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Chap. IIT : Obstruction Theory

In this chapter we comnsider the following problem:
L is a subcomplex of a CW complex X, and £ ¢ L ~> Y, We
would like to extend thiéd map to a map of K > ¥, Simce K
is & CW complex, the obvious thimg to de is t; extend the
map skeletom~by-skeleton ani'on-each skeleton, cell-by-cell.

So the erucial special case iz where L = S and K = e‘+1;

-We see that f meed mot extemd if ,.(Y) £ 0 and in fadt,

f will extemd if and only ff f represemts the trivial element
of "(Y). Usdmg this obwervatiom we will defime below the

ebstruction to extemding a wap froem the n skeletdn to the

1 m+l skeleton.

In. gemeral, we define a map ¢ 1L ==>Y to

ke neextemsible if there exists an extension of f mapping

o K-LJL w=> Y. If we assume, as we will from now em, that

. Yris pathwf.aveonneete&, then the following is obvioust

1+ Lemnma~ Every map L ==> Y is l-extemnsible.

We defime the-éxtémsion index Qira”nﬂp £:L ->Y

te be the least upper wound of the set of imtegers a suck

that £ is w-axtensible.

i

2. Lemma- Hoﬁoto;iobnaps of L ==> Y have the
same gxtennion index. B SR
' Preof: For‘anf nis this follows from the kéhotopy

extemsion theorem applied to the pair (K ,L). -~ 75"




3. Lenma- Let £ : (K',L') —> (K,L) and 6 ¢ Y —=> X',

then if £ 1 L ==> Y is m~extensible, then so is efg : L' —> Y',
- Proof: This is obvious, if g is cellular, amd if

g is mot we can find & ¢ (K',L*) «-> (K,L) where g, = & and

3 iu cellular, by the cellylar approximation theorem (applied

2 twice). efg ~ ofg, and hemce by the previous lemsa it ef;r

:; is a~extensidle then so is efg.

Now assume that K and Y are pathwisé connected and
that Y is n—siﬁple. Consider a map £ 3 X" —=> Y. To define

the ewatructiin we will require the followimg ford of the

AbcdlLEi

relative Hurewioz theorem, which we will not progei

o Tﬁeoren— 1t =2 2 and (X,A)} is an {m=1) commected
CH pair, them the Hurewios homomerphism k ¢ wi(x,ﬂ,i‘) -— H‘(X,A)
is an epimorphism aqi its kermel is the subgroup gemerated
by elements of the form o - wer, where o8 w‘(x,ﬂ,x.) and
w 9,,*1("&‘5)"
B _ Vﬁy lemma 1, we can assume that m > 1. By .theorasx 22
lof éhép-,l, (k,K‘) is m comnected and hgnce by considering
the homotopy sequence of the triple (K, K" ,K") we get that
wﬂ(K,i‘) w0 for m > = > 1 and from this snd the homotopy
sequence of the pair (§,X") we get that *1(K,§‘)- 0. Ve

use that'w.(fg) — w'(K) is moro, which, simce n 2 1, is true.

- , \
Definition— IZ 2 # K .w> Yy with m > 1, and K and Y

pithwise comnected, with Y m—simple, then we define i;+1 ¢

c?*l(k,;.;w.(r)) « Hou(C_, (K,L)ju (X)) by the switchback:

t e+l *?a' = =%+l =n
wer (B Rk —> B (K*77,KY)

'Q\L gc}“‘

ﬁm{?ﬁl% \wgﬁu> ?{T) . b

L1

£ oryy
H




i

We mote that the kernel of h is of the form J w —wee §

:'by the Hurewicz theorem. f, (ocewor ) = f*((C) tn:--\rlr-3 ) w0 since

;E Y is m-simple.Hence the switchback does defime a homomorphism.

t‘

Intuitively, what we wish the obatruction to be is
| the followings Let o be & cell of I3*!. 1™ with attaching

B map ig t (e‘+1,8’) — (i?L)o,E’). In order, that ¢ exteid te
X* g, it is mecessary am sufficient that cls 1(%013‘) of '.(I)

w 0. Thus, we would like to define o;+1 on the m+l cells of

. K, »y c;+1(a) = cls f(ial S‘) + We cam make this meaniful by

(l+lsl) iH

+1 T
n+1(i‘ ,K)

n+l

: ” Za Tl( n+1 : ) Z’;‘S Zo o
PP A : ), , ""Ut'{ gS")’)“"'> w,(Y)

To prove these two definitions are the same, pick
a base poinmnt P, in each S:, and let v, be a path im " joining
{ 1,(p ) amd k o Them the fact that the Zollowing diagram commutes

proves ths two ﬁgfinitiond equivalent.

n+1/ a4 | e +P 4
$ Z'MT*% - Z‘T#
+1 \ 1
@ . ‘
S C Zwntinisy :
wa(S5s, ) > -an(ﬁ‘,k,) —Ei > u(Y)

Loy tq Cals®))g = T (qlrie™)y Ry W Aearange RGOy

Prom the secemd &efinitionrﬁﬁe followinmg is obvious:

4. Theorem~ £ 3 K* --> Y, extends iff e;+x- 0.

‘61—

. :é_ nsin; the decompesition of chap. II theorem 4, i6. use the switchback:
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( % . 5. Theorem— §‘°;+1:‘0, ie. o;+1 is a cocycle.

Proof: We show that o;+LD = 0, This fellows from

the diagram:

=n+2 =n+l h =-u+2 —1+1
“2(1{ JK ok ) 'e"ﬁ‘f> “2(1( )
RS AR ,
’ 7+l h T+l oo
‘?1+1(K J ?ko) Lo n+1(K )
‘ —x+] =u h — =my,
e (K E k) - 0 LK RN

m (B k) -f-» w (Y)

Since the column on the left containa two duccaauive

terms from the Romotepy sequence of . (x™ e LK), 1t fcllown that

dl= Doliuloo 0 o

the composite is zers.

Because of our cemvemiemt global defimition, the

follewing maturality theorem is okbvious.

8. Theoremw If £ 1 (KJL%) > (E,L) is eellular °
then c ﬁ# ‘+1 ‘

We also mote the Tollowing lemma: | |

7. Lemna- it 7,2% ¢ " ;—> Y are hondtopic,.thgn
: F:+1' a;TI. ' s

New ;e congider alilightly different sitnatien,
‘Let? ' a1 : KR

.. between gmlll""1 and 4./ K ""'1, We mow recall that C*((K,L)yd,,. (1))

—> Y and let h H E‘hl ->Y be & ﬁonotopy

is isomorphic to.C*(K L;w (Y))® c(1). C*(1) is free om three
. generators 0, 1, and I, with & & = -1 and S1 = I. Dafine
By Pl u oI > ¥ by b ex E"lxI, g om K"xi for i = 0,1.

+1 LR+l A+l oy 1
o; .- c; G0 - 'e*.‘,g;_i ©1 ia thus an element of ¢ ((K,L)XI)o

=08




[, 31

However, more than that, it pulls back te C‘+1((K,L);{I,I);,‘(Y)).
Congider the map: € ‘+1((K L)xI) <-%- 3 Gn+1((K,L)x(I,I);* (1))

} L> ¢ x L;*ﬁ(‘l’))@hl(l 1) £> C(K,Lsw (Y)), where § is the

| imclusion emd k is the compesite of c‘l(lil) <— ¢%(1,1) —> ¢*(0) « Zy

tensored with the identity on CP(K,L). We definme “(‘o"l?ght) -

{- 1!1 dk?‘j-l(c;:l - c:*'l@ 0 - ¢:+1Qy 1)y which is thus an
o

olement of c‘(K;L';,.(-x)). It is easily verified that the

meaning of the difference cochaim is as follows: let g be

a cell of I.E-I; then (l-'l)_"bli‘g.,gl,l;h—t)(c) is represented

by the map of S” = J (e™zl) = o"xi US'.“'IxI, which is

S

i b

E1 om o"x0, g1 on e"x1, and h-t( iGSS‘-l) on %1yt Frow

this’ it,.,follows thﬁt'_the aialogue of theorem 4 holdst

, B Theoren—a'ht' extends to a hometopy of 'R and £

10, Theorem Sd‘(; ,.;lg_:h-t) -(e’“l(g ) - t:""lv(g},))l{‘--.‘L)wH
Proofs This follows from the  fact: that

S‘( 1)n+1( n+1 ‘#]{pﬂ ﬁ+&p 1) = n+]® I-e +1®I, whoia'

LI 1
pull Wack umder kvj"l is the requived difference. '

Next, we prove an important existence theorem:

1lo Theerem For every m-ocochaim ¢ in C‘(K,L;wn(]{)),
gt K* => Y and ¢ B! > Yy with g w @B tnerest vre
- exints .,‘1: i B¥.a> ¥ such.that. b, ngilK“" Foand. g X ICRTST W E

R - . . e ey

1-.




., which linoe (e xO)LJ(S-'IxI) is contractible, we oAn assume

Proof: Let the m—sphere S = (e‘xO)kJ(Sn'lxI)\J(e'xl).
There exists a map fc { 8 ==> Y represemnting (—1)"#10(0) (1e.

el i *(g)) where g is a chosen fimed gemerator of H (e‘,s"l)),

-
-

. ) . ﬂ
- _g.i on o"x0 and ki on 5" lxt. Detine gy «-f :1.{1) e E

It is obvioun that d(g',;i;ht) = C.

The fellﬁiingAire two easy, sut importamt maturality
theoregsz; o _ | P
| " 12. Theorem— 1‘(;0‘,.;2;1.;‘.1-1;) = d‘(go,glg;ht) +
d‘(glagzjiéy (where h{'ht is shorthand for the Folotopy g with

Jgi =gy t S H amd Jy = kg, 5 8 20 ?

13. Theorem~ If £ : (K", L') —> (K,L).is: eellular,

_ th" d (‘ [:Glﬁr t;) - ‘#‘* (go"l’ht)

Our first inportamt applieatiom of thoué comstructions

~is the following extemsioa tieorem of Eilenberg;.

14, Theorem= If £ : K@ «> Y, then { o § «. 0 in : ?

H‘+1(K Liw, (Y)) iff there exists a map g 7l Y such that :
gt . Rl

Proofs. We let &g ,g,5h,) = flz,,e,) 17 by = g B0
~for all t. |

If g exists, as described, then o.’;"?( ¢ = O and

- hence o'+%(i? is tke cowoundary of (L0

4
3%+ ei*l is homelegous toyoy then: thera exists.

o in C*(K,L; Sy {Yl) suck that cf LI By theorem 11, there
exists g 1 K° ~> Y such that d(f,g) = ¢ and hemee, by theorem 10,

c:+1- 0 and ‘kemce g extends to ﬁ‘+1m




—71-“

This fesult has the followimg important co}dllaryt

15, Theorem- If Y is r-simple and Hr"'l(K Liw (Y)) -0

 for every r :t m Sr<m<om, them the n-extenaibility of £ 1 L >7Y

i i-plies its u—extensibility. (Yhere os—extemsibility means that ¢

. can e extended to all of X.)

Related to tke extemsion problem, that we have™ '

been dimcussing, is the homotopy problem. Given two EADE

f, £ * K ==> Y, such that f1L. = gIL. for a subcomplex L,

we would like to determime whether or mot these two maps are honoippu-, rel Le {

L]

Onr method is a;ain ore of extending th honotopy skelaton by

. skeleton, It R, @ Bl 5> Yisa homotopy of fl-ﬁl ~! with gl—.‘lf

(re1.1), them d"(f,g;k,) & C*(K,L;w (Y)) as Wefore (assuming
Y is mesimple)}. However, mow we note that c;+1 - e:+1- 0 since ' :
f and g are defined om K. Hence, we have that i‘( f,g;;ht_) ie
by definitiom (—-T‘,‘*'.IT‘(I:'YJ-I)(B;H) and O i‘(f,'mht) = 0, fe.
the differemce cobhhain is, in this case, a cocytle. By a dire’ct
application of theorem 14, we get the following amalogue, with
the corollary, amalogous to theorem. 15:
16. Theorem fd'(f,g;it)?. = 0 iff there exists .

g t K ~=> Y, such that k, = 21K, k

SRl e
kt{K ] ht]K 3

" hometopy k - gli.l.,,_

1"
;.’

17, Theoren— 12 Y is r-smple and H, (x L;g. (Y)) - 0 E
for every © t m < ¥ < mtl < oo, if 2/K* is iouotopic te gl

'(rel L), them ZIK" is homotopic to giK B(rel L),

)




" We mow comasider a specialization of the éhgory which

we have beenm developimg, called primary obstruction theery.

We mow assume that Y is mel-commected. If > 2, then Y is ‘
simply commected amd hence resimple for all r. Fer the Y
case m = 1, we also assume that Y is l-simple, ie. that

'I(Y) is akelian.

Givem a map £ 1 L -—> Y with L A luioomplex of K,
then, by theoren 15; £ is m—extensible. . Furthermore, by

theorem 17, any two such extensions f and £° o n-l-komotopfe,

te. 1" 14 omotopic to MIR™! (e 1). 1t w, : By
_ o
is such a homotopy, them by theorenm 10, ) (e, 20 'ht) -(c‘ +1, e:tli(~1)f

This shows that c; I amd c' 1 are eohomole;ousg and thus 5

a0 d

'répreae:t the same element of H'+1(K Liw, (Y)) Thie unique
alemelt deternined by £ ia otlled tke primary obstruetion of

4 nnd is demoted Wy <)J‘+1(f)

Pick & base peint Yo o Y, and let 0 t L o> Yo 1n Y.

. By theoren 17, g 1 and 911,21 are hometopic amd hence by

the homotopy extension theorem, f is homotopiec to a map of

L «-> Y which when reatfiétei to L1 o i1, Hence, by . :
- theorem 7, we cam ansume that f£i1L™ ) . OIL"I, simce the two
honotopic napa.héve the same ﬁrimary obstruction elements.

We them define ~*(2) =Ja(2,0}38 B*{Lsw_(Y)): I we lat

§% & B'(Lyw (Y)) > 8% 1(1{{ Liw,, (Y)) e the eobouniary

;homomorpkism of the pair (K L), then we have the followinge

By

R It

18. - Theorem— = - ‘H(f) é?*.x‘-( e

1 . s IR IO B




Proof: Since f(L‘-l) = Tqr it follows that.f kas an
extengion £* K? ——> Y such that f*(EP—L) =Yg If we let
5* t K% ==> Y denote the constant map such that 0*(?’) - Yy

then S*'(2) = S*fd(f 8¥% is represented by J a(Lx o%) "

n+l

which = ¢,

by theorem 10, and ef*l represents dﬂ’+l(f)

Akim to this theorem, is the correspomding

result for homotopy. If f,g & K —> Y, with f1L = glL

| we card consider the elememts of H‘(K,L;gn(Y)) represented

uﬁahy-cocyclesd!the form d(f,tght) with ht a homotopy rel L.

Since thesé correspoid’ umder 5~1}W}1k°f5-1 to °1°"5‘t"‘r‘y’1
¢;+1; it followa from the above that these -cdcyclés are: v

all cohomelogous and hemce represent a single element v

es *(1,z) © H‘(K,L;‘E(Y)), the primary’ obstruction.to
homotopy {(rel L) of fhe pair (£,g)s 12 § 2 K  (x,L) | _
~ims the inclusion nap, ther we obtain an induced map,

% + YK, L;w (Y)) — *(Ryw, (r))

. 1%9. Theorem— v)(.ﬂ(f) ca ‘K?(z) = §% to‘(fgﬁ)'
Proof: We may assume that f(KF"l) - g(K#_I) LI S0 \
Lfy altering £ and g by a homotopy if meed be. The result
the follows from the fact, by theorem 12, that.
a&(2,0) - a"(g,0) = i‘(f,g);:whpre 6 .is the comstant uap. o

LT

Ffoi.theaeﬂgégult; fe get th; primarylexfgnsio;
theorems and primary honotopy theorems. o
" An element of the cokomolegy group H (L;G) is
said te be extemsible over K if it is contained in the
image of the komomorphism I* = H‘(K;G) — H‘(L;G) induced

by the inmclusion map i : L (T K,

i e A AT T PR
R




20. Theorem- For a given map £ ¢ L > Y, the following

tements are equivalent:

}: . (1) f in m+]l extensible over K. = =
; :

(2) w™1(2) = 0
#*(2) is extensible over K.

(3)

Proof: The equifalence of (1) and (2) follows frem

o,
-

jeorem 14. The equivalence of (2) and .(3) follows from

] _
fseorem 18 and tke exactneass of the cohomology sequence of

e pair (X, L)

21. Corellary= If Y is:r~simple and B** (K, Ly (Y)) = 0

|
j |
ifor every r satisfying n' < r < din(K-L), then a necessary and

sufficient comditiom for a given map £ : L -> Y te have an
extemsion is that the characteristic elenant w2(1) s -

extensible over K.

T ‘Proofs Follews frem theorems 20 amd 15

|
|
|
|
1
3

22. Theorem— For amy two given maps £, ¢ K ~=> Y

S,

such that fiL = glL, the following are equivalent
_ . \

v (1) f and g are n-homotopic rel L.
(2) wo®(1,g) =0
1f we 2alao have Hn’l(L}w.(Y)) = 0, we cam add:

T

(3) ™) = »"(g).:
Proofs That (1) and (2) are equivalene follows from

theoren 16. The equivalence of (2) and (3) given the added

condition again follows from the cohomolegy sequemce of the

‘ pair amd theorem 19.

{
H
i Nete that the sxtra condition is always fulfalled if L « £,




g pe—

03. Corollary- If ¥ ja r-simple and Hr(K:L;w (Y)) =0
lor esch r satisfying m <7¥ < dim(¥X-L)+1, and (1 va () =0,
then & necessary and gufticient condition for & given pair of |
%ap t,g v K ==> Y with 2iL - gll, to he homotopic rel L is that

wH1) = e

Proaf: Fellows from theorems 22 and 17.

With these theorems as motivation, we mOW examine
jc‘(f) more closely, for £ ¢ Kw>Y and T a-l-connecfed and -
n-simple. To caloulate w2(2), we replace I wy a map g vhick
is homotoPio to £ and such that g(K 1y - 7, ond then

e 2(1) = 3&(1 o). d(f,0) is defined as follows? -
We detine F 1 K2 ixlu Kx0uKxl —> Y oy H(x,t) =¥, tor X g Bl or t = 1,
and F(x,o) - g(x). B is a map defined on the augmentei ifskeleten
of the pair of conplexes. {xx1, Kx0uKxl) er, letting I -$0,18,

the pair Kx(I,I). Thus, B 1 (kx(1, 1) 3w (V)5

n+1
- trs, ‘*1

by ram: excision inclusion, it maps & +1(K’ “lx&AJK x1)” _ '.KY)

(X w1 kel "1xI\JKkI)v->! w*QY)g or preceding

: (—A)“+ld(g 9) is this map preceded By the composite functiont
B (K" By o> w (Y, K*1)z0) < B (K", yan (o) —>
H (K"K "1)®H (1,1) <--;|. m (K"K “lyor, (1,1) —> By o, K"l)x(l ).
This is, more oT less; B review of the defimitiom. However,
ve assert that the above map ée the same 88 the'ainpierlcdmpolitexa\
{which is a'awitehback) | |
H (K" x"") <35 K (x‘mux" Ly, K"lxi) —> H, (x" ixwx xi K nun" -5}
< B_(EY 110 K1) <om ((x k1) x(1,1))s. shere q is the

fastrietion'oi the projection of Kx1 omto K.

This result comes fron the diagram:




E TR L O T

| e en @) 2o i, (@ D)

PR CRTRICZE 2 R WPl et e, -

 gormer ise The resuli that we want is the dquality of the

261 o
1&53\‘/ H (K" xf UK a1, K 3‘1”“' 111)<-%—H (K"‘lxrux‘xo *-151)
Hn(K",Kn_l)@ Ho(t'l) H (K g, K‘“lxl‘ﬁx xl) )
o ® X -’%“jl? @
H:._1("-""'1) @\HI(I,"I) ’ H.(K“lx(l,i))
(bt TR |
B (R, Pu ) o> (R 1)20)

Where the following identities are easily verified:

-1 ' -1
‘q*k =1, j*k* - i +i*, Qe dx 11 = Og 'w/.' - i, iy

Now uaing the naturality for  that was proved im chapter 2, we

have: (1 +11)("i5‘+'?'1)('a +'S'1) " =®‘“. Therefore, q,*j* -

q*,j* 4 olx Y ik ’5 v om aydy J*k*"’"i* 130"'r '

y'i;lboy' “1, The latter is an isomorphism amd kemce the

' imverse maps.

Ugimg this idemtification we prove the following:

24, Lemma- &(g,0) is given by the switchwack:
B (K2, E5) <R (7,07 B> (Yey ) —> wy(Y):
Proof: This" follows from the diagram:

v (€7 x'-l)x(r B)) > Hy (€ x‘-l)xu m
4;

.o a.
o I\«K‘ “14) wo> H (K <1 v E*1y1)
.l

i
.,,(K Belo K™ IxIleu ‘lxl) J)H(K IUK zIleuK‘l I)

'r
F/ ™ (Kn"lxl K®x0 K“"ixi) 2> H (x“'l I Kix0,K" xI)
L ‘ b oA -
o (Y,y )e-w‘(x x"'? ...._.i‘.’:> H‘(K x"‘l)

I T
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Bt S U YU

from theore- 13:

Ye next congider the smituation that arises whea Y is

itself .a CW complex. In that case we can assume that K = Y and

look at the priviled;ed nﬁp.ly. ﬁ&‘(lr) is called the fumdamental

class of Y, and is written 'x.(Y) Its ilportant in the classification

of naps coueu from the followin; theorel, which follown lirectly

|,'.>

© 25, Theorem= If £ ¢ K —> Y, themn *{(2) « % 2(Y).

It Y is n—l-connected and n > 2, then we have the
B

following reanltt

26. Theorem— The image of K (Y) under the iaomorphin-:
H
B*(Y30, (Y)) > Hom(H (), (1)) _21‘&!1.)..0 Hom(w (Y),w (Y)) i
n+l :

-— 1 L]
(-1) w (Y) |

Proof: This follows from lemus 24 amd. the\commutativity
of the following diagram, where £ &.Y a.> Y, ik hemetopic te 1y
and 1(Y9Y) o Fo5 Pal b o eedbubipe ot safeowl da X '

(Y)-‘-:"> H(Y) .':u"l'-"\ AP s

L ﬂ*. T . I :
*/‘/w(r‘).......;sn(r‘) e

Ly, vty ton (),

The case whéée ;é fouli‘expect the meat’succels with
prinary‘obstrnctlon thaory, would be the ocase where the primary
obstructions are the oniy oRes.

' We aay that a CW conplex isia‘K(w,n)'if the homotofy
groups of the space are 0 except for dimemsion m, where the
homot?py grou? ", is just 4. If m f 1, then o must, of course,
fe ab;lian.-ﬁe are omly igterestei in these lotea_#n the

cane aiilian, since if m = 1, we will want l—simplicity.

\

}
1
T
!
L
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It X and Y are topological spacesg them we thiall demete

»y (X, Y] the set of homotopy classed: of maps of X to Y.

27, Theerem— If X ig a (W conplex, then th;re
is a matural, one~to—one, omto correspo:delca:' _
E;X,$(*,n)] --)'Hi(X;w); By the correspomdence: 1% —=> ¥ W’(K(',:))
| Preof: If ¢ is a cooycle represemtimg am element of H (I;')
then by theorem 11, there exists a map £ ¢ x* > K(wjn) ‘
with 2(X*1) « & o? ® base point of K(y,n), and m:?:i that if

Q is the constant map 8(X) = k o+ them d(2,0) = o, oF Se - 0,

f
ald hence f extends to X™ 1, and hemce to all of X by theorem
15. Hemce, f represents an element of [ X,K(y,n)] and {23 —> e,
by theoren 25. The correspomdence is hence onto, -

' The correapomdence id eaaily seen to be ene-to-ome.
For if 1% wM(K(y;n)) = g* “(Elw,x)), them Wy theorsm 15,
wR(2) « *(g) ;nd hence £ is homotopic te g by theorem 23.

The correspomdence is ebwiously matural im X.

Now. as to thg existence of K(y,m)'sx We wote that
since X and the singuiar complex S(X) have the same homotopy
groups the resiriction that the K(y,n)'s ‘e CW couplexes
is mo restriction at all im an existence proof., We will
explicitly comstruot K(wsl) for R > 2 and w abeliam.

It follews that K(y,1)'s exiat for w abeliam, since
1 wi(JlaK(w,n)) = ﬁi+1(K(w’1)), where;fLK(w,n) is the loop apage
| ;ot K(w,n)
Present 4 as F/R for F a free abelian group om =&
set of gemerators I amd R & subgroup of F. Let X be a

wedge of nﬁépheres S; fer i 2 I, Simce » > 1, wy(X) .{F iwn
- 0 i<




. We mow proceed imductively, to comstruet X

~79-

Under the correspondence of 'n(X) with F, the slements of a set
of generators for R are represented by a collection sf maps
fa:‘ S* > X. We defime x»+1 by attaching am m+leocell with
each of these waps. We mssert that § (X**!) -{"’ 1=

0 {i<n
and to prove this, it ebviously suffices to show that

'w‘+1(X’+1,X) —> 'n(x) kas image precisely R. The map is

certainly omte R amd that it is included im R follews from

the fact that '.+1(x‘+1'x) is gemerated by elements of the

form (4,3 where gt (0"1,8‘) > X" s the attaching map

of the cell e::l. This im tura follows from the Hurewicx theeren.
n+r+l

by attaching

nir+l cells using a gemerating set for'w.+r(xn+r)_ali thus

 killing the air R homotopy group. It is easily seem that

U x™T is a K_(-p,nl).
We mow show that amy two K(y,n)'s are hometopically

equivalent.

¥

28, Theorem— If X amnd Y are CW eo;plaxes such that
eack is a K(y,n) (sane ws s&me n), them X is homotopically
‘equivalent to Y.

Prooft Let £ represent ihe~blenettuqf;E§,Y§Kuuah=tia$

_f*yf(Y)u-wx?(X),(ahl“ilt g;répresantutheﬁalipﬁitﬁii “BXLK&Iﬁ) .
rf 3

 auok that, g0 (X) sl (¥)y | Sinee. (£g) %08 () mt »¥(Y) and -

Cet) *9e(X) o w * (X)) dtigailowss -from_the_q.iren—!ﬁ?;}thm‘s I
A1)

‘ﬁgifipﬁhquiﬁp}ewi0 1§‘§ii}gf'isﬁhiintipinntaeligvié“hnmoﬁnvicwtnclv

md w7 de hametarie o l}..
. t
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Finally, we prove a theorem which extemds Whitehead's

theorem,(chap., 1, theorem 27).

20, Theorom Lot £ § X m«> X* he & sontimuous

' wmapping of cemnected, m—simple topological gpaces, suck that
i .
£, v ,i(x‘,x.‘}- ., 4 wi(X}x;) is an isomorphism for I i<l Lo,

then if K is any n—dimensional CW cemplex, the induced map:

t, tLE,XI > [K,X'], is ome~towone and ento.
Prosf: By replacimg X' Wy the mapping cydinder Mi
if mecessary, we can assume that f is am inclusiom.

£, is omto: Let h t: K «=> X' represent an element of

CK,X']. Simce the relative groups y,(X',X) = 0 for 1 <1 < ntl,

cﬁrollary 25 of chapter ltinplies that there exists h't K —=> X

which is homotdpic to h in X'. This impliies that f* is omto

M

gince f*cla AV = cls ho

f is one-to-one: Let h* hi t K ==> X such that

such that there is a hometopy H : KxI «-> X' such that Ha -

h; ond H, = h{, ie. f,cls h; = £.0ls h{. Again applying

1
‘corollary 25 of chapter 1, we‘nay assume that A((KxI)*) (C x.
Thua; the r;striction of H is.a map HY KZOL}KI-III\JKX1 -—> X,
which we would like to extend to a map of ExI imte X. Comsider
the obstruction to suck an extensiont cgtl & C‘+1(le Swy (x)).

f# 1 O (Kxlg (X)) —> o‘*l(KxI; 2(X')) 13 an isomorphism. |

ntl R+l n+l

Since t# H' =oy = 0 we have that Cge = Y and\henee H' extenis

as. reqnire&. Thus, elc h’ = cls hl and 1, in tharefore ome~io~mne.
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‘Chaps IV ¢t Fiber Spaued”ani'PoétlikaxSyﬁtEii‘

'We mow cemsider the concept of fiker space or

giwration, due to Serre. For referemce, we refer the ' ‘ g

feader to the treatmemt ix Hu, chapter III.
Amap p ¢ E—>B is said to satisfy the y
coverimg homotopy property with rgnpeot to w spase’X, Yy
if for every homotopy k, X ==> B and every map
£t X ;-> E suck that pf = k,, there exists a momotopy

£, © X ==> B such that £ = £ and pf, = k.. A map

t
» whickh satisfies the covering homotopy property for
every (fimitely) trial;uluilé‘space X, is said to We
a fieratien and the tripie (E,B,p) is s fiber space.
A stremgthening of this property is givem By

the covering homotopy extension property (CHEP). A

map p B —> B is gaid to satisfy the covering homotopy

extension property, the CHEP, with reppect to a pair (x,A)
of spaces if for every hometopy b, ¥ X ==> B and map

2 ¢t X => E, and partial homotopy ﬁi‘*,lg“-> B such that

g, " L1A. and pE, = htlﬁ, there exists a homotopy ftir X w>FE

suck that 2, = f, pfy = by and £ 0A gt,'The two preperties
are reluted.iy'fhe followinmg gﬁeorens
lolTheorenw For a nﬁp p ¢ B~>8, thé‘following
ars equivalenti: |
i) p is a fibration
ii) For each m > 0, p has the govering homotopy property
with resphct to the m-cell e'.

$ii) For each m > 0, p has the CHEP with respect te

the pair m—cell mod boundary, (e“,S"l).




iv) p has the CHEP witkh reppect to every CW-pair (K,L).

v) It (K,L) is & CWepair anck that L {s a strong

deformation retract of K amd if 2 ¢t K wi> B and g: L - E
such that pg = fIL, then g has an extemsion g K > B
suck that pg' = 2. |
. Proof: i) -=> ii) A fortiori.
ii) —-—> iii) see Hu pages 63-04.
1) <> iv) Using the -taniard Zorm's lemma
.. argunent we ¢an extexnd £, * L «=>E to a maximal pair
('%?L') with LY a subcenplex of K comtaiming I and
- % t L' w=> E such that.g‘ - 1LY, gtlL = g, sad "t - htlL'
We assert that Wy maximality L' = K. If mot, them let

¢ e a ¢ell of smallest dimension of K.L°®, To extend

¢t ¢ g+l

‘. .8y to gy it suéfices to extead > E (where

g1,
M = dimemsion g), to'a homotopy £, ¢ e" «> B such that

%‘ _ 23-- fio, Pft - htia,'ani this extemsion exists Wy iii.
§ 1%) -=> v) Let k., t K => K be a strong deformation
| retraction of K to L, ie. k retracts K to © and kt(x) = x if
x€Lortwl. Lot Y= gk + K —>E, R, =k, : E->B

and g = g+ L > E, It ¥, : K =—>E is the homotopy

-‘| £

produced by an application of the o, then ? is the |
requirei extension g'.
v) -=> i) If X is trlangulahle (in fact, if X ia

a CW complex) them {XxI, Xxo) is a CW pair witk X20 a

- strang deformation yetract of XxI, whemece i) from v).

.E Note that either the proof that v) ~> i) or

property iv) specified down to the anse L = #, prove

. that a fibration has the coverimg khometopy preperty

 With respect to a%éry CH conplex.




We will assume fronm mow em~that the baae'ia pathwise
comnected, from whick it easily follows that p is onto. If
we choose a hase point b, in B, we define p-l(l.) = F to
e the fi?er of p. Choosing a base point x, in F, we get

;(lee'Hu page 152) the homotepy sequence of the fidberimg, »,

“which i--ﬁnjjjj}/;equenoe:

v d i
f““‘? vy, 1(Bs0)) —> ,‘(F,x‘) -ﬁ> w (E,x.) By w,(By») —> ...

With a base point chosem, we shall sometimes
;vftie a fiber spaté as E.y%—> B, with the hase point b = p(F).
| Given a fiberimg p ¢t B ~—> B-and a iai f ¢ B'--> B!
- . we defime £*B =] (x3y) 6 B'xE r £(x) = p(y)% which is the
‘topological "pull-hack" qf p and f, ie. given a space X and
maps g, X —>1B' and £y X —=> E such that fgb ~ Py then
; there exists a map h t X «~=> £*E such that the followinmg

-diagram comuutes (h(x) -,(;}(x),gz(x)) and is obviously umique):

] o ;;:ZEZ;‘h_M_““*~s> |

i ; : e da> E

: . 3. L o lp
. S

i

BY >

T

Using thia property, it im easily proved that the
D triple (2#%E, B“,ql) is a.fiier space (where q; amd q, are
the projections of I*E to B amd E, respectlvely) It

Cis callei the fiher space induced by £,

We oall two fiwer spaces over the same base, isomorphie

if there is a homeomorphism of spaces between them which commutes

-with projestions, ie.-

E W) Ei

f\/
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In general, if the map is umderstood, we ;hall refer
to E as the 'filwer space, and B as the hase space. We shall
say E is isonorphic to E' and nean.p is isomorphic te p'.
We leave to the reader the easy proofs that if g : B" —> B*, . ' o
_then g*(:*nj is isomorphic to (fg)*E, and that if f is the |
inclusion of a sﬁbset into B, then f*E is isomorphie to
rl(BY).

Note that if £ 1 (B',b!} —=> (B,b ), then
0, ¢ (£*E,F'}) > (E,F) where F' and F are the fibers over
b; and bo,:respectively. Simce F' w b;xF, with the restrictiom
of q, just projection on the second factor, we see that -
qle‘ t B > F is a;homeomorphisn and we will usually
identify the two fibers by this isomorphism.

From mow on, we wili assume that every fiber
space has fixed hase pointscchosen in E and B suck that
p is base-point preserving, ie. the basme~point of ¥ is
in the Fiber over the'baseapointAof B, and we shall vefer
to the fiker over the base-point of B, as the fiker of p,
nsually denotei F. We shall summarise the statement:

p t E-->B8 is a fiber apace with fiber F' by writing

: 1
¢

P - B -> B. For convenience we shall refer to all the

base-points a8 %o

We now examane the notlon of principle fiker space.

-

Definitionw A fiber space E -%—) B is called a prinoiplé
fibgr space if: i~ F is am H-space, is. there exists & map
4 ¢ FxF —> F such that & is a homotopy unit for u, that is,
it 4 3 PP —> F is the folding map sendimg (x,x) and {a@,x) te x,

t‘en the following commutes up to a homotopyy rel =xm ¢

Soema e haeye
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" E and B! such that the two maps agree when composed with .

e

PP _é_> F

and ii- there exists a map ¥ ¢ FxE «> E which
commutes with projection, ie. the foilowing‘conmntes:
" FxE -—w> E
rpéjBa/r o - 1.
and are such that the following commute up to homotopys rel =mx= ¢

axE (O FxE FxF 2515 e

y and n 7
E F ~—~—> E .
The motivating example iw where E is the space:of
patis based at = in B with the usual action () BxE > E.
The important property that we will need is given by the:”

following lemma!

9, Lemma— If £*E is the fiber space induced
»y the map f't(B;£}->(B;£bnd E is a principle fiber space ever B,
then f*E @s'a principle fiber space dvér B';_ ‘

Proof: We must define ot 1, Fxf*E «> f*E. By the . ..

pullback property of £¥E; it suffices to define maps intﬁ ,

the map into B. These two maps are: Fxf*E > f*E > BY ...
and Fxf*E —=> FxE X.> E. The commutativity (up te a
homotopy where raquired) of the three diagrams is

an easy exercise, using the corresponding diagrams for .

On homotopy, 7, corresponds to additien ef
elements of thw two homotopy groups. Formally, we

have the ienma:




LN B L

3. Lemmaw Let F —> E 2> B be a principle fiker space -

with map 7 t FxB —=> E, then the following commutes:

wh(FxE) x> wq(E)
i,+1,
w (F)+w (E) .

Proof:. The result follows from the fact that we will
produce a diagram that commutes up to homotopy with the '
top and bottom maps representimg the two results: let
x 3 89 > FPand y sl_o>2 represent elements of

w (F) and wq(E), respectively. The following dia;raﬁ commutes up
to Womotopys |

a1 XXy
/_,sGs >FxE\

> gl,g1 XYY s poE -1¥15 peE /4”

gl

¥here ¢ is the map pinéhing the'eqnator ot 8% to =

and A& is the diagonal map.

That the triangle on the left commutes up te hometopy -
is a_atﬁndard.result oflhomotopy theory: It is a special case

of the\?ollowiig lemna, whick we imclude for completenens: ‘

4, Lemma~ Given a space X with base point #, we define
the suspension of X, L*X = Xx1/Xx0 uXxlumxl, Let e t £¥X ->3 Xy 2'X

by e(x,t) - {(:x%z)g_l)gé:ﬁ, and A 3 T'X —=> Iz TIX we the

diagonal map, ‘then the Iellowing &iagram commutes up to houotopy;
. e . -t . T !;i‘— . :
! A TIXx T X

21Xy 2Z'X ‘

Proof: The required homotopy is given wys

B((x,t),s) = (x,min((1+8)t,1))x(x,1nin((2+8)(1=1),1}).
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'chapter- Assume that we have a complex K and subcomplex L and-

extend \f skeleton by skeleton, that is to say, use the

~ i3 possible, using these approximations. We mow imtroduce the: .

- notion of the Postnikov system which"approximates” X .instead

. inductively uaihg the same method of attaching cells to kill

 homotopy aroups, that was used in the constructien of‘K(w,n) at

p‘?a aeedn't be fiber maps. However, there is a method of

"replacing” any map by a fiber map, by replacing the domain

=T

M L
A isdal

We mow returm to the problem which motivated the previous

a mapping £ ¢ L. —=> X. We would like to extend f to a mapping

of K into X, The method considered in chapter three was te

skeletons X* as "approxirations” to K and to extend f as far as

of K, and approximates by using mappings which preserve ..
homotopy groups instead of inclusions.

We define the Postnikov system .of a apace X .to he a

13
L4

diagram: .- -

7
R R X - R J’pn R

“where 2 %3 ﬁi(X;a) —> "i(xn’;) is an isbmorphism;;i < my
and wﬁ%re'wi(xn,u) = 0 for i > n. (We assume that X is I-comnected

from mow on), and where P, in a tiber space map.

For X a CW complex we can comstruct this system

the end of chapter three. That is, we can find a space Y

such that X (T ¥, and Y% (T X and o, (¥) ©0 & >u.

It follows that the inclusion of X into Y induces an isomorphism
of homatopy groups for-i < e By theorem 15 of chapter 3,

.1 ¥ X ~=> X _y extends to a map of Y —>X_ ;. Thus, we

get, by induction, a diagram like the above except that the
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space by a homotopy equivalent space. By thus “replacing“ the
pn's by fiber maps, inductivély, we can construct directly the
Postnikov system for X.

There is another construction which is less geometiical
But is rather cohomological. In addition to being easier to
handie,rthis method generalizes the Postnikov system of
a space to the Moore-Postnikov system of a map; Howevef, before
we give this conatructiﬁn, we must digress to introdqce the
homotopy groups'of a map, and gimilarly homology and cokomology
groups.

Given a map f ¢ X ~-> Y, we have defined the
mapping cylinder Ht‘and weindtd' thé-2olléwing propértien.
X (identified with Xx0) and Y are suhsets of M, and'the imclusion

of Y into Mf is a homotopy equivalence, with inverse ot My —>Y

. defined by rf(x,t) = £(x) andjrf(y) = yo We have the following

commutative diagram, with the row being the homotopy sequence of

the pair and hence exact:.
oo mp(®) —> w () —> w (MyyX) 22> (K)o,
&3, ()
We assume that X and Y are lwconnected se that w?
need not worry about base points. We define *n(uf,x) - 'i(f) L.
and replace Wn(uf) by wn(¥) as showk .to obiamin the exact
homotopy sequ;nce_of the map$ \
ey (D) B (1) > g (1) L5 (X
Similarly, ¥f we define En(f;G) - H‘(Mf,Xg_G) and
H*(2;6) = Hn(uf,X;G).then we obtain exact homology and .
cohomolegy. sequences of_it

L
-~

e e e T




t = '
rer B (X56) 26> (Y56) > H(£;6) => 80 (x;56) ...

2

n“(x;G) < H(¥;6) < BU(1;6) <& B™L(xy0) ...

It £ is a fiher map, then we also have the ho-otopy

sequence of the fiber spacﬂ.

‘... " (x) I . (1) ....>,.- 2B > () ...

It is obv1ous, bv exactness of the two sequences that {
*i(F) - 0 iff '11f) =0 for any i. We will require a sharper i

isomorphism result only in the following special case:

5. Lemma- Let p ::.E' ¥> B be a fiber space, with
F n-l oﬁnnected and(Bm!)xhavin:nthe-hOmotopy:typé of & OW pair.
Then the following is an isomorph1sm. " (F) <L, " ‘YF F) -> v 1(p)
Where cF is the cons on F, and (oF,F) —_— (M E) is the imclumiom
: (x t) ~=> (x,t) for x in F. We aleo assume that E ig I—cunnected.

Proofs Since oF is contractible, & +l(cF F) —-%/w/(F)

(cF,F) an p? . Urewics

L is contractible, (K)\.) hasthe same homotopy type aa (K/L,=)

and hence we can assumehat L = m. Let h: (B,s) —> (E,x) and
kg (K,u) - (B,8 aps such that kh is homotopic to ﬁB _ |

rel .x. By the ometopy extension property for the pair (K,=),

there exists a neighborhood U o # in K and a homotopy r, + KE~>K

(re1 such that r = 1. and rl(U)

%, If we let r{ he the

ueonpeaite of the homotopy of kh with 15\followed by kr

.
4
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" Let v 3 Hom(w,u) —==> Huﬁ(Hl'

then ril', * B ==>B (rel ») and r; - IB while ri(U') ~ %, where

“M(U). We 11t the homotopy rip t E —=> B to a hemotopy

= IE’ using the covering homotopy ijgp ty. Let : '

tea that s

1 ¢ V~—>F. Let V_
P

the subset of Mp i

into (M ,E), into the incl (er,P) 1> (V,,¥) i ().
i, is an excision and hence ces isomorphisms of homelogy i

groups. On the other hand, =i otopic to I(eF F) and

)
8 is homotopic te i2

hence s,i,, = identity, end further, i

2

and henceﬁja*il*a* = 1,4 and since i,,is am{somorphism it
follows that i,,s, = identity. Thus, i,, and i \are isemorphisns

.ug;i/i:;;j, so is the composite. .

I£ 2 2 X «=>Y and £ ¢ X' —-=> Y', and there are
maps § t X —> X' and £y t' Y «=> Y' such thaet g'go o gli,
and map 1s induced om mapping c¢ylinders:which in turn imduces

homomorphisms of the homotopy, homology and cohomology sequences.

 Let'f £ X --> B, with X and B l-comnected, (X,§) and (B,a)
having the homotepy type- of oW pairs. The MooreXPosinikev system
of the map f ie the diagram: '
‘,;ﬂf“’{;? X
S
n
TR X
-]

- With:(1) X_ = B, f_ = 2} each ix‘,u) having the homotepy

Atype of a CW pair, (ii) ',i+1(fn) =0 i<w, (1ii) p, is &

fider map, with fiber a K{(y,n).

Construction Wy induction, with n = 0 from {(i).
Let w = 'n+1(fn—1) (note that ske lower homotopy groups vamish), o

) H"‘"‘l{?{mﬂ ;-;;-7) .
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By theorem 27 of chapter 3, we can find a map k : X‘_l - K(w,n+l)

such that k*(}ﬁ(K(',n+1))) = V{1ly). We pick a baae'pnint ® of
K(w,n+1) to be the image of the basepoint of Xn-l under k

(the base point of X is the image of the base point of X

n-1
under fn-l)' We let %, ¢ P ~> K(y,n+1) he the space of paths

baged at =, de. Pajpel—> E(w,n+1), with p(0) -‘li and

‘71(p) - p(l).'v 1 is a fiber map, wnd we define Xnéand P,

ax the induced fiber space over Xn-l' The diagram is¢

——— P

. l Py l”h

X k> X .1_...> K(w,n+1)
That X has the homotopy type of a €W complex

is a combination of two results. Milmor has proved

Athat P has the homotopy type of a CW complex (13 thm. 3)

and fron thl!, a result of Stasheff (23 prop. 12) implies

that X, has, too. (See notes for the sharpening of Stasheff's result.)

The fiber of P, is the same as the fiber of
’71 which 1s|flK(w,n+1) and is thus E.K(w,n) (noter
same w) °

Thus, our construction will be complete when

i

we define f , a lifting of f
, A - LA

a1 b0 X, 80 .that “‘1+1(fa). = 0

for i 5 Re

T

First, we note that liftings of fn—l do exist,

for £ ¥k* K(K(w,n-i-l)) - 2% v(lg) = 0, and hence kf__,
_is homotopic to the constant uap, by theorem 27 of chapter 3.
Since the constant map can be lifted to P, the covering hﬂmotopy

property implies that ki can be 1ifted to P, amd kence,

n-1

using the pullback definition of X‘, 4 can We lifted to

n-~1
Xn. Let £% ¢ X > Xn be such & 1ifting. We consider the

homotopy grﬁupa 'i(f')”~

5
A
it -
4
3




dUcdalielo b s

We will, ambiguously,

nap M

g .......>-M_gn . induced by p
map of the homotopy sequence of

Q92 .

let Py also represent the
and 1y, p_, then induces a °

' into that of f i

n=1
id,
ﬁ\'1+1(x) = wy(X)
s‘; 7 .L S" - X
rin(B) w=> e (X)) B> (X)) > (B
$oon pd
rpl1?) Eat> A"'1+1ifn-1)
{
id :
. ﬂ’i(x) — ‘H'i(x)
. N ‘l'* 'l VL g'\ 4
wg(F)  => “1(X ) B> a(x ) "‘?."1-1(F)
The columns are the homotopy sBequences nf‘the two mapsa
and the rows are the homotopy sequence of the fiber space

_top, bottom and right-hand maps are isomorphiéms_and hence the

" left—hand map, #4 t v (X) ~>w (X)) is an isomorphism.

where ¥, a K(w,n) , is the fiber of p .

Thus, for i < n=2, the two columns are isomorphie
by the five-lemma, and hence 'i+1(f') = 0. _ 7
We note that for 1_51?*19 *i+1(f 1) = 0 ané '1(F) =0,
and ia‘°°,*i+1(pi)-" 0, and thus.f'*‘{ w1+1(f' 1)_ ? 11+1(?!).?a
trivially an isomorphiasm for i < m~l. We show that with the

H

- - ' 'Y ) .
additional assumption thkat £', ¢ ?‘H(fn_l) > ,ﬁl(pl) is
an isomorphkism, we can prove that g‘(f') = 0 and 'i+1(f') w 0,
and thus we can let f_ = %

‘4 = m=1t I the bottom square of the above diagram the

Fnrtherﬁore, if we consider #% mapping the sequemce of the map ?‘_1 j%
into that of the map p_, our assumbtion gives ua; by the 5-~lemnma, ’ é
that 2%, ¢ w {x) —> w (X‘) is an isomorphism amd hence, by : E

exactness, v, (2') = 0.

i = n: It suffices, by exsctness to show that the map L b

i e e i TrT
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g, .

_ firat map factors into n+1(p ) < w‘+1(¢F F) > " +1(‘71

—

At "+1(X) -— +1(X ) is epi, which is an easy iiagran-chasu

of the diagram; (it is actually a special case of ‘the weak 4-1ennn):

: i
n+2i n-l) —> n+2(pn)
TR ofay 1o o : A ‘
F‘+1 1}{) —x> ﬂ"+1 (x‘) . ‘ )
' id
"n+1(xn-1) —-—=> "n+1(xj_1)
Loy I
“'n-!-l(fn-l) > 'H'n+1(pn) '

So the problem is reduced to finding a particular
lifting £ so that f , : ,“I(fn_l) -—> w‘+1(pn) is an
isemofphism. Our methed will be as follows: first, we will

P

find a likely looking isﬂmorphism of the two groupsy we will
then tind & mapping of X into the fiber F which will "represent

the difference between A and this isomorphismg and finally,

we will'twist" £ by this map, using the principle fiber space

structure induced by s end '7 1

Conaider the map: “’n+1(p ) - > “’n-!-l(yl <——-*r+1(K(‘nl"'1))

The seconi map is an_ isomorphism since P is contractible and the

each map of which is an isomornhisn by lemma 5. Call this nap

1y w1 (Py) > w +1(f 1) Now consider the diagram'

Ho‘(r+1(P )3'!') K> Hom(H +19\T) <'3"' Hn+1(P :'!l') > Hl+1(x I!'ﬂ') '
% '

T £ ‘ e
Hon(w‘"_ ( );Q 2> Hom(H ' n+ 2%) < Hn.ﬂ( Jw)—" ’
1 21 a1 2/1 %ﬁf
n.,,,,(, a1 KCromt 1)) ZoHom(H ) yw) <& B*H(K(wyn41) s)

We will let % be the element of Hn,;l(p-;w) whick e

" taps inte by the above suocesion of Hom of the Hurewicz map and

the universal coefficient map. Simidar notation for other

: homomorphiéms will be used, Thus, for example, Ty = Jg(K(w,n+l)).
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This implies that ‘@ --> ?J(lw), by commutativity énd the definition
of k. We can consider the element of the cohomology group:
Te -2 % (wlgy-wf', ) E€ Hn+1(f 1;g),,and e assert .

that it can he pulled back to H'(X;¢). From the diagram:

+1
’I:é; (XI—].;')K\ . o
n;;(r, pd) I (e

BN (Xw) _
we note that lg - ff*‘EE goes into V(ly) - V(1) in Hn+1(Xn_1;w)
and this = 0 and so the element in quedtion pulls back to some
member of H (X w), which, by theorem 27 of ¢hapter 3, is represeltei
by some continuous fumction g ¢ X ~> F, since the fiher is a
K(w,n). For the definition of \C(K(w,n)) we use the following
map as an identification of w (K(',n)) with w‘+1(f;_l)r
'n(F) <—- - +1(0F F) > g +I£pn) Z> w; each map of which is an

isomorphism. Applying theorem 26 of chapter 3, again, we note that

é\g*“rf-(F) = g2 = (ly = oc ') and hence g, 2 = 1y - w0 £',.
. . . By lemma 2, | Xh - xh-l is a principal fiber upace,;
with composition )/:”Faxh -=>X_. So from the 1ifting £° of £ 1‘
and the map g, we can form a new lifting ¥(gxf')4, which we eall

fn' The erucial lemma that we require im:

6. TLemma- Let & + F/(__ X , then 2%t *n+1(fn-1) —> w(p,)

is the sum £} + (ig) ..

_ Proof: This lemma is just a relativixation of 1lemma 3.

- The proof follews a similar diagram. If Q¢ (6‘41,5?) —> (Mf ,X)

_ n-1
represnets an element of “n+l(fn-l)’ then we have the diagramt
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s
en+lxen+1 4&_? "S‘ 0N (M

— FxX ) ‘
A Fﬁq * n R
en+1 / U ,2r \(M

»X )
\ -n+1 n+l Gv Fh'rn
> ™y qevse (M’{(F RYS €0 Juu (Ml(v vp ) aTk )

Where 1, e Fxxn —_— Xn is the projection, # is the constant map

F o> ;( - pan ) and 4 is the folding map of AvA --> A for any A.

In this diagram, which commutes up to homdtOpy, the

top map represents v(gxf')A@ , and the bottom map represents

.fi:% -‘+_ i‘e “'—-‘. P e g et

Armed with this lemma, we can show that 1' % is an

isomorphism as required. We first consider just what (ig), is.

L |

It fnctors ag_shown!:

| *ae1{py) > a1 (eFF) > 'n+l(p)
2y - (R
'Rn(x) —§*~> w.(F)

t x= 1'% + (ig)y, by the lemma: Hence, .
lcf'*‘ + o (ig),, but the above diagram shows that w (ig),
is just g, @ followed by the map identifying wjll(F) with "'n+1(’n-.1)‘
This, in turn, we know to be equal to ly - e 2¥.. It follows
that o fn* = iy and hence fn* is the isomorphism cna-1 .

The construction is thus completed.

- - - - — - -

1. John Wilnor - On Spaces Having the Homotopy Type of a CW—~Complen,

Trans., AMS . 90 {1959) 272-280.

2. James Stasheff — A Classification Theorem for Fibewe Spaces,

Topology . 2 (1963) 239-248. }




LTS N O

-Topology® Princeton University Press Princeton, New Jersey 1952, N

Bibliography
The following books have been referred to in the taxt by the
name of the author(s).

1+ Eilenberg, S. and Steenrod, N, “"Foundations of Algebraic

2. Hu, 8, "Homotopy Theory" Academic Press Inc. New York,
New York 19050.

3. Hurewiex, W. and Wallman, H.  "Dimemaiom Theory"

- Princeton University Press Princeton, New Jersey 1041,

4. Kelley, J. "General Topology" D. Van Nostrand Company, Inc.

Princeton, New Jersey 1955.

9« Maclame, S. "Hoemology" Academic Pregss: Imc. New York,

New York 1963,




