Lectures on.

Homology Operations
by

Clint McCrory,
Dave Damiano, James Stormes







Contents

51
§2
§3
54
§5
56
§7
59

§9

Introduction and historical comments
The polyhedral category

The spreading out theorem

Geometric homology

Degree

Linking

Intersection numbers

The double point cycle

The branch point cycle

The double-branch homology

Page

10
15
19
22
26
32
40

46







..l_
Introduction and historical comments

These notes are chapter 2 of the lecture notes of a course I
gave at Brown University in the spring of 1976. This chaoter is
the heart of the course——tﬂé geometry of maps of polyhedral cycles
to Euclidean spaces. Chapter 1 will discuss maps of smooth surfaces
to the plane and to 3-space, cenfering on the work of Whitney.
Chapter 3 will show how the coastructions of chapter 2 can be used
to give geometric descriptions of the dual Steenrod operations in

mod 2 homology.

My discussion of double points of cycles generalizes that of
Hudson for manifolds [H]. The geometry of Steenrod homology opera-

tions was announced in [Mll and developed in [M2] and [HM].

I begin with a summary of definitions of polyhedral topology.

The main idea is that of "localizing" a polyhedral map f at a

point x to obtain a link map fo . The global topology of £
will be described using the topology of its links fo . This is

an old idea which seems very natural from Rourke and Sanderson's

definition of a polyhedron as a locally conical space [RS].

The second section is about spreading out, usually called

"general position". This is also an old technique, given its

modern form by Zeeman [Z].
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In the next section I give a geometric definition of singular
homology. This idea is due to Sullivan. Similar interpretations

of his idea occur in [A], [RS], [BRS], and [M2].

The fourth section contains a generalization of the classical

simplicial definition of the degree of a map. The concept of an

irreducible cycle is borrowed from algebraic geometry.

Next a definition of linking numbers is given using the degree
(c£. [AH], [Mi]), and intersection numbers are defined using local

linking numbers. This is a relatively undeveloped idea of

ILefschetz [L]. —— o T T

After these preliminaries come the double point and branch
point cycles. (The name "branch point" for a nonimmersion point
was coined by Zeeman [Z].) Let £ : Xk + R" be a spread-out map
of a k-cycle to Euclidean n-space with k <n . I show that the
set of double points of £ in X is a cycle, provided that double
points are counted with multiplicities defined using local linking
numbers. Any two such maps have homologous double point cycles, so
the homology class of double point cycles of spread-out maps
Xk +~ R is an intrinsic invariant of X . ©Next the analogous
results are proved for branch points. Finally I show that the

double point class and the branch point class are equal, using an

idea of Tom Banchoff [B].
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At the end of each section are some illustrations and exer-
cises. Statements in these notes which are not proved are intended

to be exercises for the reader.

In lieu of chapter 1, I recommend chapter 1 of Seifert and
Threlfall [ST] and the papers'of Whitney [W] and Banchoff [B] on

characteristic cycles, as a geometric introduction to chapter 2.

In chapter 3 I will give an axiomatic characterization of the
double point class [HM], give a combinatorial formula for it [BM],

and discuss its relation with Smith operations [Wu].
Many thanks go to Dave Damiano and James Stormes, who did

most of the work of writing up these notes.

Clint McCrory

June 5, 1977




§1. The polvhedral category

This section is a brief introduction to the category of poly-
hedra and piecewise-linear maps. It contains all the background ma-
terial necessary for understanding this chapter. For a more de-

tailed and more general discussion of the PL category, see [RS].

By R® we will mean Euclidean n-space. R® embeds in g1

in the first n coordinates (xl, oo ,Xn) s (Xl’ e ,xn,O) . A
k-plane in R™ » k<n , is a translated k-dimensional vector
subspace of R® . The span of {xo, .. ,xk} c R is the smallest

plane containing {xo, ce ,xk} . In terms of coordinates,

,SPan{Xor,z:e,zxkl = {x|x = tgXg + ... F X, B e R, )Lt =1 L

We say that the points Xar +ee 1% are independent if their span
has dimension k or, equivalently, if X1=Xqr se. (X "X, are

linearly independent vectors.

A k-simplex o 1is the convex hull of k + 1 independent
points x5, ... ,%. in R . That is, o = {x|x = JEi X
iEp =1t > 0} . The.points Xgr o+ ,% are the vertices of
0 . They are uniquely determined by o . To denote that o is
a k-simplex we will write ok . The simplex T 1is a face of o ,
written T < o , if all the vertices of T are vertices of o .

(Notice that o < ¢ .) The interior of ¢ , 0° , consists of
all the points of o which are not in any proper face of o .

(Or, if the dimension of ¢ is greater than zero, o0° is the to-
pological interior of o in the plane spanned by the vertices of

o .)
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A simplicial complex K 1is a collection of simplices in R®

which satisfies three conditions. First, if o,T ¢ K and o # T ,

then 0°n 1° =@ . Second, if o ¢ K and T < o then T ¢ K .

n

Third, if T ¢ K , there is a neighborhood U of T in R such

that {0 € K|t < 0 and o n U # @} is finite. The realization of

the simplicial complex K is the topological space [K| = Us .
ogek
A polyhedron X is a topological subspace of R® such that X = K]

for some simplicial complex K . A suboolyhedron of X is a sub-

space of X which is a polyhedron. The complex K is called a tri-

angulation of X . Notice that |K| is compact if and only if K

is finite. X has dimension < k if X is the realization of a com-

plex all of whose simplices have dimension < k .

The complex J in R" is a subdivision of K if |J| = |K|
and each simplex of J 1is contained in a simplex of K . For
example, given x e¢ |K| , there is a subdivision J of K which
has x as a vertex.

n

Proposition 1.1 Let K and IL be simplicial complexes in R .

1f |K| = |L|] , then K and L have a common subdivision. #

If A and B are subsets of rR™ , their join AB 1is the set
{Aa+uwlaer,beB; AUeR;AMW>0;x+u=1} . AB con-
sists of all points on straight.line segments with endpoints in both
A and B . If A =¢ then we define AB =B ., The sets A and

B are called joinable if for each x in AB there is only one

representation of x-as x = la + uyb with a,b,A and u as above.
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We write aB for {a}s . If {al and B are joinable, aB

is called the cone with apex a and base B . For example, if
B ¢ gL , then using the embedding R™1 5 R? ye have the cones
c,(B) = (0, ... ,0,1)B and C_(B) = (0, ... ,0,-1)B .

A suspension of a subset B of R® is the union of two cones
aB and a'B whose intersection is B . For example, if B ¢ gL ,

we have the suspension S(B) = C_(B) v C_(B) (Figure 1.1). If X
is a compact polyhedron, and {a} and X are joinable in R ;

then the cone aX is a polyhedron. Thus if X is a compact poly-

hedron, so are C+(X) ' ‘C_(X) , and S(X) .

If X is a polyhedron and x ¢ X , then a link of x in
X ., denoted by LXX , 1s any compact subpolyhedfon of X such
that {x} and IX_ are joinable and the cone =xLX_  1is a neighbor-
hood of x in X . More generally, if o e X , |K| =X , a
link of ¢ in X is any compact subpolyhedron LX of X such
that o and LX  are joinable and oLX  is a neighborhood of
6° in X ., It follows from proposition 1.2 below that any two

links of X in x are (piecewise linearly) homeomorphic.

The simplicial link of o € K is defined to be the subcomplex

IK, = {1t ¢ K| 0 n T =@ and there exists ® ¢ K with o <

and T < w} .
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The realization of LK0 is a suitable choice for LX0 (Figure 1.2).

If X 1is a polyhedron in R" and Y is a polyhedron in R" ,

the map £ : X + Y is polyhedral (or piecewise-linear, or PL ) if
the graph of f is a polyhedron in R - gy g0 . If X is
compact, then £ :IX + Y is polvhedral if and only if there exist
triangulations K of X and L of Y such that for each

c e K , f(o) is a simplex of L and £|lo : ¢ + £(0) is the re-
striction of a linear map from the span of ¢ to the span of

f(o) . Equivalently, if Xgr +e. 1% are the vertices of o0 ¢ K ,
then f(xo), ‘oo ,f(xk) are the vertices (possibly_with repeti-

t.x.) = Zitif(xi) for

tions) of a simplex of L , and f£(J t,x;

ziti =1 and t;, >0 . 1In this situation, we will say that £

is simplicial with respect to the triangulations XK and L .

Let A and B be subsets of Rn—1 . If £ :A-+B ,
define C+(f) : C+(A) -+ C+(B) by
C,(£) ((0, ... ,0,A) +ua) = (0, ... ,0,)) + uf(a) .
C_(f) : Cc_(a) ~ C_(B) 1is defined similarly, and
S(f) : s(aA) » S(B) 4is the union of C+(f) and C_(f) . 1f A

and B are compact polyhedra, and £ : A+ B is PL , then

c.(f) , c_(f) , and S(f) are PL .

Now let £ : X+ Y be a PL map, and x ¢ X . Suppose

that there is a neighborhood U of x in X such that

U n f_l(f(x)) = {x} . (If X is compact, this is true for all

X € X if and only if £ is finite; i.e., f—l(y) is a finite set
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for all y € ¥ .) Then we can choose a link LX, and a link
LYf(x) so that f(LXx) c LYf(x) . A link of £ at x is then

the restriction of f to LXX ’

fo : LXx + LYf(x)

(Figure 1.3).

Proposition 1.2 ILet f : X +Y be a PL map. If & : L, - L

1 2
and &' :'Li + L) are links of £ at x e X , there are PL ho-
4 - 1 - 1
meomorphisms h1 : Ly f Ll and h2 : L, » Ly such'that
2'oh. = h, °% ., =

1 2

Thus any two choices for fo are polyhedrally equivalent.

Exercises

1. If X and Y are compact polyhedra, then so are X u Y and

XnY .
2. The composition of polyhedral maps is polyhedral.

3. The subspace X of R" is locally conical if each point x ¢ X

has a cone neighborhood xIL in X , where L is compact. Show
that X 1is locally conical if and only if X is a polyhedron (cf.

[RS]) .~

4. Define a locally conical map of locally conical svaces. Show

that f : X » Y is locally conical if and only if £ is polyhedral.
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5. Describe the possible links of a finite polyhedral map from the

plane to itself. Do the same for maps of R2 to R3 .




Figure 1.1. S(B)=C+(B)U C_(B)

Figure 1.2. IX = |LK|

Figure 1.3. f(LXX) < LYf(x)
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§2. The spreading out theorem

In this section we recall the double point set and the branch
point set of a map, and prove the spreading out theorem, which

plays an important role in the following theory.

Iet f : A+ B be a continuous map of topological spaces
with A compact. Let DP(f) = {x ¢ A|there exists y # x with
f(y) = f(x)} . The closure of Do(f) , denoted D(f) , is the

double point set of £ . The closed set B(f) = {x ¢ A|for every

neighborhood U of x , there exist y,we U , v #w ,

f(w)} is the branch point set. Clearly

£(y)
D(£)

Do(f) u B(f) , but this is not necessarily a disjoint

union, Examples of branch point sets are the fold set of a stable
map of a surface to R2 and the pinch point set of a stable map

of a surface to R3 (chapter 1).

Proposition 2.1 If X and Y are polyhedra, X compact, and

f:X~+Y is a PL map, then D(f) and B(f) are polyhedra.

proof. Let K and L be triangulations of X and Y with re-
spect to which £ is simplicial. Then D°(f) is the union of the
interiors of all the simplices o of K such that there exists
TeK , t#0c ,with £f(t) = £(0) ; Thus D(f) is a union of
simplices of K . Similarly, B(f) is the union of all the sim-
plices o0 € K 'such that there exist T, ¢ K , o < 1 ,

c<w , T#Fw , f£f(1) =fw . @&
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Suppose that £ : X = Y is a PL map from the compact polyhedron
X to the polyhedron Y , where dim X < dim Y . The map £ is

spread-out if

(1) £ is finite (i.e. for all y e Y , £ “(y) is finite)

(2) dim D(f) £ 2dim X - dim ¥ . 1In other words, the codimen-
sion of D(f) (dim X - dim D(f)) is greater than or equal to the

codimension of f (dim Y - dim X) .

If dim X = dim Y , condition (2) is vacuous. If dim Yy >

2dim X , then f is spread-out means f is an embedding. If

dim ¥ = 2dim X , then f is spread-out implies f is an immer-

sion. (Figure 2.1)

There are three versions of the spreading out theorem. We
prove the first using the simplicial approximation theorem and a
general position argument. The proofs of the second and third ver-
sions are refinements of Ehe proof of the first version. (The sec-
ond will be used to prove 7.3 and 8.3, and the third to prove 9.2.)

n n
= >
Let R_ = {x;, ... %) € R lxn >0} .

Theorem 2.2 (Spreading-out theorem) Let X be a compact polyhe-
dron of dimension k , and let g : X + R be a continuous map,

with n > k . Then

(a) Given ¢ > 0 there is a spread-out map f : X » R®

with [|f(x) - g(x)|| < ¢ for every x e X .

(b) If A c X is a compact subpolyhedron and g|A is finite,
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there exists a PL map £ : X + R® such that [£(x) - g(x)| < ¢

for all x ¢ X , f|A=g|A , and dim(D(£)\A) < 2dim(X\A) - n .

If g(X) c Rﬁ and g(a) < g1 , then £ can be chosen so'that
£(X) ¢ R? and £T@E7H) =a .
n n—'l - _ 1
(c) Let p : R+ > R+ by p(xl, .o ’Xn) = (x2, .o ,xn) .
Again let A be a compact subpolyhedron of X . Suppose that
g(x) < Rﬁ , g(a) < &1 , glA is finite, and peg|A is'finite.

Then there exists a PL map f : X » R® such that

-1

l£x) - gx) ] < e forall xex , £(x) cr , £ & =2,

£|Aa = gla , dim(D(£)\A) < 2dim(X\A) - n , and dim(D (pof)\A) <

2dim(X\A) - n + 1 .
The following is an immediate corollary.

Corollary 2.3 Any compact k-dimensional polyhedron embeds in

R2k+l and immerses in R2k .

Remark. The theorem is true with R replaced by an arbitrary PL

n-manifold, i.e. a polyhedron locally PL homeomorphic with rR" .

proof of (a). By the simplicial approximation theorem there is a
PL map g' : X + R" such that |[g'(x) - g(x)|| < ¢/2 for all
x € X . Let K be a triangulation of X with respect to which

g' 1is simplicial.

Let Vor ees oV be an ordering of the vertices of K . The

m

new map £ will be linear on the simplices of XK , so f will be

determined by its values on the vertices of K . Let
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f(vo) = g'(vo) . Now suppose that f(vo), .es ,f(vi) have already

been defined.

Let Li be the union of all the proper planes in R" spanned
by the subsets of {f(vo),'... ,f(vi)} . Since dim IL,<n , it
follows that R"™\ L, is dense in R% . Let f(v, +l) be any
. . . n - 1 .
point in R \ L, such that "f(vi+l) g (Vi+l)" < e/2 . Pro

ceeding in this manner we define £ on all the vertices of K .

Now we verify that £ has the desired properties. Suppose

Xx e 0° ., If Vigr +e- rVjg are the vertices of ¢ , then
X = jtjvij ’ jtj =1 , tj >0 . Thus
|| £ (%) -g'(x)|l=||2tf(v ) = Iytyet (v

1I5e5 (Eviy) = g' (v ]

A

zjtje/2 = e/2 .

Thus [£(x) - g(x)|| < ¢ for all x e X .

In order to show f is finite we must show that £|o is in-
jective for each o0 ¢ K . But if f|o were not injective, some
vertex of ¢ would have been mapped to a point in the span of the

preceding vertices of o .

We prove that dim D(f) < 2diﬁ X = n by showing that if o
is a k-simplex and T is an %-simplex of K ,then

dim(£(c°) n £(t°)) <k + % -n . This is sufficient since
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£(D(£)) < CR(lv)(f(o°) n £(t°))) , and £ has already been proven
o,T
finite, so f preserves dimension. Let Vigr +ee 1V be the ver-

is
tices of o and T with no repetitions. Then since the dimension
of the intersection of two linear spaces is the sum of the dimen-

sions of the spaces minus the dimension of their span,

dim(£(0°) n £(1°)) < k + & - dim(span{f(v ), ... ,E(v; )}

=k + & - min{s,n}

by the construction of £ . If s < n then the images of the
open simplices are disjoint (the closed simplices intersect on a
(k+2-n) -dimensional face) so in general we can say the dimension

of intersection is <k + 2% -n .

Exercises

1. Extend the proof of 2.2(a) to the case when the target is an

arbitrary polyhedral manifold.

2. For each n > 0 find an example of an n-dimensional polyhedron

which does not embed in R2n .




¥3 Va
D (f)\

Vo Vs

V1 Ve

D(f)
Vv, ii// XF
\§/
V4 V5 v

Figure 2.1b.

Figure 2.lc.

f(v4) f(v3)
— f(v2)=f(v5)

f(vl) f(v6)

f: Xl —+ R? Spread=out

£ £(v,) (vl)

—
f(v2)
| f(v3) =f(v5) f(v6)
f- X2 —_— R3 Spread-out
(v5)
—f
f(v7)=f(v4)
£(vy) F(vy)

f: Xl —_— R2 not Spread-out
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§3. Geometric homology

In this section we show how to define the homology of a to-

pological space using maps of polyhedra into the space.

The simplicial complex X 1is purely k-dimensional if each

simplex of K 1is a face of a k-simplex. If X is purely k-

dimensional, the boundary (mod 2) of K is the subcomplex

k-1 0k—l

K = {T1]t < 0o ' is a face of an odd number of k-simplices

of K} .
Proposition 3.1 If |[X| = |L| and X is purely k-dimensional,
then L is purely k-dimensional, and |[3K| = |dL| . ®

Therefore we say that a polyhedron X is purely k-dimensional
if X = |K| , where K is purely k-dimensional. A polyhedral
k-chain (mod 2) is a compact, purely k-dimensional polyhedron. If
X = |K| 1is purely k-dimensional, its boundary (mod 2) is
9 = |3K| . A polyhedral k-cycle (mod 2) is a k-chain with empty

boundary.

If A 1is a topological space, we are going to define the

kth

mod 2 homology of A to be the set of maps f : X + A , where
X is a k-cycle, modulo those maps £ such that £ = F|X , where

F:W~+A , and W is a (k+l)-chain with boundary X .

Suppose that the k-chain X is contained in the k-chain Y .

Recall that the frontier of X in Y , or Fr(Y,X) , is the set




-16-—

of points vy € Y such that every neighborhood of y in Y con-
tains points of both X and Y¥\X . Clearly Fr(y,X) c 39X |if

and only if 09X = Fr(i,x) u (X n 3Y) (Figure 3.1).

Now let (A,B) be a pair of spaces. We define Zk(A,B) to
be the set of all continuous maps £ : (X,98X) =+ (A,B) , where X
is a k-chain, and Bk(A,B) to be the subset of Zk(A,Bf consis-
ting of those maps which are boundaries in the following sense.
The map f : (X,9X) - (A,B) 1is in Bk(A,B) if there is a (k+1)-

chain W together with

(1) a polvhedral embedding e : X = 9W such that = o

Fr(oW,e(X)) < e(dX) , and

(2) amap F : (W,Ce(dW\e(X))) = (A,B) such that Foe = £ '

(Figure 3.2)

Zk(A,B) is an abelian semigroup under disjoint union, and

Bk(A,B) is a subsemigroup.

Definition. Hk(A,B) = Zk(A,B)/BP(A,B) , the kth mod 2 geometric

homology group of (A,B) . The group H _(A) equals H_(A,8) .

Note that Hk(A,B) is indeed a group, since if f : (X,9X) - (A,B)
is in Zk(A,B) , then f + £ 1is in Bk(A,B) , as can be seen by
taking W= X x1I , If f ¢ Zk(A,B) , the element of Hk(A,B)

determined by f is called the homology class of £ . It is de-

noted by [f].
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The boundary morphism 9 : Hk(A,B) -+ Hk_l(B) is defined by

d[£] = [£]ox1 .

If g : (A,B) ~ (C,D) is a map, then g,[f] = Hk(g)[f] =

[gof] . If X is a k-chain, the fundamental class [X] e Hk(X,BX)

is the homology class of the identity map (X,9X) =+ (X,09X)

Theorem 3,2 The pair (H,9) satisfies the axioms of Eilenberg and

Steenrod [ES]. &

Therefore, geometric mod 2 homology is naturally isomorphic
with ordinary mod 2 homology on the category of pairs of triangul-
able spaces. If X = |K| is a k~chain, let <X> be the fundamen-
tal class of X in the kth simplicial homology group of (X,9X) .
The class <X> 1is represented by the sum of all the k-simplices of
K . The transformation from geometric homology to simplicial ho-
mology is defined by sending the class of £ : (X,9X) =+ (A,B) to

£f,<X> , where f# is the induced map in simplicial homology.

#

In fact, H 1is naturally isomorphic with mod 2 singular ho-
mology for all pairs of spaces (D. Sullivan). Integral geometric
homology can be defined similarly; it is isomorphic with integral

singular homology.
Exercises

1. If X 4is a k-chain, then 03(39X) =@ .
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2. How is the definition of Hk(A,B) affected by the removal of

condition (1) in the definition of Bk(A,B) ?

3. Define the suspension homomorphism 0 ¢ Hk(A,B) - Hk+l(SA,SB) .
Prove that it is an isomorphism. (This can be done directly or by

using theorem 3.2.)

4, Show that if X is a polyhedron then every class in Hk(X) is

represented by an embedding of a k-cycle in X .

5. Give a similar definition of integral homology..




Figure 3.1.

Figure 3.2.

Fr(Y,X) ¥0X and Fr(Y,X)< dX

N £(v,) Elvy) B

o 'f(v3)
NS o

(7,B)

e(v,)
e(v2) 1

e(v3)
W

A map f: (X,9X) ——>» (A,B) in Bl(A,B)
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§4., Degree

The theory of linking and intersection will allow us to dis-
tinguish between qualitatively different types of double points.
In‘particular, we will find that we do not want to count certain
double points, because of their local linking behavior. If X is
a k-cycle, and £ : X » R is spread out, n > k , then the

double points of f which we do count will form a cycle in X

(Figure 4.1).

We will-carry out part of the program of Lefschetz [L, ch. IV,
§6] to define intersection in the homologv of a manifold in terms
of linking numbers., We adopt the convention that a "number" means .
an integer mod 2. Much of this section and the next could be ex-

tended to the integers by taking orientations into account.

Let v* be a k-cycle . Y is irreducible if Y is not the

union of two k-cycles properly contained in Y .

Let £ : Xk + Yk be a PL map of k-cycles, with Yk irre-

ducible., The degree of £ may be defined as follows. Choose trian-
gulations of X and Y with respect to which f is simplicial.
Let 0 be a k-simplex of Y and y ¢ ¢6° . The degree of f is

1

then the number (mod 2) of points of £ ~(y) . This number is

well defined, for if we let
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Y. = Coiy ¢ Y]f—l(y) has an even number of points} ,

Y. = Ciy € Ylf-l(y) has an odd number of points} ,

then Y, and Y, are k-cycles and Y = Yo u ¥, , so either
Y=Y0 or Y=';(l .

Proposition 4.1 Let £ : Xk > Yk be a PL map of k-cycles,
with Y irreducible. If f € Bk(Y) , then the degree of £ is
zero.

- proof. Let W be a (k+l)-chain with dW =X , and F : W+ Y a
PL map with F|X = £ . Fix triangulations of W -and Y for
which F 1is simplicial. If y is a point in the interior of a
k-simplex of Y , then F—l(y) is a l-chain with BF—l(y) =
f—l(y) . As the boundary of a l-chain must have an even number of

points, the degree of £ 1is zero (Figure 4.2). &

Now suppose that g : Xk - Yk is any continuous map of k-

cycles, with Y irreducible. Define the degree of g to be the
degree of a PL map homotopic to g . The degree of g is well
defined, since if £y and fl are homotopiq PL maps, the rela-
tive simplicial approximation theorem implies that £, and fl
are PL homotopic. In other words, there is a PL map

H: XXTI>Y such that H(x,0) = f4(x) and H(x,1l) = fl(x) for

all x e¢ X . Thus proposition 4.1 implies that deg(fy) = deg(fl) .

The degree of a continuous map has several basic properties.
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Proposition 4.2

(@) If £eB (¥) , deg(f) =0 .

(b) If £ is homotopic to g , deg(f) = deg(g) .
(c) deg(f + g) = deg(f) + degl(g) .

(d) deg(gof) = deg(g)deg(f) .

(e) deg(s (£f)} = deg(f) .

proof. Property (a) follows from proposition 4.1 and the relative
simplicial approximation theorem. Properties (c) through (e) are
immediate consequences of the definition of degree. (Note that

for (d), the targét of g = the source of f must be irreducible.
Implicit in (e) is the assertion that if Vv is irréducible, then

SY is irreducible.) Property (b) follows from (a) and (c). &

Exercises

1. The k-cycle Y is irreducible if and only if the %/2 vector
space H (Y) has dimension one. If f : X + Y is a continuous

map of k-cycles With Y irreducible, then f£,(X] = deg(f)I[Y] .
2. Reprove proposition 4.2 using exercise 1.

3. Prove that an n-ball does not retract to its boundary. Deduce
Brouwer's theorem that any map from an n~ball to itself must have a

fixed point.

4. Define the degree in intégral homology. ILet X and Y be
closed orientable polyhedral surfaces. Show that there exists a con-
tinuous map f : X > Y with nonzero integral degree if and only if

genus (X) > genus (Y) .




| / 7S (v) B

9(v6)

g(v4) | g(vl)

Figure 4.1. The double points of f and g are gqualitatively

‘different. This difference is detected by linking theory.

Figure 4.2, aF—l(y) = f_l(Y)-
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§5. Linking
Let Xk and Y2 be cycles, and f : Xk > R ’
g : Yz + R® be continuous maps, where n=%k + £ + 1 > 1 ., As-
suming £(X) n g(Y) = @ , we may define
D(£,g) : X x ¥ » g™t
£(x) - gly)
D(f =
' 9 n-1 n
where ||(X1' ce ,x&|| = 'Zl|x | , and s = (%9, «v. 4x ) €R
5=
I](xl, ce ,xn)ll = 1} , the standard polyhedral (n-1)-sphere.
(Even if £ and g are PL , DI(f,g) will not in general be
PL .) The linking number of £ and g is defined by
deg(D(£f,qg))

LUE,q) =

(Figure 5.1).
We can also define the linking number of two maps to a sphere.

Let Xk and YV ‘be cvcles, k>0 , £>0 , and let
£ : Xk + gt , 9 Yz + st , where n =k + 2 4+ 1 , with
£(X) n g(Y) =@ . Choose an embedding e of
n _- n n
B = {(xl, cev 4%) € R lll(xl, .o ,xn)ll <1} in S such that
Let h : e(B") + R" be defined by

£(X) U g(Y) < e(B™)
and define

h(e(b)) = b ,

L(£,9) = HAhef , heg)
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Of course it must be checked that this definition is independent

of the choice of embedding e .

Our definitions have omitted certain special cases. The link-
ing number in Euclidean space has been defined only for
k+2>0 . If k=2=0 , then Z£(f,g) can be defined only if
either x? or ¥ is an even O-cycle (that is, consists of an even
number of points). We then define ﬁﬁf,g) to be the "degree" of

D(f,g) : X XYy » s0 ; that is, the number (mod 2) of points of

D(f,g)-l(z) , where =z 1is either of the two points of SO .

The linking number in a sphere has been defined only for
k,2 >0 . To extend the definition, say for k = 0 , we must re-
quire that X be an even O-cycle. We then choose X, € X and
e : B + 8" such that f£(X \'{xo}) u g(Y) < e(B®) and
f(xo) e "\ e(B™) . Defining ikf,g) as before, one easily veri-
fies that (f,g) is independent of these choices. Notice that if
k=2 =0 , then the linking number in Sl is defined only if both

X and Y are even O-cycles.

Linking numbers have several basic properties. Let f and g
be maps of cycles to R® or S" such that gf(f,g) is defined.

Let 1Im(g) denote the image of the map g .

Proposition 5.1

(a) If f ¢ Bk(Rn \ Im(g)) [or Bk(sn \ Im(g))], then

LiE,q) =0 .
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(b) If £ is homotopic to f, by a homotopy which is dis-

1
joint from 1Im(g) , then ,f(fl,g) = ﬁ(fz,g) .

(c) f(frg) = 2g(glf) .
@ L(f, + £, , 9 = LL,;,9) + A(f,,9) .

(e) HAfsh , g) = (deg WZ(£,q) .

(£) (for linking in a sphere only) £ (Sf , i.q) = £(f,q9) ,

where i : s% =+ gh+l is the usual inclusion (Figure 5.2).

proof. Properties (a)-(e) are easy consequences of properties

(a)-(e) of degree. To prove (f), let m : (SX) x ¥ - S(X x ¥) be
the obvious map. S{X x ¥Y) will not in general be irreducible,but if
z € 0° 3 where o0 is a (k+%+l)-simplex of a triangulation of

S(X x ¥) with respect to which m is simplicial, then there will

be precisely one point in m_l(z) . As in property (e), we may

conclude that
deg(SD(f,g)om) = deg(SD(£f,qg)) .

Furthermore, SD(f,g)sm is homotopic to D(Sf , iog) . It follows

that

L(SE , iog) = deg(D(SEf , ieg))

deg(SD(£,qg) om)

deg(SD(£f,q))
deg(D(£f,qg))

Lif,9y . =@
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Exercises
1. Give a definition of integral linking numbers (cf. [AH]).

2. Give an example of a pair of disjoint simple closed curves in
R3 such that their integral linking number is zero, but neither

curve is contractible in the complement of the other.




N\

a. X(f,g) =0 £(X) g (Y)

f(X)i o o . g(Y) I N\ o B B o o -

£ (X) g (Y)

b. L(f,9) =1 L

C. z(frg) =0

k g (Y) -

d. L(f,9) = 0 ' |

e | —

Figure 5.1. Z(f,g) = deg D(f,qg).



Sf (SX)

£ (X)

Figure 5.2. &(Sf,isg) = X(f,q).




-26—-

§6. Intersection numbers
et £ : Xk + RY  and g : YR + R® be PL maps, where Xk
is a k-chain, Yg’is an &-chain, k+ 2=n , k >0 , and

2 >0 ., Suppose that f—l(g(Y)) and g_l(f(X)) are finite sets,

and that £ X(g(3Y))- and g L(£(3X)) are empty. If x ¢ X \ 3X

then LX, is a (k-1l)-cycle. If y e ¥ \ 3Y , LYy is an (2-1)-

cycle. If z e RV ’ LRS is a polyhedral (n—l)—Sphere. The

intersection number of f and g is defined to be

Qg = JRae , ne) L £ =g .
'Y :

(This means kafo', Lgy) y I = {(x,y) [£(x) = g(y)} . We will
I

always use such an abbreviation in writing sums.) Notice that the

dimensions are correct:

dim(LX,) + dim(LYy) + 1 = dim(LR;‘) r oz =£(x) = gly) .
If k=0 and & > 0 then we define
L(£,9) = ] deglig ) , £(x) = gly) . |
X,y y . ’ i
[4 !
|
If k=9 =0 we define \Q(f,g) to be the number (mod 2) of or-
dered pairs (x,y) such that f£(x) = g(y) . (Figure 6.1)

This definition easily extends to intersection numbers in any

PI, manifold of dimension

n L

At this point we depart from the
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program of Lefschetz. We will return to it in chapter 3.

Theorem 6.1 (The linking theorem) Let £ : Xk + R? and

g : Y£ + R' be PL maps of chains for which \i{f,g) is defined.

If 3y =@ , then

HE,g) = £EeX , q) .

(Figure 6,2)

Corollary 6.2 Iet £ : Xk + R  and g : Yz > R® be PL maps of

chains for which <M(£f,g) is defined. If 8X =g and 9y =@

then Jd(f,g) =0 .

If £ : (X,9X) - (2,02) 4is a map of pairs, let
of : 9X » 9Z be the restriction of £ .

k , %) + (8", sy ana

CorollarX 6.3 et f : (X

(Y 2, 3y) » (8", Sn_l) be PL maps, where x5 is a k-chain,
¥ ois an f-chain, kX + 2 =n , fﬂl(g(Y)) and g-l(f(X)) ‘are fi-

nite, £ 1(g(3Y)) =@ , g L(£(3X)) =& , = 53X , and

g ts™ Yy = 5y . Then

Qg9 = Loe , ) .

(Figure 6.3)

Corollary 6.2 is an immediate consequence of the theorem.
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Corollary 6.3 is proved as follows. Let % =X v C+(3X) ,

Y=1vYu C+(8Y) , and B™ = g%y C+(Sn—l) . Let h: B® g™ be
the obvious PI, homeomorphism, Define f:%-+s" and
T :Y+>s" by F=nholfu c (3f)) , §=nh (g u c,(dg)) . since
e -~ ~4

X and Y are cycles, corollary 6.2 implies that <N(%,§) =0 .

The observation that
JUE, ) = J(E,9) + LOE , 3g)

proves corollary 6.3. &

proof of theorem 6,1 (for k,& > 0). Let P = {py, ... P} =

£(X) o g(Y) . Let f, = D) ‘Lf, and gy = Y Lo, -
f(x)=p; : g(x)=p,

The theorem is a consequence of the following three statements:

(a) de,9 = IAg L, g))

— : A n
(b) ;ﬁ(fi ’ gi) = iﬁjiofi', g) , where Ji o LRp + R

is the inclusion.

(c) zizf«(ji"f' r 9') =5€(af r g) .

i
Statement (a) follows directly from the definition of y{ .

. e v/
Statement (c) is a consequence of the additivity of _ (pro-

position 5.1(d)), which implies that

LG £, . @) + L0E , g = Z(];3;0f, + 3 , g .




Let W = Cg(X\ \J} xLXX) . Since 23W = 3X v &~) LXx , and
f(x)eP f(x)eP
£(W) < R® \ g(Y) , proposition 5.1(a) implies that 0 = Z(£]|oW , g) =

af(af + leiOfi v 9) .
Finally, statement (b) will be proved by constructing a ho-

mology between g and the "suspension" of 9; s in the complement

of the image of fi .

More precisely, let B be a compact polvhedron in R®  con-
taining f£(X) v g(Y) and let e : B + s® be a PL embedding with

the following properties:

(1) e(pi) = (0, ... ,0,-1) ,

(ii) e(LRz_) = gt
(iii) if g(y) = p; and ¢ ¢ LYy , then e(g(Ay + ug)) =

(0, ... ,0,=-2) + pe(g(R)) , where A,u >0 ,

A+ u=1 .

Now let f£f' = eof , g' = eog , fi = eofi , gi = eeg. and
L = u LY . Thus Im(f}) < s" 1 ana g! : L+ s yith
g(v)=p, *
i
Im(gi) n Im(fi) = @ . We shall construct an (%+1)-chain W with

oW = Y u S(L) and a map H : W - s\ Im(fi) such that HIY = qg'

and H|S(L) = S(g}) (Figure 6.4). It then follows that, if

n-1 n

j: s + S is the inclusion,
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LG8 + o) = Liet! , g") by 5.1(e)
= £(3°£} , s(g})) by 5.1(a)
= L(£] , gl by 5.1(f)
= £, , g;) by 5.1(e).
Construction . of W and H : Let Y' = C(Y \ v yLY.) , and
gly)=p,” ¥

let A+ =Y' v (L x I) u C+(L) , with the identifications of

L x {0} with L = 3Y' and of L x {1} with T = 8C (L) . Thus

I’l—l)

A is an (&+1)-cycle. Let B, =C (s , and let

+ +

o, : A, > B, be defined by

R eyt =gy,

a,fCc (L) = s(g})[c () ,

o, (2,t) = g'(2) for (R,£) e L x I .

Thus 'Im(a+) n Im(£) = g . Let V_ be a cone with base A, .

Since B+ is contractible, there is a map B+ : V+ -+ B+ with
@, . And B _ can be chosen so that B;l(sn—l) =

g .

B+IA+ =

+
O‘:;_]'(Sn_l) , SO IﬂKB+) n Im(fi)_

Now let A_ = u yLY v (L X I) v C_(L) , with identi-
gly)=p; ¥
fications along L x {0} and L x {1} as above. ILet B_ =
C_(Sn_l) . Define o_ : A_ + B_ by

vLY = g" U vLY ’
Y y

a — -
“g(Y) =P; g(y)=pi
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o_[C_(r) = s(g{)|c_(r) ,

a_(&,t) = g(2) for (&,t) e L x I .

Let V_ be a cone with base A_ , and define f_ : V_ > B_ by

B_(Ac + pa) (0, «e. ,0,-X) + vo_(a) , where a ¢ A and c¢ is

the apex of V_ .

Let W be the union of V, and V_ identified along L x I
(Figure 6.5)., Define H : W » s" by HIV+ = B+ and H[V_ = B8 .

Then W and H have the desired properties. #&

Exercises

1. What does theorem 6.1 say about winding numbers ( k = 1 ,
A

=0 , and n=2 )?

2; Prove that a nonorientable pelyhedral surféce can't be em-

bedded in R3 (cf. chapter 1). (Hint: If the surface were em-

bedded in R3 , there would exist a curve in R3 crossing the sur-

face once.)




1 %2 %3
1 f
e - —_—
g
Yl
. 1 2
Figure 6,1, f: X* — R” and g:
g(y)
£(X)
a, X=D2 Y=Sl .

Figure 6.2.

K (f£,9) =L(£]3X,q)

f(x2)= f(x3)=
g(Yz)

f(xl)=
gly;)

Yl —_— R2 with £(f,q) = 0.

b. x=[0,1} Y=82

Figq;e 6.3. L(f,9)= L (3f,?9)




A0rees0,-1)

(0,...,0,-1)

Figure 6.4. A homology between g and the "suspension" of

Figure 6.5. W = the union of vV, and V_ along L x I.
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§7. The double point cycle

Let Xk be a k-cycle, and let f : Xk > R r, N>k , be a

spread-out map. Define a (2k-n)-chain M(f) < D(f) as follows.
Let X be a triangulation of X with respect to which f is sim-
plicial, and let o be a (2k-n)-simplex in D(f) . Since (£,9f)

is spread-out, o ¢ 39X . Define

dglo) = ] X(Lf,, , LE)) , dim(d') = 2k-n , o' #£o ,
¢ £(c') = £(0) ,

and let ID(f) be the union of all (2k-n)-simplexes ¢ of XK such
that df(c) # 0 (Figure 7.1). Note that dim(LXO) = k - (2k-n) -1
n-%k-1 , LR?(G) is a sphere of dimension n - (2k-n) - 1 =

2n - 2k - 1 , and Im(Lfo,) n Im(Lfo) = @ , since

dim(D(f)) < 2k ~n . Thus L(LE_, , Lf ) is defined.

We will prove that ID(f) is a cycle. This can be seen intui-
tively as follows. If =t is a (2k-n-1)-simplex of I (f) , then
the number of (2k-n)-simplices o of ID(f) such that T < o is
equal to the sum of the intersection numbers J&LfT, ’ Lfr) ,
where 7t' # t and f£(1') = f(1) , plus the number of points of
D(LfT) . Each intersection number tﬁ(Lle , LfT) is zero because

LX

v and LX . are cycles (corollary 6.2). The link LX_ is an

(n-k)~cycle, and LfT : LXT > S2n—2k is spread-out. Therefore
Lf, has an even number of double points ]D(LfT) ; since double

points - in the source! - occur in pairs (Figure 7.2).

More generally, suppose that X 1is a k-chain, and that
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n—l)

(£,9£) : (X,9X) =+ (Rﬁ , R is spread-out, n > k . This means

that f and 9f are spread-out and £ @™l - 9x . (Recall that

Rz =v{(xl’ . 'Xn) c Rnlxn > 0} .) Defining I (f) 3just as above,

we have the following basic result.

. k
Theorem 7.1 Let Xk be a k-chain. If (£,9f) : (X , 3X) =
(Ri , Rn—l) , n >k , is spread-out, then

() =D(3f) .

(Figure 7.3)

Corollary 7.2 I1f Xk is a k~cycle and £ : Xk + R , n >k ,

is spread-out, then D(f) is a (2k-n)~-cycle.

k

Corollary 7.3 Let X be a k-chain and let (£f,9f) and (g,3q)

be spread-out maps from (X,93X) to (Ri , Rp-l)

, n >k
Let i : (O(f) , aD(f)) » (X,3%X) and 3j : @(g) , D(g)) * (X,9X)

be the inclusions., Then i + j ¢ Bonek (X, 9X) .

Definition. ILet X be a k-chain. For each integer i > 0 , the

double point class D> (X) e Hk_i(X,BX) is the homology class of the

inclusion map @(f) , D(£f)) + (X,9X) , where (Ff,df) : (X,9X) -
k+i k+i-1 . i

(R+ , R-TL ) is a spread-out map. GDl(X) is well-defined by

corollary 7.3.)‘:DO(X) = [X] € Hk(X,BX) » the fundamental class of

Corollary 7.2 follows immediately from the theorem.




-34-

1 be a homotopy from - 3f to 3dg

proof of 7.3. Let h : 3X x I »R""
such that h(x,t) = 3£f(x) for all t e [0,e] and h(x,t) = 3g(x)

for all t ¢ [1 - e,1] for some e >0 . Let (e,de)

GR? x I, BGRi x I)) = GR2+1 ,IRn) be a PL homeomorphism., De-
fine h' : 9(X x I) »RY by

de(h(x,t),t) if x e oX
h'(x,t) ={de(f(x),t) if t e [0,e]

de (g (x),t) if t e [1 - ¢,1]

" By theorem 2.2 (h), there is a spread out map ht . (X x I) + !

such that h'(x,t) = B’(x,t) if t ¢ [0;5] v {1 - ¢,11 .

Iet H : (X x I, 3(X x1I) » GR§+1 ,]Rn) be an extension of h! ,
such that H(x,t) = e(f(x),t) for all t e [0,e] and H(x,t) =
e(g(x,t),t) for all t e [1 - ¢,1] . Bv theorem 2.2(b), there
is a spread out map H: X x1I +IR$+1 , such that ﬁ%x,t) = H(x,t)

if t e [0,e] v [1 - €,1] or x € 98X , and ﬁ-l(Rn)'= o(X x 1) .

Now let W =m(H) , and let F : W + X be the restriction of
the projection X X I + X ., Theorem 7.1 implies that W is a
(2k-n+1)-chain with oW = @ (H) = D(3H) . Thus D(f) and D(g)
are contained in oW ., Furthermore, Fr (oW , D(f)) < a(f) and

~s

Fr(9w , D(g)) < aD(g) , since H agrees with H near X x {0}
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and X x {1} . Finally, F(3W \ (D(f) uI(g))) < 3X since
H(3X x I) «c R® . Thus F : W+ X is a homology between

D(f) ¢ X and D(g) ¢ X (Figure 7.4). @

proof of 7.1 Let K be a triangulation of X with respect to

which £ is simplicial, and let T be a (2k~n—l)~simp1ex of

X

Let adf(T) be the number (mod 2) of (2k-n)-simplices o such

that df(T) #Z#0 and T < o , We must show that Bdf(r) =0

T ¢ 90X and 3df(T) = daf(r) if T ¢ 3X .
We claim the following:
() dag(m) = Jde, , e L T AT, E(x) = £(n)
T'

(b) \,Q(LfT, , LE) = ,f(aLfT, , BLE) .

(c¢) If 1 ¢4 33X , then B(LXT) =@ . If T c 3X , then

3(LXT) = L(BX)T .

if
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Prom (a) and (b) we conclude that

9de (1) = z';ﬁ(aLfT, , LE) , Tt # T, £(1') = £(1) .
T
Thus (c) implies that if Tt ¢ 98X , then Bdf(T) = 0 , and that if

T ¢ 9X , then
3d (1) = Z';ﬂ(LafT, , LOE) , Tt AT, (') = ¥f(T)

which equals daf(T) + as desired.

Proof of (¢): If 1 is an i-simplex of K ,- dim(LKT) =

~k =-1i-1 . The %-simplices of 'TLKTW'aré all the joins 1o ,
where o 1is an (f-i-1l)-simplex of LK. . If o,B € LKT , then
o < B 1if and only if To < TB. . Thus o c SLXT_ if and only if

Ta « 9X 1if and only if o < L(9X - (Figure 7.5).

Proof of (a): If T e K and o is a simplex of LKT , then
L(LKT)a = LK (Figure 7.,6), If <t is an (i-1l)-face of an i-

simplex ¢ ¢ K , and o' is an i-simplex of K such that f(¢') =

TO

f(o) , then there exists a unique (i-1l)-face T' of o' such that

£(1') = (1) .

Now let 1T be a (2k-n-1)-simplex of K ., Then

8dg (1) = gdf(o) , dim(o) =2k -n , T < g
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= § ZAf , , LE) , dim(c') = dim(s) =2k -n , o' #o ,
o',0 £(c') = £(a) , T <O

= 7 &RL(LfT,)a » LL(ED ), dim(t') = dim(T) = 2k -~ n -1
T dim(o) = 4im(B) = 0 ,

T'a # T8 , f(t') = £(1) ,

f(a) = £(B)

o,B

= JAL@E), , LILED ) , a# B, f£la) = £(B)

o,
+ Zg@(L(LfT,)a , LILED ), ' #1 , £(1) = £(1)
aTB £(a) = £(B) .

In this last expression, every term in the first summand appears
twice, so it equals zero (mod 2). the second summand equals

{

e, ,one) , AT, £(Th) = £(1) .
T’

Proof of (b): If £(t') = f(1) ¢ g1 , then t',T ¢ 3X ,
n .
LX. v and LXT are (n-k)-cycles, and L(R+)f(r) is a (2n-2k)
sphere. Thus corollary 6.2 implies that tﬁ(LfT, ’ LfT) =0 . On
the other hand, if f(t') = f(1) < R7T , then 1,t' < 33X ,
5 ~1Y _ : n : _ -
LAT, and LXT are {(n-k)-chains, and L(R+)f(r) is a (2n-2k)-ball.

Thus corollary 6.3 implies that J&LfT, ’ LfT) = éﬂaLfT, , BLfT) . B

Let Yk c Xk be k-chains such that PFr(X,Y¥) < 3Y or equiva-

lently, 09Y = Fr(X,Y) v (Y n 3X) . The restriction morphism

r(X,y) : Hi(x,ax) > Hi(Y,BY)
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is defined by the diagram

H, (X, 9%) r(X,¥) > H, (Y,0Y)

I
H, (X,3X v CR(X\Y)) Ai—l~li(Y,Fr(X,Y) u (Y n 3%)
excision -

Proposgition 7.4 If Yk c Xk are k-chains with Fr(X,Y) < 3y ,

then r(X,YHDl(X) = Dl(Y) for all i >0 .

proof. If k or i equals zero, this is clear. If %k and i

are positive, let n =k + i , and let

n
Q" = {(xl, .o ,xn) e R | Xn >0 7é?d X fl > O} ,7 7
— n ~ — —
3 = {(xl, cee ax) €0 | x, =0 or x .= 0} .
There exists a spread-out map f : (X,9X) = (Ri , Rn—l) such that
£7hQ) =¥ and £71(30) = Y . Let h : (0,30) + &, B be

a PL homeomorphism, Then

DY) = Dot |v)] = £(X,¥) D(E)] = r(X, 0D (x) . @

Exercises

. n
l. If X is an orientable k-cycle, and f : X + R , n >k ,

is spread out, is D(f) orientable?

2. Let X be the Moebius strip. Construct an embedding of X in
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R so that 38X c R2 . DProve that there exists no embedding of X

in Ri with 23X ¢ R2 .

3. If £ : Xk > M is a spread-out map of the k-cycle X +to the

polyhedral n-manifold M , k <n , then D(f) is a cycle whose

homology class in X depends only on the homotopy class of £ .
4. DE(sX) = o' (X) (cf. exercise 3 of §3).

5. If X and Y are k-cyclesand £ : X+ Y is a map, then

£ DN (X) = deg(eDT(v) .

6. Illustrate proposition 7.4 with X the Klein bottle and Y

the Moebius strip.




b (f)

£(v;) £(vg) £(vyi0)

»

D(£f)

rf(v5)

f(vl)

Figure 7.1. ID(f) .,




?. &

f(v6) f(V3) £(v

Figure 7.2. D(Lf;) must consist of an even number of points.

Figure 7.3. Q2ID(f) = mM(df).




X x {1}

O (H)

Figure 7.4. D(f) is homologous to mM(g).




Figure 7.5, 0LXg = L(8X)

Figure. 7.6, L(LXT)O( = LX 1«
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§8. The branch point cycle

Let Xk be a k-chain, and let (£,3f) : (X,9X) - (Ri , Rn—l)

be spread-out, n > k . Define a (2k-n-1)-chain IB(f) ¢ B(f) as
follows. Let K be a triangulation of X with respect to which
f is simplicial, and let T be a (2k-n-1)-simplex in B(f) |,

Since (£,9f) 1is spread-out, T ¢ 3X . Define

be(r) = ) '}JB(LfG, , L) , dim(o) = dim(c') = 2k - n
9r0 o#o' , £f(o) = f(c") ,
1T<o0 , T<o0o' ..

This sum is taken bver all unordered pairs {o,0'} . Let B(f)

be the union of all (2k-n-1)-simplices T of K such that

bf(T) #0 . (Figure 8.1).

If n=%k , IB(f) ¢ B(f) is defined as follows. Iet XK and
L be triangulations of Xk and Rﬁ with respect to which f is
simplicial. ILet 7T ¢ K be a (k=1)-simplex of B(f) , and let
t=£(1) e L . Since (f,3f) is spread-out, t ¢ Rn—l ; Let s
and s' be the two k—simpiices of L which have t as a face.
Let a be the (integral) number of k-simplices o0 ¢ K such that
f(0d) = s and T <o , and let b be the number of k-simplices
o' ¢ K such that f£f(0') = s' and T < o' . Since T £ 39X ,

a + b is even. Let bf(T) = %(a - b) (mod 2), and let IB(f)

be the union of all (k-=1)-simplices T of K such that bf(T) #0 .

We will prove that if X 1is a cycle, then IB(f) is a cycle.

This can be seen intuitively (for n > k ) as follows. If w is

a (2k-n-2)-simplex of IB(f) , the number of (2k-n-1l)-simplices T
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of B(f) such that ®w < t equals the number of points in
IB(wa) . The link wa is an (n-k+1)-cycle, and

wa : LXm -+ S2n"2k+l is a spread-out map. Such a map always has
an even number of branch points, since the image of the branch
points in S‘Zn_2k+l is the boundary of the image of the double

points (Figure 8.2).

Theorem 8.1 Let Xk be a k-chain. If (f,3f) : (xk,ax) >

(Rﬁ , Rn_l) » n >k , is a spread-out map, then
dIB(f) =B(of) .
- ~Corollary 8.2 ~If xF ig a k-cycle and £ : X + R ', n>kx ,
spread-out, then B(f) is a (2k-n-1) -cycle.
Corollary 8.3 TLet X° be a k-chain, and let (f,9f) and
(g,9g9) be spread-out maps from (X,9X) to (Rﬁ , Rn—l) ’
n>k . Let i: (B(f) , B(f)) > (X,9X) and 3§ : B(g) ,3B(g)) =
(X,9X) be the inclusions. - Then i + j e BZn_k(X,BX) .

Corollary 8.2 follows immediately from the theorem, and the

proof of 8.3 is just like the proof of 7.3.

Definition. Let X be a k-chain. For each integer i > 0 , the

branch point class BT (X) ¢ Hk_i(X,BX) is the homology class of the

inclusion map (B(f) , aw(f)) + (X,dX) , where (£,3f) : (X,93X) -+
+i-1 Rk+i-2

I

(RE ) is a spread-out map. (@B (X) is well-defined by

corollary 8.3.) BY(X) = [X] « H (X,0%)
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proof of 8.1 (n_> k). ILet K be a triangulation of X with
respect to which f is simplicial, and let w be a (2k-n-2)-
simplex of X . Let Bbf(w) be the number (mod 2) of (2k-n-1)-
simplices T such that bf(T) #0 and w < T . We must show that

9be(w) =0 if w ¢ 3X and abf(w)'= boo(w) if w < X .

If v e wa and T = WV < wLXw , then v eZB(wa) if and
only if 1 < B(f) , so Bbf(w) is the number of points in

ZB(wa) . On the other hand, if ®w < 9X , then

by e () =,{T2 afchafT , LOE_,) , dim(r) = @im(t') = 2k -n - 1,
T . T# T, f(1) = f(t') ,

w<T , w<T'

{VZV'}B&L(LBfU))V , LLAE) ) , dim(v) = dim(v') = 0 ,
r v# v , f(v) = f(v') .

Therefore, theorem 8.1 is a consequence of the following lemma ap-

plied to (g,3g) = (wa ' Lafw) .

Lemma 8.4 If Y* is an %-chain and (g,9g) : (Y,0Y) +
22-1 - .
(B ' Szg 2) is a spread-out map, the number of points in IB(g)
equals
1 —_— 3 t —_— 1
{vgv'fikLagV ' Lagv,) , dim(v) = dim(v') =0 , v #v ,

g(v) = g(v') .

(Figure 8.3).
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% and Bzz—l with

and L be triangulations of Y

is simplicial. For each l-~simplex ¢ of L ,

let
i(o) = ¥ f(uugT » Lg.,) , dim(t) = dim(t') =1
{t,t'} T£ T, g(1) =g(t') =0 .
Let u be a vertex of 2%l | Ifl.u P4 g24—2 , then
Y i(o) = ] b_(v) = number of points in B(g) with g(v) = u
u<o u=g (v)
If u e g2%72 , then
ity =] ] Krg, ,L9,) , u<o , T,
u<o o {t,1'} : g(1) = g(1') = ¢
= AL(Lg)  , L(Lg,,) ) , Vv # v
{v,v'} {wgw' - vw vow _ '
g(v) = g(v') = u
glw) = g(w')
= rg, , 19, , vEYV , gv) = g(v') = u
{vgv'} v v
. I Huag,, tag ), vEY
tvyvtd g(v) = g(v') = u .

(The last step is justified by corollary 6.3.)

Therefore, [} ) i(o)
u u<o

ber of points in B(g) . But ) ) i(o) is zero

u u<g

equals this last expression plus the num-

14
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(mod 2), since each l-simplex o appears twice in the sum, once
for each endpoint. &

Proposition 8.5 If Yk c Xk are k-chains with Fr(X,Y) < 3y ,

then r(X,7)B*(X) =B (Y) for all i >0 .

This can be proved just as proposition 7.4, or it can be de-~

rived from the following result.

If Xk is a k~chain and £ : Xk > RY is a spread-out map,

n >k , the number bf(T) can be defined as above for any
(2k-n-1)-simplex T ¢ 39X . Let B(f) be the union of all such
simplices T for which b (1) # 0 . |

k | n

Proposition 8.6 If Xk is a k-chain, and f : X W + R ’
n >k , is spread-out, then dB(f) < 3X , and the homology class
of the inclusion (B(f) , aB(f)) + (x,9%) is m " ¥ l(x) .

Remark. The corresponding statement about ID is false (Figure 8.4).

proof. The statement that 3B(f) < 39X follows from the proof of

theorem 8.1. That @B(f) , 3B(f)) + (X,3X) represents ]Bn_k+l(x)

follows from the fact that f 1is homotopic to a map g : X =+ R

with g(X) < Ri and ¢(3X) < g1 , and an argument similar to

the proof of corollary 7.3. @
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Exercises

1. Prove theorem 8.1 for n =%k .

2. Let Y be an 2-cycle and let g : Y ~» RZQ be a spread-o
map. The crossing number of g is
c(g) = ] Lrg, , Lg) , 9 =g@ ,
{p,q}

summed over all unordered pairs {p,g} . Show that if X i

k-cycle and f : X ~ RY is spread-out, n > k , then IB(f)

- the union of all (2n-k-1)-simplices T of a triangulation of

with c(LfT) #0 .
3. Illustrate theorem 8.1 with X the Moebius strip and n

4. Illustrate lemma 8.4 with Y the Moebius strip.

ut

is a

is

M

£

= 2 L]




£(v,)

v, v, vy
B(f)
(£,0£)
Vo LA
vy Ve Ve f(v3) f(V6)

Figure 8.1. (f,9f): (X2,9X) —> (Rf_,Rz)

f(vg)

Figure 8.2. f: 82 —_— R3 spread-out. The image of the

branch points is the boundary of the image of the double
points.




(g,d9)
——'%.

77Fiéﬁ}578:3; (é,ag){iv(Yz,bfjﬁ;:; 7(§3,Sz) spreadout. Note:
To avoid confusion not all the simplices have heen illustrated.

<« f(Y)

X . £ (X)

Figure 8.4. ch Xl such that D(flY) #D(H)N Y
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§9. The double-branch homology

The final major result of this chapter will be that DT (X) =

Bl(x) for all i > 0 . 1In the proof of this theorem we will need

the following lemma.

Lemma 9.1 Let X' and Y* be cycles, and £ : XX » &} |
g : Yg > R r n=k+ ¢+ 1 , be PL maps such that
£(X) ng(¥) =@ . Iet p: R = B! pe defined by

n

p(xl, . ,xn) = (xl, .e. 'Xn—l) , and let m : R + R be defined
by m(xy, ... (X)) = x . Suppose that {(x,y) ¢ X x Y|pf(x) =

pg(y)} is finite. Then

L(£,9) = Z(iﬁLpf » Lpg.) , pE(x) = pgly) ,
X x Y
'Y Tf(x) < mwgly) .

(Figure 9.1).

proof. Choose T ¢ R such that mg(y) - 7£(x) < T and wg(y) < T
for all x e X and y e Y . Let W = (X x [0,T]) v C+(X) , with

the identification of X x {7} with X c C+(X) . Define F : W ~»

as follows:

F(x,t) = £(x) + (0, ... , 0,t) , (x,t) € X x (o,71 ,

F(Ac + ux) = uf(x) + (0, ... 0,T) , Ac + ux e c, (x) .

By theorem 6.1, x?(f,g) = J&F,g)' . To complete the proof, we will

show that if F(x,t) = g(y) , then

g?(Lpfx r Ipg,) = XKLF(X’t)  Lg,) .
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Let 2z = pf(x) . Since F(x,t) = gly) ., 2z = pg(y) as well.

n n

Iet h : R" =+ R be the map h(sl, cee ,sn) =

. n-1 n .
(Sl, cev 48 _qr St mg(y)) , and let i : R + R~ be the in-
. . _ Voo
clusion 1(51, ‘oo ’sn—l) = (sl, ... ’Sn—l’o) . Let h Lhi(z)
and 1i' = LiZ . By proposition 5.1(f),

]

L 2 |
Jf(Lpr ' Lpgy) XﬂSLpfx ;i °Lpgy)

zﬁh'oSLpfx , h'oi'oLpgy) .

N t : s | P | s -
NMow h oSLpfX 18 homotopic to LF(x,t) , and h'ei oLpgy is homo
topic to LgV by homotopies with disjoint images.

So proposition 5.1(b) implies that = _ o o

F(h'eSLpf

toj'lo = L .
x r D'eilelpg.) ZLE (o 1y L) e

(Figure a2)

Theorem 9.2 If X° is a k-chain, then DY (X) =BT (X) «

H _;(X,9X) for i >0 .

k-

(Figure 9.3)

proof. This is true by definition for i =0 . We prove the theo-

rem for i > 1 ., The case 1 = 1 requires a separate argument,
= : n n-1

Iet n =%k + i ,‘and let p : R, ~+ R, ‘ p(sl, cos ,sn) =

(82, .o ’Sn) ;, and T : Ri + R , "(Sl’ . ,sn) =S, By

theorem 2.2(c), there exist spread-out maps (£,9f) : (X,9X) >

(Ri , n"'l

R™ ™) and (g,39) : (¥3X) =~ (R2~l , B*7%)  such that g = pof
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and q_l(Rn_z) = 1@ 1) = 9x . Let X be a triangulation of

X with respect to which £ and g are simplicial.

ILet o0,0' be (k-i+l)-simplices of K such that g(o') = g(o) .
Since f(o') # f(o) , it follows that either mf(s) < wf(s') for
all s e 0° and s' e (0')° with g(s) = g(s') , or mf(s) >
mf(s') for all s e€ 0° and s' € (0') with g(s) =g(s') . We
will abbreviate these two conditions to wf(c) < wf(c') or

m£ (o) > wf(o') .

If o is a (k-i+l)-simplex of K , we define

d;(o) =] Lrg . 4 Lg,) . dim(o') =k -i+1 , o' #Fo ,
© g(c') = g(o) , mwE(o') > mE(a) .

Let D (g) D(g) be the union of all the (k~i+l)-simplices o of

n

K such that d;(c) #0 .

If tv is a (k~i)-simplex of K with 1T ¢ 98X , let

3d;(T) = ] d;(G) . We must show that
8d_ = d.(1) + b _(t .
g(T) £ (1) g( )
By definition,

9d (1) = Xéﬁgw ;s Lgy) , T<o , o #Fo ,
o9 g(o'y = g(o) ,
mf(c') > 7wf (o)
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If g(o') = g(o) and f(o') # f(o) , then f(o') n £(o) is
either empty, or a common face of £(o') and f£f(o) . Thus this

last expression equals

(i) ) iﬂLgc, , Lgo) ;, T <o , T<0o' , o'#Fo ,
9.0 g(o') = glog) , TmE(c') > mf(o)

)

Ty ! LgTV r T' # T r f(t') = £(1) r

(i1)  + ) Arg
. v',v g(v') = g(v) , wE(v') > wf(v)

T'
(1ii) + JlLa e s Lo,) . T ET , £(Y) £ £()
v',v

™V
g(v') = g(v) , wf(t') > wf(1) ,
g(t'") gty .

T'

The summand (i) equals bg(T) . Lemma 9.1 applied to LEf

LfT shows that the summand (ii) equals
YALE., , LE) , t'  #1 o, £(t') = £(1) |,
o T T

which is df(T)' . The suﬁmand (iii) equals

Z'J(LgT. p Lg) o Tt AT, E(r") # £(T)
T mf(t') > wf(t) , glt') = g(1)

Since T ¢ 93X , LXT and LXT, are cycles. By corollary 6.2,

E/()(]--‘g.l-l r LgT) =0 y SO (iii) is zZexo, &
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Exercises
1

1. Prove :Dl =1 . Illustrate this for the Xlein bottle.

2. Discuss the integral version of lemma 9.1.




P
—
£ (X) g (¥) pf (X) _ pg (Y)
Figure 9.1. JXIf,9) = ¥ L%, ,pg) Pf(x) = pg(y),
X,y
' TE(x) < TWg(y)
~ SLpr(SLXx)
N B = LF(XIt) (L(XX I) (Xlt)) ’
<5

LY
Lpgy( y)

- Lg (LY
gy( y)

. = £f ,L
Figure 9.2. bz(LF(X,t),Lgy) W\C(LP % ng)




g(v5) g(v3)= gZVl)

Figure 9.3. Im{f) is homologous to IB(g).
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§1. Homology operations

Let (H,3) be a homology theory satisfying the first six
axioms of Eilenberg and Steenrod [ES, p. 10-11l], for example mod 2

geometric homology (section 3 of chapter 2).

A homology operation 6 is a natural transformation from the

functor H to itself. That is, for each pair of spaces (A,B)
there is a function 6(A,B) : H(A,B) + H(A,B) such that for every

continuous map f : (A,B) + (C,D) the diagram

n(a,B) —E) o wc,p)
19 (A,B) le (C,D)
H(£)

H(A,B) ————> H(C,D)

commutes. The operation 6 is stable if it commutes with the

boundary transformation; that is, if the diagram

H(A,B) -——>a H(B)

le (A,B) le (a)

H(A,B) —2 H(B)

commutes for all (A,B) . 6 has degree i if it lowers degrees

of all homology classes by i , that is, if




e(AIB) (Hk(AIB)) c Hk'—i (AIB)

for all k .

Example. Let (H,3) be mod 2 simplicial homology theory.

The Bockstein operation B8 1is a stable homology operation of degree

one,
B = B(K;L) . Hk(KrL) -+ Hk-l(K'L) .

It can be defined as follows (we take L = @ for simplicity). If

¢ is any simplicial mod 2 cycle in K , choose an integral chain

¢ such that Eé = ¢ , where Eé is the mod 2 reduction of ¢ .
Then (38)2 = 8(85) =93 =0 , so all the coefficients in 9¢ are
even, and therefore %88 is still an integral chain. Furthermore
3(%33) = %338 =0 , i.e. %83’ is an integral cycle. The Bockstein

operations sends the class of ¢ to the class of the mod 2 reduc-

tion of =38
2
Blel = [(398),1 .

It is very easy to check that Rg[cl is independent of the choice of

~
C .

Remark. The operation B can be defined similarly in mod 2 singu-
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lar homology. In the next section we shall see that B has a geo-

metric interpretation in terms of double points or branch points.

For example if K 1is a triangulation of the Klein bottle and
<K> € H2(K) is represented by the sum of all the 2-simplices in
K , then B<K> # 0 . On the other hand if T is a triangulation

of the torus then B<T> =0 . (Figure 1.1)

To illustrate how homology operations can be used, we are now
able to prove that there is no continuous map from the torus to the
Klein bottle with nonzero mod 2 degree. For if there were such a
map’ £ , then £,<T> = <K> , so we would have Bf,<T> = B<K> # 0 .,
But Bf,<T>=f,B8<T> by naturality, and £,B<T> = 0 since

BT> = 0 , giving a contradiction.

Exercises

1. Show that a homology operation is stable if and only if it com-

mutes with the suspension homomorphism,

2. Show that every homology operation 6 1is additive, i.e. 6(A,B)

is a homomorphism for all (A,B) . (This observation is due to

Steenrod.)

3. Check that the simplicial Bockstein homomorphism g is well-

defined. Show that B8 o8 = 0 , and that B8 1is stable.

4. Let X = |K| be a polyhedral k-cycle, and let <X> ¢ H, (K) be
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the simplicial fundamental class of X . Show that B(f) repre-
sents B<X> , where f : X =» Rk is a spread-out map which is sim-

plicial with respect to K .




Torus

g )

Klein Bottle

Figure 1.1. The Bockstein operation.




§2. The geometric operations ot

If X 1is a geometric k-chain then the homology class ]Dl(X) =

BY(X) € H_, (X,0X)

on mod 2 geometric homology as follows.

i

for all k by sending the homology class of th
(A,B) of Zk(A,B) to the class of ngl(X) :

o1 if] = i (v .

To show that this is a good definition, we

i

) does not depend on the choice of f in its
that ¢ is a natural transformation.
Proposition 2.1 If £ : (X,9X) + (A,B) is in

for all i .

£pi(x) = 0

proof: By definition of 'Bk(A,B) there exXists

and a commutative diagram

of chapter 2 can be interpreted as an operation

We define

i
" = ¢*(a,B) : H_(A,B) + H__: (A,B)

e element f : (X,0X) -+

have to check that

homology class and
then

Bk(A,B)

a (k+l)-chain W

(e (X) ,e (3X) ) —=s (3W, CopWre (X)) ) =35 (W, CoBWre (X))

.

(X, 9X) ? (A

lF

+B)
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where e 1is a polyhedral embedding and i and j are inclusions.
Let r : H _,(8W) » H _.(e(X),e(3X)) be the restriction homomor-.

phism (see proposition 7.4 of chapter 2). Then we have

f*Dl (x) = F*j*e*‘Dl (X)
= F,3i.D" (e (X))
= F*j*i*r1513W) by proposition 7.4
of chapter 2
= F,j,i,rd D" (W) by theorem 7.1 of
chapter 2
=0

since j, and (i,rd) are consecutive homomorphisms in the long

exact sequence of the triple (W,3W, (dW\e(X))) . [+

Proposition 2.2 8T is a natural transformation.

proof: Let g : (A,B) » (C,D) be a continuous map, and let
£ : (X,9X) > (A,B) be in 2, (A,B) . Then g 0 [£] = g, £ (X) =

(g o £) DI (X) = o¥[g o £] = o'g,£] . B

Proposition 2.3 The operation #* has the following properties:

(1) @l is stable.

(2) @0 is the identity transformation.

(3) @1 is the Bockstein transformation.

(4) If x ¢ H (A,B) then ot (x) = 0 for all i > k .

proof: (1) follows from theorem 7.1 of chapter 2. (2) follows from
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the definition of ]Dl(X) , as does (4) for i >k . For i=%k ,
(4) is true since double points occur in pairs in the source (cf.

figure 7.2 of chapter 2). And (3) comes from exercise 4 of sec-

tion 1 and the definition of IBl . . -

Exercises

1. Prove (4) of proposition 2.3 for i = k by using (1) and the

cone on a polyhedral chain.
2. Prove (3) of proposition 2.3 by using the double point cycle,

3. Prove that ¢ commutes with suspension by using the double

point cycle.

4. Give a geometric proof of proposition 2.1.




§3, The intersection axiom

The homology operation % is characterized by its relation

to the self-intersection of a homology class in a manifold.

Let M be a PL n-manifold (without boundary), and let
Xk c M be a k-chain and Yz c M* an f-chain, with k + 2 >n ,
k >0 , and .2 >0 . Suppose that X and Y are in general
- position, i.e. dim(X n Y) <k + 2 -n , dim(X n 3Y)
k+2-n-1 , and dim (83X n ¥) <k + & -n -1 . Then an

intersection chain X.Y ¢ X n Y can be defined as follows.

Triangulate M so that X and Y are subcomplexes. For

each (k+8-n)-simplex o of X n Y , define
ito) = Lrxg, vy

the linking number of the (n-k-1)-cycle LX and the (n-2-1)-
cyclé LYO in the (2n-k-%-1)-sphere LM0 . Let X.Y be the

union of all the (k+%-n)-simplices o of X n Y such that

i(o) # 0 .

Proposition 3.1 If X and Y are chains in general position in

the manifold M , then

9(X.Y) = (9X).Y + X.(3yY) .
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This is an easy consequence of the linking theorem (6.1 of

chapter 2). (Cf. figure 3.1)

Lemma 3,2 If a € Hk(M) and B € Hg(M) , where M is a mani-

fold, there is a cycle X c¢ M representing o and a cycle Y c M

representing B such that X and Y are in general position.

This follows from the spreading out technique of chapter 2,

§2,

Now if o € Hk(Mn) and B e Hz(Mn) , we define

o.B ¢ H (M") to be the homology class of X.Y , for X and

k+2%-n
Y as in lemma 3.2. It is not hard to show that this intersection

product is a well-defined associative, commutative bilinear pair-

ing

H (M) x H (M) > B, (4P
This definition is due to Lefschetz [L, ch. IV §6].
(Alexandroff and Hopf probably would have developed this definition
in volume two of their book [AH], had it been written. They de-
veloped linking in Euclidean space in volume one.) The definition
can be extended to non-embedded geometric chains (cf. §6 of chap-

ter 2), and to a manifold with boundary, modulo a (PL) subset:

oo (M7,8) .

n .
H (M7,2) x Hz(Mn,A) > H
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Theorem 3.3

1) Let M be a compact n-dimensional PL submanifold (w
boundary) of R? , and let A be a subpolyhedron of M . 1If

gy =
@ ¢ H _;(M,A) then ¢7(a) = 0.0 ¢ H _,.(M,3a) .

2) If ¥t is any mod 2 homology operation of degree i

that Wl(a) = a,00 for all o as in (1), then yl = ot

proof of (1). Replacing A by a regular neighborhood, we can

sume that A = N , a compact n-manifold with boundary. Let

(X,9X) ¢ (int M, int N) be an embedded chain representing o

For each vector v e R , define Iy ° X + RP by gv(x)
X +v . Let W= (XxXx0) u (33X x I) v (X x 1) , and define
h, : W+ R by

hv(x,O) =x ,

hv(x,t)

X+tv , xedX , 0<t<l ,

h,(x,1) = g, (x) .

There exists a vector v é,Rn such that

a) g,,(X,9X) < (int M, int N) for all t ¢ [0,1] ,
b) X and gv(X) are in general position,

c) hV is spread-out.

ith

such

as-
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Choose such a vector v , and let Y = gv(x) , h = hv . It

follows from the definition of the double point cycle ID that
[X.Y] = i, r(W,X x 0)D(h) € Hn—zi(M'N) ’

where i : (X x 0,9X x 0) + (M,N) is the inclusion and r(W,X x 0)
is the restriction homomorphism. By proposition 7.4 of chapter 2,
r(w,X x 0)D(h) represents D(X x 0) , so 1i,r(w,X x 0)ID(h) repre-

sents @l(a) , and (1) is proved.

roof of (2). It suffices to show that Wl[X] = Qi[x] for any k-
B Yy

chain X . For suppose 0O € Hk(A,B) is represented by f : (X,9X)
+ (A,B) , so that o = f,[X] . Then Wi(u) = Wif*[X] = f*Wi[X] =
f*®i[x] = Qif*[X] = @i(a) . In fact it suffices to show that

vi1z) = e¥[2] for any k-cycle 2z . For if X is a k-chain, then
the space dX , obtained by gluing together two copies of X along
X , 1is a cycle. ‘ Letting «r :-H*(dx) + H, (X, 9X)
be the restriction homomorphism, we then have Wi[X] = Wir[dX] =

rvifax] = rotpax) = eirraxy = ot(xy .

k+i

If Y is a k-chain which embeds piecewise-linearly in R '
then Wl[Y] = ®1[Y] . For let (M,N) be a regular neighborhood of
(v,3y) in RS and let i : (¥,3Y) » (M,N) be the inclusion.

Then 1,¥irv] = vli,[v] = (4,0¥]). (i, 0¥]) = o¥i, [v] = i,0%(v] , so

Wl[Y] = @l[Y] since i, is an isomorphism.
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Now let Z be a k-cycle. We shall construct a k-chain Y c %

such that
a) Fr(z,Y) = 3y ,

b) the restriction homomorphism r : H_.(2) > H _; (¥,3Y) is

injective, and

q) Y embeds in Rk+l .

This will prove (2), because r¥ [2] = ¥ r[z] = ¥ [y] = o1 [¥] =

oiriz] = rol(z] , so viizl = ol(z1 .

So it remains to construct the k-chain Y < 2 . Let K be a
triangulation of Z , and let Y be the closure of the complement
of a regular neighborhood of the (k-i-1)-skeleton K _i-1 of K .
Then (a) is clear. To see (b) consider the following commutative

diagram:

r S,
H _; (2) > Hy _; (¥,97)
e |+
w
H _ (2, |K ;1) — B _; (Z,C(2\Y))

Here u,v, and w are induced by inclusions. The map u is in-
jective since H, ,(|X _; ;1) =0 . Themap v is an excision
isomorphism, and w is an isomorphism because |[XK _; ;| is a
strong deformation retract of Cf(Z\Y) . Therefore r is injec-

tive,
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Finally we show that (c) holds, for an appropriate choice of
triangulation K . Choose X so that there is a spread-out map
£: 2+ R yhich is simplicial on K . Then D(f) < [X _;| .
Now modify the second barycentric subdivision K" as follows.
Move the barycenters of the (k-i)-simplices o of K to points
b(o) such that £(b(0;)) = £(b(0,)) only if o, = 0, . Call
the resulting subdivision K’ . For each simplex w' of K'
there is a unique simplex ¢ of K such that the interior of w'
is contained in the interior of .c . For each such ' , move
the barycenter of w' to a point b(w') very close to b(o) .
Call the resulting shifted second barycentric subdivision K.

Choose the points b(w') so close to the corresponding points

b(s) that f(Star(b(oy),K")) n f£(Star(b(o,),K")) # # only if

01 - 02 .

Now let Y (respectively Y ) be the union of all the sim-

plices of K" (respectively K" ) which have no vertices in the
subdivision of Kk-i-l . Then Y. is PL homeomorphic to Y '
and £|Y is an embedding, by construction of Y . |

ExXercises
1. Prove proposition 3.1.
2. What are the signs in the integral version of proposition 3.1?

3. Carry out the proof that the intersection product is well-de~

fined in homology. (You will need a stronger version of lemma 3.2.)
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4, Go through the proof of 3.3(2) for Z the Klein bottle. In
other words, show that if Wl has the intersection property then

vlrzy = otrzy .

5. Let L be a subcomplex of the simplicial complex K . Con-
struct a strong deformation retraction of N to |L| , where N
is the stellar neighborhood of L" in K" (second barycentric

subdivisions).




Figure 3.1l. 3(X.Y) = (3X).Y + X.(3Y)




-15-
§4. Steenrod operations

The set & of all operations on mod 2 homology is a ring,
with addition (6 + ¥)(a) = 6(a) + ¥(a) , multiplication (6Y¥) (o) =
6(¥(a)) and multiplicative identity 1 equal to the identity
transformation. Furthermore & is graded by degree. Any 60 ¢ &

can be written uniquely as a sum 6 = 60 + 61 + 62 + ... , where

6* has degree i . (If o 1is a homology class of dimension k
then 6%(a) =0 for i >k , so 6(a) = 6%¢a) + 6L(a) + ... +
ek(a) , @ finite sum.)

0 1 2

Define & ¢ & by @ = ¢° + o1 + 82 4+ ... . since ¢’ = 1

there exists a unique operation g ¢ @ such that 0% = 1 = 5¢'.

The components 31 of & can be calculated inductively from those

1 2 1 2

of ® from the identity (1 + " + ¢% + ... )39 + 3L 4+ 32 + ... ) =

1 .

‘Since mod 2 cohomology Hk(A,B) can be identified with
Hom(Hk(A,B), Z/Z) » the dual of the %/2 vector space Hk(A,B) '
we can define a pairing <,> between cohomology and homology as

follows. If o € Hk(A,B) and B € HZ(A,B) then

a(B) if k = ¢
<a,B> =

0 if k#2 .
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Furthermore, we can define an action of &% on cohomology by the

identity
<q>l(a),8> = <a,<-I;l(B)> .

Let Sql be the ith Steenrod operation on mod 2 cohomolagy

[SE].

Theorem 4.1 ot = Sql .

proof. We can just as well make Sql act on homology, by requir-
ing that

<a,8q% (8)> = <8qt(a), B>

_(cf. [MS, p.1361), and the theorem is equivalent to the statement
that % = Sq~ on homology. To show this we need only check that
the action of Sql on homology is natural and satisfies the inter-

section axiom, by theorem 3.1.

a) Sgi_ is natural, i.e. Sqlf*(B) = f*Sql(B) for all ho-

mology classes B8 and maps £ . This follows from the naturality
of §§l on cohomology: <a,Sqlf*B> = <§ala,f*8> = <f*§§la,8> =

<§alf*a,8> = <f*a,SqlB> = <a,f*SqlB> .

b) Sql satisfies the intersection property of 3.3(1) To

prove this we need a lemma.
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Let Sq = Sq0 +_Sql + Sq2 + ... , and let ~ be the cap prod-

uct pairing.
Lemma 4,2 (1) sg(oa m B) = Sqo. ~ SqB .

(2)If M is a compact n-dimensional submanifold of R? , then

SqM] = [M] .

The proof of this lemma is left as an exercise. (Hints are given be-
low.)
Now let o ¢ HT (M\N, (M\N) n M) be the Poincaré dual of B8 ,

i.e. a~[M] =8 . Then
sq'B = sq’ (a ~ [M])
= Z qua‘a Sql_J[M] by (1)
J
i

= Sq 0 ~ [M] by (2)

= (o a) ~ [M] by [SE, p.1l, (3)]

= B.B .
This completes the proof of theorem 4.1. - |

The proof of the following theorem illustrates how the geometry

of ¢ and the algebra of Sgq can be used together.

Theorem 4.3 ILet n be a positive integer. The real projective
oh 2n+l_l
space P cannot be polyhedrally embedded in R
2n+l_2
hedrally immersed in R .

or poly-




-18-

n

2%

n : n
2 ) . Then <oz,Sq2 l[P

n n
2 la = a2 is

proof. Let o be a generator of Hl(P

n n . al
= <8¢% Yo, [p? 1> = <&? , [P2

n
1># 0 . That 8§q

proved by a simple induction (cf. [SE, p.34]). Therefore

2“-1[ 2 2f_1 Pzn 2n 21 2B

n -1 n
P 1 #0 . But Sqg [ ] =0 [P

2,

Sq ] =D [P

‘the class of the double point cycle of a spread-out map

n+l
so P can't be embedded in R> 1 . Since Sq2 [p

1 , the class of the branch point cycle of a spread-out

A\
2n 2n+l_2

neither can P be immersed in R . (Clearly any immersion

can be approximated by a spread-out immersion.) -]

Remark., This theorem can be strengthened to the nonexistence of

topological embeddings and immersions (cf. [M2,§71, [HM, §91]).

A challenging open problem is to give geometric proofs of the

Cartan formula [SE, p. 1] and the Adem relations [SE, p. 2] for the

Steenrod operations using double points and branch points.

ExXercises

1. Let x be noncommuting symbols, Define ii,Eé, .ee

l(X2, LI
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by the identity (1 + x; +x, + ... )1 +X +X, + ... ) =1 .

Show that (1 + Xy + Xy + oL ) (1 + X) o+ Xy + L. y =1 .

2, Assuming the Steenrod axioms for Sql [SE, p. 1], show that

I

Sqf{a ~ B) Sqa —~ SsgB [MS, p. 136, problem 11-F].

3. Using Thom's formula for the Stiefel-Whitney classes of a
bundle [MS, p. 91] and the preceding exercise, show that Sql[M]
is Poincaré dual to w-(M) , the ith Stiefel-Whitney class of the

stable normal bundle of M .,

4, Using exercise 3, prove part (2) of lemma 4.2.

1, 2i+1 _

5. Prove geometrically that Sg Sqgq o .

6. Prove that if the polyhedron X embeds piecewise-linearly in

, Or immerses piecewise-linearly in g1 » and o ¢ H (X) ,

then Sq'(¢) =0 for i>n -k .,

7. Do exercise 6 with "piecewise-linearly" replaced by "topologi-

cally".
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i

§5. A combinatorial formula for @ (cE. [BM])

Let K be a triangulation of the k-cycle X , and choose an
ordering of the vertices of K . For each ordered pair (o,T)
of top dimensional simplices of K , define u(o,T) € Z/2Z as

follows:

Y be the vertices of ¢ and T in the given

ILet v S

l[ LRI
order. (If a vertex belongs to both ¢ and 1 , it should be

listed only once.) Let u(o,T) =1 if VirV3sVs, ... are in ¢
and VorVyrVer «.. are in v , and u{o,tT) =0 otherwise.
Let ¢, .(K) Dbe the simplicial mod 2 (k-i)-chain

k-1

c,_:(K) = ) u(o,td)onct ,
kot (o,1)

summed over all ordered pairs of simplices (o,T) of K such that

dim(oc n 1) =k -1 ., ILet I[X] ¢ Hk(x) be the fundamental class

of X .

Theorem 5.1 The chain ck_i(K) is a mod 2 cycle, and its ho-

mology class is o1[X] .

For example, let K be the octahedron, with vertices ordered

as in figure 5,1, With this ordering,

c;(K) = <1,2> + <2,3> + <3,4> + <4,5> + <5,6> + <6,1> .
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To see that the coefficient of <1,2> is 1 , we calculate
ulo,t) for all ordered pairs (o,t) of 2-simplices such that

0 nT=<1,2> . The only 2-simplices with <1,2> as a face are
0 =<1,2,3> and Tt = <1,2,6> . The list of vertices occuring in

c and Tt is 1,2,3,6 . Since 1 and 3 are in o , while 2

and 6 are in Tt , we have u(o,T) = 1 ; on the other hand,
u(t,0) = 0 ., The other coefficients of cl(K) are determined
similarly.

If we choose a different ordering for the vertices of X ,

we may get a different chain For example, if we use the

Ck-i

ordering of figure 5.2 for the octahedron, then

cl(K) = <1,2> + <2,6> + <6,5> + <5,1> + <2,4> + <4,5> + <5,3> + <3,2>
The reader can also check that cO(K) = 0 using ordering #1,
6
while c, (K) = ) <i> wusing ordering #2.
_i=1

To prove the theorem, let £ : X = R , n=k+1-1 , be

a map which is linear on each simplex of K and which sends the

2 n .
ith wvertex of K to (ti’ti’ e ,ti) , where t, < tj if

i < j . 1In other words, £ maps the vertices of K , in order,
2

, n '
to points of the "moment curve" (t,t°, ... ,t) . [N.B. f 1is

not necessarily simplicial with respec to K , since the images of
simplices may cross each other.] The homology class of B(f) 1is

@i[X] , provided £ is spread-out. Thus it suffices to prove (1)
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f 1is spread-out, and (2) IB(f) 1is the union of the (k-i)-simplices
with nonzero coefficient in ck_i(K) . In other words, there is a
sub-division XK' of K such that f is simplicial with respect to
K' , and if the (k-i)-simplex ' of XK' is contained in the

(k-i)-simplex w of K , then

belw') = ] wu(o,1) .
oNnT=Ww ‘

Before discussing (1) and (2), we show some examples of such
maps £ . If K 1is the octahedron with the ordering of figure 5.1
then the image of f : K - R is illustrated by figure 5.3. The
fold set of f 1is the perimeter of the image, so IB(f) is the
support of the chain cl(K) associated with the ordering of

figure 5.1.

As another example, if K is the octahedron with the order-
ing of figure 5,2 then the vertex <1> is in B(f) for
f: K~ R3 . The image of the top of K in R3 is illustrated

by figure 5.4. S0 <1> is a "pinch point" of the image, and hence

<l1> 1is in IB(f) . (In fact the images of all the vertices under

f for this ordering are pinch points.)
We now proceed to prove (1) and to discuss the proof of (2).

(1) £ is spread-out. 1In fact, if Vgr «+. Vg are distinct ver-

tices of X , s <n , then the span of f(vo), e ,f(vs) in
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n . .
R has dimension s

(This implies that F

the proof of the spreading out theorem.)

2 n . .
(ti,ti, .o 'ti) , where ti < tj if and only
matrix
- -
2 n
1 t0 t0 cse t0
1t £ ...
[ s s
has rank s , since
- 9 <
l to to LN B ] to
. ] . . T (t. -t.)
det . . [ ) . - i>j l J
2 s
1 ts ts oo ts_

So the dimension of Span{f(vo), .o ,f(vs)}

(2) mB(f) equals the support of 'ckbi(Ki

this is the following lemma of Arnold Shapiro:

For suppose

is

is spread-out, by

f(vi)

if The

i<

># o .

S

The key to proving

Lemma 5,2 Let A and B be g-simplices in " , m= 2qg (or
let A be a g-simplex, B a (g+l)-simplex, and m=2q + 1 ),
with distinct vertices lying on the moment curve C ., Then
AnB#@ if and only if the vertices of A and B alternate
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along C .

Now the proof of (2) goes roughly as follows. First recall
that the coefficient bf(w') of w' in IB(f) is bf(w’) =

Zéf(Lf LfB') , where the sum is taken over all pairs {a',B8'}

all
of (k-i+l)-simplices in X' , such that o' < o' , w' < Bg' ,

o' # B* , and f(a') = £(B') .

If 0 and 1t are k-simplices of X with w <o , w<-T1 ,
and uf(o,t) =1 , then the definition of u(o,t) , together with
lemma 5.2, implies that there are simplices

S = <Vy,Vy,V > <o and t = <V,,V,, Ve, se. > <1 (where

5' LI
are the vertices_of o and T in order) whose

VirVorVar e
images under f intersect, say in a point p . Let a and b
be those points in s and t respectively such that £f(a) =
p=f£f(b) . Then o= aw and B = bw are (k-i+l)-simplices with
w<ae , w<p , a#B , and f£f(o) = £(B) . Furthermore,
d?(Lfa,LfB) =1 . (This follows from corollary 6.3 of chapter 2,
since if D 1is a little (2i-2)-ball transverse to f(a) = £(B) ,
with boundary LR%(a) , then f(LXa) is the boundary of

£(o) n D , f(LXB) is the boundary of £(t) n D , and

f(o) nD , £(1) n D intersect simply.) Finally, given a (k—i)f
simplex ' of K' , with ' contained in "w , each such pair
{a,B} determines a pair {a',8'} in XK' with w' < a' |,

w' < B' , o' #B' , fla') = £(8') , and L(LE,,Lfg) =1 .

For further details of the proof of theorem 5.1, see [BM],
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Remarks,

(1) As a corollary of theorems 4.1 and 5.1, we get a combi-
natorial foimula for the action of the Steenrod operations Sql
on homology. This formula is very similar to Steenrod's original

(1947) formula for Sql in cohomology, using "cup-i products".

(2) By exercise 3 of section 4, theorem 4.1 also gives a
combinatorial formula for the normal Stiefel-Whitney classes of a
manifold. There is a similar formula for the tangential Stiefel-

Whitney classes, due to Goldstein and Turner [GT].

Exercises

1., Prove Shapiro's lemma., Can it be generalized to the case

dim A+ dim B=m ?

2, Find a combinatorial proof that ck_i(K) is a cycle. (This

problem was suggested by Lee Rudolph.,)

3. If K is the octahedron, which mod 2 l-cycles of K can occur

as cl(K) for some ordering of the vertices of K ?




Figure 5.1.

Figure 5.2.







Figure 5.4.
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§6. Smith operations

Let T be a piecewise-lihear involution of the polyhedron

X , that is, a map from X to itself which is PL and such that
T(T(x)) = x for all x ¢ X . Let K be a triangulation of X
for which T is simplicial (that is, o ¢ K implies that
To ¢ K ), and such that the fixed point set XT of T ,

T

X" = {x € X|T(x) = x} , supports a subcomplex of K . (Such a

triangulation exists for any PL involution.)

Let C, be the group of mod 2 simplicial i-chains of K ,
let cC, ==C_)Ci r and let T, : C, > C, be the morphism induced
i
by T . Then T# is a morphism of chain complexes, i.e.

T#ac = 3T#c for all c e C, .

Let Cg = {c ¢ CiIT#c = ¢} be the group of equivariant i-

chains of K . (N.B. This is not the same as the group generated

by the equivariant i-simplices.) Then CE = @C? is a subcomplex
i
of C, , for if c¢ ¢ Cs and T#c = ¢ , then T#Bc = BT#c = Jdc ,

T T
so that 3(C;) = C; 4

Let HE(X) » the T-equivariant homology of X , be the ho-

mology of CE . In other words, H?(X) is the group of equivar-
iant i-cycles modulo boundaries of equivariant (i+l)-chains.

HE(X) is independent of the triangulation KX .

In the late 1930's, P. A, Smith defined homomorphisms
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T T
H: (X) »~ H,(X7)

o

T 5 T
B : Hj (X) Hy _; (X)

(where all coefficients are Z%Z/2%Z ) as follows.

If c = )o. is a chain in CI , then Ac = Yy o. , the
3 J T,0.=0, -
#3 73
sum of all the simplices 'Uj of ‘¢ such that T#cj = Gj .
Choose a chain c¢' in Ci so that
c=Ac + c' + T#c'
( c¢' is not unique), and let Bec = 3c' . ( Bc is a boundary,

but not necessarily the boundary of an equivariant chain, so Bc

need not represent 0 ¢ HE_I(X) .)

To see that A and B make sense and that they are well-de-

fined in homology, we need these facts:

1) BAc = Adc
2) If 09c =0 , then T#Bc = Bec
3) 9Bc =0

4) If ¢ = Ac + c*" + T#c" then 0d¢" = 9c¢' + 3d for some
d e CT
i -
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— T - T
5) If c=29%e , e ¢ Ci+1 ry and e = Ae + e' + T#e , then

we can let c¢' = de' .

We apply these statements as follows. (1) says that A 1is a chain
map, so A induces a map in homology. (2) and (3) say that if ¢

is an equivariant cycle, so is Bc . (4) says that the class of

T
i-1
gether with (5) imply that if ¢ is the boundary of an equivariant

Bc in H doesn't depend on the choice of c¢' , and (4) to-

chain, then so is Bc . (For if c¢' = %e' then Bc = dc' = 3de' =

0 .)
The proofs of (1)-(5) are easy:

1) 9dc = 3(Ac + ¢' + T#c') = JAc + 3c' + T#Bc' , SO Aodc =
AdAc + A(9c' + T#Bc') = 9Ac , because A(b + T#b) = 0 for any

chain b , and T#0‘= o for every ¢ in JAc .

2) If 9c =0 , then 9Ac = Adc

A0 = 0 , so the equation

dc = JAc + odc' + T#ac' becomes T#Bc' = 9¢c' , or T#Bc = Bc .
3) ©9Bc = 33¢c' because Bc = dc¢' , and 29d3c' =0 .
4) We have Ac + c' + T#c' =¢c=Ac + c" + T#c" , SO
c' + c" = T#(c' +c") , i.,e. ¢c' + c" € Cg . But 9c" = dc' +
d(c' + ¢c") , sowecan let d==c' + c" .

5) We have c¢c = 3e = J3RAe + je' + T#ae' , and 3Ae = Aje =

Ac , so ¢ = Ac + 3Je' + T#ae' .
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Having defined A and B , now define

n T T
FP o: Hp(X) > Hy_ (X))

by F" = AB <.« B ,

n

In the early 1950's, Wu Wen-tsiin showed that mod 2 homology
operations could be defined by using these Smith homomorphisms for

the canonical involution on the square of a space.
T: XxXX+XxX , T(x,y) = (y,x) .

Wu observed that if o ¢ Hk(X)  then o x o defines an ele-

ment of Hgk(x x X) . He defined a Smith operation

sm® - H, (X) + H X) by

k—i ¢

Fk+:|_

smt (o) = (@ x a) e H__,(A) = H_ (X) |,

k-1
where A ¢ X x X 1is the diagonal, which is the fixed point set of

T .

It is easy to show that if ¢ is a cycle in X , then ¢ x ¢
is an equivariant cycle in X x X , However, it is not obvious
(although it's true) that if ¢ is a boundary in X then c¢ x ¢

the boundary of an equivariant chain in X x X . (Wu overlooked

the non-triviality of this in his book [wWu]!)
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For example, if d is a l-simplex and c¢ = 3dd , then ¢ x c
is not the boundary of d x d , because d X d has dimension
two! But ¢ X ¢ 1is the boundary of an equivariant chain, namely

the sum of the two diagonals in d x 4 .

To avoid this problem, we work with a geometric k-cycle X ,
and just define sm® [X] , where [X] « Hk(X) is the fundamental

class., If ﬂﬁ,e Hgk(x X X) 1is the canonical class, we set
smi[x] = FFtiQy . H _,(X) .

Theorem 6,1 (Wu) Sml[X] = Sql[X] .

Wu's proof of this theorem is a direct combinatorial calcula- .

tion, which is difficult to read.

Here is the outline of a geometric proof, using branch points
and double points. If N > n let pN,n : RN > R® be the ortho-
gonal projection onto the first n coordinates. Given a polyhe-
dral k-cycle X , choose an embedding fN : X > rY such that the
n = Py,n ° fN : X + R? are spread-out if n > k , and have
dim f;l(x) <k =-n for all x e RY if n <k .

maps £

Choose a triangulation K of X so that all the maps fn
are simplicial with respect to K ., Let L be the first bary-
centric subdivision of the cell complex K x K . The diagonal of

X x X 1is a subcomplex of L .
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Now let C be the sum of all the 2k-simplices of L . Then

Fk+lC = ABk+lC represents sm* [X] , by definition. I claim that

the choices involved in defining Bk+l can be made so that

ABk+lC =IB(f This implies theorem 6.1, since IB(f

k+i-1)  ° kti-1)

represents Sql[X] r by theorem 4.1.

For each j define ¢91fj) and ¢Q+(fj) to be mod 2 j-

chains whose supports are contained respectively in the sets

Ca{(x,y) ¢ X x X|x # vy, fj (x) fj vy} ,

[

c{(x,y) ¢ X x X|x # vy, fj(x) fj(y), "j+lfj+l(x) > “j+lfj+l(y)} ,

where ., rItL Rl is projection onto the last coordinate.

j+l
The actual multiplicities of é}(fj) and J}+(fj) are defined us-

ing local linking numbers--this is left to the reader. These chains

have the following properties:
+ +
1 ) = . .
) ¢9(fj) £ (£5) + T, 87 (£))
+ . .
2) (£,) = ¢91fj+1) if § <k -1

B(£,) + ¢91fj+1) if §>k-1 ,

where ]B(fj) is identified with a ecycle in the diagonal, and

B(fk_l) is just [X] .
Using (1) and (2), we shall show

3) Blc = ¢9(fj) if § <k

B(£,_;) + l?(fj) if 3>k .
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This is trivial if § =0 . If (3) holds for Bi lc ,

then the terms in the equation

pi~lc = apI"tc + @®I7ley + T#(Bj_lC)'

can be chosen using (1):

asd~lc = 0 if j <k
ZB(fJ_z) if 3>k ,
and we can take (Bj-lc)l = J¢+(fj_l) ; SO BlCc = B(Bj-lc) =
53 1lc)r = a¢9+(fj_l) , and so (2) implies (3).

It follows from (3) that ABIC =B(f5_;) if j >k , which
is what we wanted. |

For example, let X be an octagon, with maps f2 : X =+ R2 '

£ : X + RY £, 2 X+ R®  as illustrated in figure 6.1, The

1
chains \9’+(fi) and ]B(fi) are illustrated in figure 6.2,which
shows that if C is the sum of all the 2-simplexes of the triangu-

lation L of X X X defined abowve, then

C = \3’+(f0) + T#'Bﬂ-(fo) ’ .
+ _ + +
w%%)_m%)+ﬁ%ﬁ)+%&wﬂ ,
+ .
25z =B(£) + »9.+if2) + T#9+(f2) .
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Exercises

1. Show that if T is a PL involution of X , there is a tri-

angulation K of X for which T is simplicial, and such that

XT is a subcomplex of K .

2. Show that HE(X) is independent of the choice of triangulation
K .

3. Illustrate the proof of theorem 6.1 using a PIL embedding of

the projective plane in R4 .




8 1
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3 . 5 74 5
5 4 6 6

Figure 6.1.

Figure 6.2,
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