —> M 1

1 2
between the tangent bundles.

Proof. BSuppose that the boundaries Ml and -Me are deformation

retracts of W. Choose a non-singular vector field on W which

points out of W along Ml and intoc ¥ along Me. The orthogonal

n+l

complement of this vector field in T yields an SOn-bundle gn
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n |
over W. Now the bundle maps Tln —> b < Tgn can be used to

construct the required bundle map.

Problem 6. Is the "simple howotopy type" of M invariant under

J-equivalence? (See J. H. C. Whitehead [1], [4].)

Appendix: Pasting and straightening

Iet R+ denote the set of real numbers + with O S t < eo.

Assertion. If W is a differentisble manifold with boundary,

‘then there exists a neighborhood U of OW, and a diffeoworphism

h: oW X R, —> U
which satisfies the identity h{x,0)} = x.

(A proof of this assertion is glven in Milnor [2]. Alternatively
this may be taken as part of the definition of "manifold with

boundary™, )

Given two manifolds Wi, W2 and an orientation reversing
diffeomorphism

f: awi — aWé s

let M denote the space obbained From the disjoint union of Wi and

W, by identifying each x e awi with f£(x).

\
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8.1. lemma. The topological manifold M can be given a

differentiable structure which is compatible with that of Wl and W,

8.2. Temma. TIf two such differentiable structures are given,

then the resulting differentisble manifolds are diffeomorphic.

Proof of 8.1. Choose neighborhoods U, of dW, din W, and
diffeomorphisms
h, awi X R, —> U,
as above. A homeomorphism
h:MiXR~>%U%CM

is defined by the formuls
hl(x,t) for t

he(fx,-t) for t < 0.

v
e}

h(x,t} =

Taking h +to be a diffeomorphism, this defines the required differen-

tiable structure.

Proof of 8.2. Let M and M' be the two differentiable mani-
Tfolds. Choose a contravariant vector field P along the boundary of

Wl vwhich points out of Wi. Considexring wl and W2 as submanifolds

of M, this ylelds a vector field P, along the boundary of Wé

which polnts into WE' On the other hend, considering Wi and w2 as

submenifolds of M', the fileld $, corresponds to some other field
qb' along the boundary of Wy

Choose a diffeomorphism 8, W, —> W, vhich leaves EMé point-
wise fixed, and carries the vector field ¢, into @,'. {The

construection is not difficult.) Then a homeomorphism g: M —> M' is

-
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obtained by combining &5 with the identity map of Wi. It is easily

verified that g eand g-l are differentisble of class Cl.
Aﬁproximate g bya medifferentiable mep g'; where the

approximation must be close enough so that the Jacobilan of £' has

renk n everywhere. (See Whitney [1].) Then g': M —> M is the

required diffeomorphism.

Several times in this paper.it has been necessary t6 consider
n-manifolds with boundary which are differentisble except along some
(n-2)~dimensional submanifold of the boundery. The simplest example
of such an object is the quadrant R, X R+(: R%. This example can be
"straightened" by intreducing new coordinates as follows. Mép

R+ X R+ onto the half-plane R X R+ by the correspondence
(r cos 8, r gin 6) ¥§> (r cos 26, r sin 20)

for 0<r, 0<6< —g Thus f 18 a diffeomorphism, except at the
singular point. Anocther exanmple is provided by the three-quarter~plane

R+ XRuRKX R+. This cen be straightened by the transformation
(r cos 8, r sin ) ~—> (x cos ((26+11)/3), r sin ({2041r)/3)),

for 0<r, - T,

ro]H

<o

A

A higher dimensional example is given as follows. TLet Wy and
W2 be differentiable manifolds with boundary. Then Wi X we is
differentiable except along BWi X awg. Some neighborhood U, X U,

of thls silogular set is "“diffeomorphic" to

(awlx awe) X (R+>< R+).




37.

Form a new differentisble manifold W as follows. Take the

disjoint union of Wy X W, - awi X awé and awl X aw2 XRXR,, and

identify
hl(xl, r cos 8) X hg(xa’ r sin 8) ¢ U, XU,

with -

(xl, ¥,y T cOs 26, r sin 28)

for each X, € awi, x, € BWé, C<r, 00 <3 This construction will

oIy

be referred to as "stralghtening the angle". Note that the differen-
tiable structure of awi X W,, and of Wy X BWé, is left fixed, so

that Lemms 8.2 applies to their union Oy,

A similar construction works for each of the examples considered

in this paper.

Princeton, January 23, 1959,
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