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Chap. I : 'CW Complexes ‘ S e

Given two tOpclogioal apaces X and?Yﬁandia“coﬁtinuous
mapping, £.8 A w=> Y, where A is a subset ot X, we cau Iorm

the adjunction- space, adjoining X to Y[by means of f am

followss Consider the disjoint union of Y and X, with the
weak topology (ie. & subset U of XY is open iff"UMX and
UnY are épen in X and Y respectively). The map f‘génerategl
anlequivélence'relation on XuUY: x and x' in A are equivalent.
it #(x) = £{x'), and x is equivalent to y in Y, it.y = £(x),
and x is equivalent to x for each x in XUY. Thé adjunction
space, XtJfY s, 1s the qﬁotient space of XUY determined hy
thié eQuivalence relation. Since, y is-équivalent to y' in Y
It ym y', ¥ —> XUY —> XtJfY is a homeomorphism and undef
this idpgtification we will speak of Y as a subset of Xwu,Y,

f

In which ecase the inclusion map X —> XUY ——> XkaY, if,'is

an extension of the map f.

Ap important example of an adjunction space ig 1o
the mapping cylinder of a map £1 X --> Y, t determines a R
mapping of the subset Xx1 of XxI, by f(x,lj = f(x). Thé
adjunction space XxIu,,Y is called the mapping cylinder of
f, written Hf.Also impertant is the mapping cone of t, ﬂf,
ohtained from the mapning cylinder by smashing Xx0 to a ppint,

ie. ﬂ} a Hr/Xxo, or else as the adjunction space N, = CX\JI,Y

f
where CX is.the cohe'onX, ie. CX = XxI/Xx0.
This method of adjoining spaces to each other via’

continuous maps enahles us to construct a rather general elaas
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cells and spheres. .. -, . .. :
~A CW complex, ,or cell complei-, .introduced by J.H.C.

Whitehead (1), is a union of subspaces: KO-(:iuhm‘KP (: qu%..,

where the space K nlL)&:Z,Kn is given thg weak topology

(ie. U is open if K 122 UAK™ is open in K® for each n),

where the X" are defined inductively as followss K® ig a

discrete set of points, or O-cells. Assuning K" ig defined, -.

Kn+1.is defined by attaching n+l cells to KO by means of . . i:

continuous maps of their boundary spheres. That is, we are .

1

given an index set I™" and for each o 8 1ML Lo have a

continuoué.map of Sg, the n-sphere which bounds the n+l-

n+l

cell e "7, into K", io. £ : 8" o> K™, 11 we let ut
a ) g . a

be the map of the subget kJSE of L)eg+1 (Ueak, disjoint,
union) into K" defined as fd on S:, then we define K*'! .

n+ 1 | B n
((jed )L%Jf K. Equivalently, we can look only at Sa and £

o
and define Kn+1

n »
= LJ ﬁfc, where ﬁfcf\ H}Ut = K i# g % al
with the weak topology ‘on the union, since CS; is homeomorphic

to e:+1 (that the two definitions are equivalent follows fpom
lemma 1, below). To avoid cumbersome notation, we will "nawme"

the image of eg+1 in K g, or if we want to malke expliecit the

dimengion, 0n+1. The inclusion, ia : Pl - g (: K is a

® o> & (we shall write

*

continuous man which extends fc -

& for the image of S" under f o end call it "the houndary of

fn . . n+l _n .
a".)} and is a horeomorphism of e -3 onto g = g. Note

that we will, in general, drop the index from en+1.and s",

1.lemma— The topology of K is the weak topology on

of spaces, namely CW.complexes, out of very simple spaces, namely
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n;;Eronf:.Since.K has the weak topalogy'on%iKn} s it suffices

1to . prave tha theorem for each Kn.‘Th1a we do.inductively,. Since

x° is discrete the theorem is trivial for dimension 0. Assuming

the theorem for dimension n, we prove 1t for dimengion n+1.

Let U (_ such that Ung is open 1n;o,for!each o (C g1

. . . n o, . n  .n+l
and hence by inductive agsumption, UNK ig ¢epen in K°, K
is & quotient space of (\Jen+l)LJ K" and so to prove that
U is open in x*+l it suffices to prove that its inverge Aimage

in this union is open, and since the union is disjoint and with

the weak topology, we neced only prove that the inverse inters -

n+l

‘sectas K" and each e in an open set. Itd. intprsectinn

ooy

with K ig just UnK™ which is open and itd« 1ntersection

with e:+1 is 1 I(Ur\a) which is open since Uf)c is.

In dealing with Cw complexes there are a few 1emmas
about the weak topulogy, which it helps to have at hand.

First, a lemma from general topology:

2. Lemma (Wallace) - If X and Y are topological
spaces, A and B are compact suhsets of X and Y respeet1va1y,
and W is a neighborhood of AxB in the product space XxY,
them there are neighborhoods U of A nnd V of B such that

UsV (W

Proof: An easy eXercige (or see Kelley page 142),

Throughout the following five lemmas, assume that

X =U Aa: with the weak topology, the w's elements of some

index set J.

el
vt
1

v Toa o 0 oy
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finite union of A  's. Hence, if, in addition, the A 's are

linearly-orderpdwby‘inclusioﬁ? then C is cﬁntainéd in some AG;L;

.. - Proot: Assume the contrary, and let x & Cu U " Ad_iz'.
For-each.nJﬂggiﬂz'm é n% intersccts each AG:in a finite T
set and.is hence closedy in X since X iJ TI’ f"\n:% J(n) fhus NEDEN
contains all of the cluséer points of the\sedueﬂce (see

Kelley, page 72), but this intersection is empty contradicting

'theaaésumption that C is.compact. If the A. 's are linearly T

‘ e

ordered by inclusion and C is contained in some tinite unien,

then € is contained in the largest member of the subcollection.

A

4. Lemma— If X" is 'an ‘open or cloged {sulset’ of X, then
the relative tHopdlogy dn XV¥-ig ﬁhe(weﬁk'ﬁopdlggw éiéfX‘FhAﬁg.
Proofs I£:X" ig open Qfeapangosed);dn-ﬁ;athen~1dt~¢

B"ba's subset of X' .intersecting each X'n A in an open (resp.

closed) subset of X'n Augnnd hence of A, and thus B is open

(resp. closed) in X and therefore in X!.

5¢ Lemmaw~ If X! is an open or clogsed subset of X, TR
and £ is a map defined on X' and continuous on each X'r\Aus,w
then f i3 continuous on X!'. S : T

. FProof: Lemma 4 reduces this to the case X' = X, for .

which it is trivial since f’l(V)(lAaza flAu;l(V), where V is

any asubzet of the range of f.

6. Lemma~ If Y ig a loeally compaet, regnlar space
then XxY has the wenk topolngy onf.Aa:xY5 .

Proof: Lvery set open in XxY is certuinly open in

:

the weak tomolorv. Convarsaly  4f UMy ¥ {0 ongn in Aoy

1



for sach a in J, gnd-(xo,yo) € U, we will find neighhorhoods

V.and V' of y, and X respectively, such that vixv (O U.: Assume

x, € ha:,fand'aonsider fy6Y: (xe;y) 87U'%,‘This is certainly

a qeighgorhood-of y, ‘since UYﬂAu%xY isg ?pén in Aa%xY. yo therefore.
has a neighborhood V, which is open, ‘aﬁd-shcﬁﬂthat“vr:isﬂhfdomﬂacf
subbetudf‘%heiagavedneighbdnhood. Then,rxoxvr,(::U and we cen
consider V! ={x 6 X 3 x x V_ C v We.a;sért that V' ig open

in X. It suffices to show that V'n Au: ;g opyn'iﬁ-Aa; éﬁ{ éipcé
v'n"ﬁf’w' = fxB ALy X x v U(\Amx‘f§ and.-: since‘ xx V.

: i
is compacfﬁl%%llows from Wallace's lemma.

e

Te Lemma- If X' is an open or closed subset of X,
and f£ is a map such that on each X'fiﬂuj, the restriction of
ff iz a homotopy, theQ ft is a homotopy Qn'X‘.

Proof: This follows from lemmas 5 and 6 with ¥ = I,

the unit interval.

The restriction in 1;mma 3, to the case where J ig
countahle is nécéssary in general. Tor example, the unit interval,
I, ié a compact space, but because it is first countable, its

. topology is the weak topology on cﬁuntable sels. For if' F were
cloged in the weak topology and not in the usual tépology, then
there would be n snquence in F converging to a point of the
complement, which there cannot he since the two tOpélogies

cartainly agree on countable sets. owever, for CW complexes

we will be able to improve upon lemma 3. Firet, an important

definition:
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Definition= Aisubset L of K is called a subcomplex of

K, if L {e.a union 'of . cells, ¢, of K and.such that if ¢ C 1,
and g meets c'ua',fthenQG‘ (T L. Equivalently, L is a union
of open cells g -~ §, such that if g - ¢ (C L, then & (_ L.

: ;

Equivalently, L is a Cwacomplex guch thai IE (::IE_and such

that ¢ ( L implies .,that f Qgh&S‘n CW complex is proved below.)

For each n, X' = ZU ( K ; dim o {‘nz. the n-skéleﬁon
of K is a subcomplex of . Note that if L is a subcomplex of
K, tgen LnK® = L, We prove more generally that if L and L'
are subcomplexes of K, then LnL' = g ¢ (i-Lr\L‘i . The
‘set on the right is certainly a subcomp}ex and certainly =
subset of LAL'. But if x 8 LNL!', then x fsnangélement of

a uniqué open: céll. -y and cofisequendly o (C LALY, and we

have the opposite inclusien. From this we can prove that Lo

a subcomplex of K is a closed subset of X. By induction en

the slceletona: Lo K% is certainly oloselin the discrete set.. . -

.+l

K%, Agsume LNK" s closed, we prove that LN K n+l

= L T e

n+l

is closed in K" ", It suffices to prove, as in lemma 1,

that the inverse image of L1 under 10, for ¢ an R

n+l-cell, is cloged in "1, 1 Ln+lr\ o-5 # 8, then

gaince L“+1 is a union of open cells, ¢ (:_Ln+1

and the
inversc‘under id is en+¥. Otherwise, Ln+1 intersects o

as a subset of & which.is contained in Kﬁ and hence

1d—i(L“+1) = id-l(Ln), which is closed since L” ig closed

by inductive hypothesis. In particular, each K" is elosed in K.
1t follows thuf gach suhcomplex L, ﬁna, by lemma 4, the weak

:

topology on cells, and is consequently, a CW complex itself.




8, Lemma~ If C is a compact subset of the CW complex

k, then C deetanoénlycd finiterndmhér.ofndpancéellsyed ecdi =,
Proof: By lemma 3, € (: K" for some n. Assume. the

theorem fails for C,.ahd-let N be the smallest.positive
integer such that the theorem fails for £NK'. We assert that
c intérsectﬁ an infinité number of open N-cells, since otherwise
the theorem, since it fails for N, would fail for N-L. But

‘picging a point from each such open Necell we get an infinite
dis;reté éubstt of Cr\KN, which ié imﬁossible since C-is

compact and KN is closed. (Note: C (: K" implies o C (: &?, m > n.)

9. Lemma~ Let X' he open or 'closed in K, ‘and let
£ (resp. ft) be a continuous map {resp. a homotopf) defined

on X'n K™ £ ( £, ) extends to X'n K™™! iff cach of the

maps ffa ( ftfd ) defined on SnF\fG—I(X'),extends to enflr\idnl(xt).
- Proofs Since }d is a quotient map and a homeomorphiam

en+1_sn

on , ffd extends as stated, iff fl1gNX' extends to g/ X',

Since & is the boundary of g, in kn+13 these extensions define

continuous maps on each gMX', which is continuous by lemma 5. ?

On the other hand, if f extends to K‘f\Kn+1, then it certainly

n+1

extends to each gnX', for ¢ in K* ~. Similarly for 1, using

lemma 7, instead of lemma 5.

Armed with this extension lomma, we can examine
the character of CW complexes as topological spaces. As is

to be expected from their construction, they satdasfy rather

strong normality conditions.




710.Theorem1nAjCW_complexr K, as a topological space is a

ﬁETfectly normal and completely normal Hausdorff space.

Note. A topolog1ca1 space is perfectly normal e
if it is normal and if every closed subset is a G{‘, e. .
a countable_interaection of open sets, or equivalently,hwldzg‘
zero-set, ie. the set of seroes of some continuous redle ... o

valued functien. A;topological space is completely normal . ...

if every subspace is normal or equivalently if every pair. - . -
A

'l

of subsets A and B such that A "NB = ¢ and B  NA = d,
bhe separatéd by disjoint open neighhorhoodsy or equivalently, i oran
it every opeﬁ guhapace is normal. T

Proof: Since K is obviously Tl' normality implies

that K is Hausdorff, g0 it suffices to prove the first two ;

.t

conditions. Given U an open subset of K, andIA and B disjoint,
relatively closed subsets of U, we will construct a continuous
roal-valued function, £ : U ——> R, such that £(B) = 1 and
the zero-sect of f is précisely A, This will prove the two . ...
normality recuirements. We ponstruct f, inductively on the |
alceletons. Let f(Uf\Kof\A) = 0 and f(Ur\KO—A)'n 1. This defines:
¢ on UnK®, Assume f is defined with the required properties ; g
on UnK"; wo wish to extend f to U K™+, By lemma 0, this
rednces to the problem of extending maps in DBuclidean space,ie.
let U' = iﬂ"l(‘U), Al = 10‘1(1\), B! = 1';1(13), and §' = U'AS™
lwe have a map f' defined on S', whéch is 1 on B'nS' and has
ns zero-set A'MS8', and we want to extend f!' to a similar map
defined on U'. A'(JS' is a closédrsubset of the metric space U',

e 4 . ) . o0 :
and it is hence a Ggp , ANUS' = (\m“o Gm. Define £ on the
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of simpiigial complexess ;

_theorem, and - the féﬁﬁired functidﬁ'iS'f!extenSi°n.-'j{: fi/Qm
m

. e . P T - i
[ 5 “-l-“ Y EARS T oot . - _-\‘5“‘
4

Next_We generalize an important property of suhcomplexes

g L0 .
+

FN

11. Theovem~ If L is a sgbcém‘pl.)ex of & CW complex K,

PREa

" and U is an ‘open neighborﬂédd'of‘L,'fhen“thgre'ekisfé an open

ﬁéighborhood-v of L in U, such that L is a strong defprmation
- - - W E‘.- ‘l‘ -
retract of V , by a homotopy which induces a strong deformation

b

retraction of V.

Proof, ‘We define, induct1Ve1y on skeletnns, the following:
Open set A ,'L C: vt c: v c: Unk® , with v open in K" § with Vn—lvn{\xn—k

homotopy f:, a strong deformation retraction homotopy of

VT onto L2 V™7 and thus, "

ll
v? onto LnLJVn_P: with the homotopy rel LnL)Vn"r_

: S on
= lvn- and fﬁ a retraction of
and which
induces a homotopy of V', ie. Image fil vt (C v '
For n = 0, let V° = L° and £ = 1;o0.
t L
Assuming that everything is defined for n, we attempt

the inductive step. By lemma 9, we reduce the question of

oF EXTENDING
extending everything to the question redwees to one n+l cell

g, aniktﬁ%n ff%&’hack by 1d to en+1. id_l(U) is a neighborhood

of idwl(vnf) and since ™! is compact, we have that there

exists 8 < d(id-l(Vn-),enﬂ,l—ia—l(U)), and § > 0. If ¢ is the

conter of en+1' and r en+1—c --> §" is radial prejection,

which is 8 retraction, We can define Vn+lflu =

idz x ¥ fdr(x) ¢ vV and d(x,r(x)) < B(U)E . This defines

+1 .
v? since for ¢ in L, Vn+1r\a mest equal g. vy open

Kn+1

in , and for ¢ not in L, i

AN g=i z’x : fcr(x) g v




n+1 n+1
+ | V

For g not in L, f

Thia altays has.. 1magu in vyt

o (8) =1 (tr(1 "M + (1-t)1 -1(;))

hecause, since r(x), and, x lie

on a line.with c, 80 does -the line segment between them.'This

completes our inductive. conqtructlnn. o
Let VauUV? » which is open ié K. and has closure

U V"_, since (U VINE® = V™ ana (U V)™ o V' . For the .

homotopy, we defines

Ly~ Cog b g1/t
\I | fgn-g-]t 1 1,/‘2!14'115" t 51/21'!
Fj on K", o o 1/2"% ¢ <r/e™t
1,2
fzt_lflfl..., I/2¢ ¢ <1

TR Fn is certainly cnntlnuous on K and Fn = lyn— and

_F? - fffl...fl,whlch is a retraction of V' onto L, which

"is all right on Vnu,And furthermore, since’f:j Vk— = lvk— it

k < n, we bave that Fy} V' w Ft, and hence tho Fi's define

a homotopy F, by lemma 7, on V and also on V.

Given two complexes, K and L, we can consider the

tonological snace KxL. In general, thig need not be a CW-

complex. Mowever, we can define a comnlex Kx L, byies iw

R SN

giving' thepioduct; instepd of the- produst topology,the -ilfy ' "%
Wenkitopnlogyhon-thepprodﬁatshofinéllsgudeﬂ“thp ﬁéakliﬁpoldgy
anpthe sei | dxo) —for G, mhd §%rcells of K andil rekpestidely.
As}ushal,hke define -the’slceloton -inductively. Let?foc¥)9 LENER

and L® are. Assume we

(O O . . . 0
K"xL”, which is discrete since K

have defined (KXOL)H—I, we define (KX'CL)n as followa:
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Pirst, the index set: In LJ e,

ke L =Y prgen I I ¢ For (040")
K- g we attach’ the n—cell e x e1 by the map defined on- ' -

Si -1

i x 1

X Bj\J e X Sj 1-"t).s the : St

union of maps: PR R iK x fL = h gt We-see.thét this

the'boundary, ‘that is on

is a CW complex whlch is preclsely the ﬁroduct of K and L et
with the weak tonology on the productsof celle. We obviously
can always define a natural, continuous.bijection KxcL -—> KxL*
but tﬁis map may ndﬁ'aiways bhe a.homgomorphisﬁ; o A

b 12~-Lemma~ A CW complex ié cloaure~finite, that {s,-f‘“
every finite collection 6f closed cells of K is contained in
some finite subcomplex of K. )

Proof‘ It o 0! 1%, i; such a finite f&miiy,'assumé“f
the indexing is such that 1 < j implies dim oy - < dim dj We
define thd complex inductively uging dim am”steps‘ It dim on =
n, then consider all of the n-l cells g such that g-3 meets
some &J of thg collection. All of these, plus our original
collection fo?ms a larger collection wHich is s8till finite hy

lemma 8. Add all the open n-2 cclls which meet the houndpry

of, some memher of the new c¢ollection. After n steps thas

.process yields the requlrad finite subcomnlex.

\

13, Theorcm~ The. following conditions on K are-equlvalent.
a- K .is locally compact,
b each point‘of K has a neighborhood which is a union
of finitely many closed cells,
¢c— each point of K is an interior point of some finite
subedmplex,

d~ each point of K has a neighborhood which meets only




]

v o+ Proofy a) ~=>1b)'It C is a compact neighborhood of x
then by lemma 8, C meets only . finitely many open cells, o= Je
The union of these c's!must contain € and is hence a neighhorhood

of_i. b)—-> c) Immedlate from lemma 12,

o)--> a) A flnlte eomplex is l flnite union of compnasct

wa iy

sets and hence compact.

i‘— el
a)-—> a) I1f U is an ®open neighhorhood of x such that

—.¢S compact then U meats only’ f1n1tely many open cells, and
it U meets a cloaed cell c; then it meets =0 ﬂnd hence U meets
o-a, and thus U meets only flnltelv many elosed cells.

a)--> h) Obvlous. ;

If K satiasfies the cnndltlons of the prev1ous theorem

\
Y

it is callod locally flnlte.

14. Theorem- If X and L are CW complexos and L im

1ocally finite; then KxL is homeomornhlc to Kx L and hence
KxL is a CW-complex.

Proof By lemwma 6, KrL has the Weak tOpology on
faiL t g a cell of K§. But by another application of lemﬁa 8,
gince each g is compact, each oxL haa the weak topology on
¢ oxa' ¢ ' a cell of L f. Hence, KxL has the weak topnlogy
on$ oxo'é F
15, Corollary~ 1f K is a CW complex and I is the

unit interval, then KxI is a CW complex.

Just as CW complexes have certain preferred subspacos,
namely subcomnlexes, there are also certain prefereed maps,

called cellular maps. A continuous map £ ¢ K —-> L is called

T, Pl ksl d
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two cellular maps 38 a cellular map. We will ‘see many examples

of why cellular maps are interesting. As one example, .we have:

o
oo

163 Theorem— If f 2 K'-~> L is a cellular map and

al ' 4 ’ . ti

K'rlﬂ a suhcomplex of K then KlJfL is 8 CW comnlex.

‘Proof: we will define 1nduct1vely (K um)

N that 1+, equals " uﬂK,nL . Em: n=0, let (Kqu)"

(K K‘O)L;L . For n, we let IK “(Iy“IKt)‘J I

-l =1
an}l, it 3 f(n\JL --> Kn fl\xg‘ then let f e jf for each

g in the index set. And #for each g in this index set)c-oir R

'is involved .#n no, non-trivial identifications. We

now have to prove homeomorphie the two apaces: Kn:LJflK,n Ln
and (KLJfL) = (cells)u K"~ lka|K1n-1 L"!. There are obvious
maps of K® and L® into (KkaLQn; which factor through the

adjunction space. The inverse map is the identity on the nel

skeleton, and is jn on each of the attached cells.

It remuins to prove that KkaL has the weak t0p010gy

— - : N TAETS I

on thp skeletons. But if j is the progectlon from KiJL then
if A is a subset ot Kg) L Wh1ch 1ntersocts (K\JfL) in a’
closed set for each n, then j~1(A) M (K*UL") = FHa Ao L)™

(KnL)Ln)'u jnnl(Afﬁ(K\JfL)n), which is cloged in K®uL™ since

jn is continuous there. Hence j—l(A) is closed in KJL and hence

A is closed in K\JfL.

17. Corollary- If £ ; K —~—> 1, isgr’'a cellular map
then the mapping cylinder Mf and the mapping cone ﬁf are

CW complexes.

i,




T

Iroaf:: By corollary 15, KxI is a CW compléx. We note
that Kx0 ‘and Kx1 are. subcomplexes. Since f is cellular, the
mappir{g £ 1(x-1'-..> L, by £'(x,1) = f(x) .{s also. If we
take a CW comple; conslstlng of a alngle zero—cell e’ s then
the mapp1ug of KxO.-> e® is also cellular. Mfﬁ- KxI\Jf L
is a CW complex by theorem 186, and ﬁé =AMfthg -}s glso a

cwW oamplex by theorem 16.

\ : We note that i2'K* and L! Are subcomplexes of- “‘“iﬁ'

[ANH1

K and L in Theorem 16 then the map le"LJL‘ is a cellular map.

We also note that the image of a cellular map need not he a

gubconmplex of the range complex; o o *':~-» oo, e

A'éellular map of Sl.into itself,
v .We;call.a map h-: K' wu> K a subdivision- of ‘K. if-
h is a hompomorphism and for each open coll gliim gt of K' LV
hig' - ') is centained in some, necessarily unique, open

cell of X, g - §. Since h is a homeomorphiam,'it'folloﬁs that

dimension ¢ < dimension g. From this we can prove that

n~t $ K ==> XK' i3 a cellular mapy hy induection on the B

akeletons. For K~ #, the result isg trivial. It ¢ 1ig a T

cell of K“; then by inductive hypothesis h“}(&) is in R

kPl and so it suffices to show that h_](g - &) is‘in'Kp.
If not then this set meets some o!'™ .. gim for m > n and
hence h{g'™ . &1m ) meets and is thus bonﬁained in g ~ 5,

which is impossible it m > n. Thisg works for the case n = 0

- A

¥ra way
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. An ‘application of the use of subdivisions ia given '

in tﬁeufolluwing result. . .
a7 -..' | o Ty a0 P . v
18. Theorem- A cw complex is locally contractible

2 AT ke A
LI SRR

and hence 1ocally pathwise connectad.

[

Proqf (supgested by D. Stone) By theorem@ 11 it

x is any point of the ccmplex K, it suffices to flnd a suhdiviaion
. Ccf Thionent]
. of K such that x is a zero—cell of the subd1vzsioanThls we prove

' by‘inductlon on the d1men31on of the open cell g - o, containing
X. Let the dlmension ot g = n. | |
n=0; x is already a ZPPO—Cell-
net: Let K'© o« K°%U x  and let o3 X s(IKfo)u{cn,cg where
r (o) =t (0) and f_ ﬁl) a x, gﬁd £ (0) = x and fcs(l) = 15(1). The map
h : K ‘1 — k¥ is obvious. We shall éing that this siffices;
Aésuming the resulﬁ for n-l, we prove it for n { >1 ):

It suffices to find a subdivision for K" with the required

property, since whenever h 3 K' —=> X" is a.sﬁBdivision,'we‘

can always oxtend this to a subdivision h': K% --> g1 where

K'"" = K', by using the same index set 1™ and for each o,

n _ Sn-l

using the attaching map h—lt . Let y = i-l(x) g e and

lot P be a'line]oxnlnq y to.some point of Sian . Since the
ERSOI
v gomposition of two suhdivisions is a subdivision, the inductive

hypothesis implies that we can assume that fd(P(l)) is a zero~

cell of K. Lot K'© = K°Ux and K'! = 1tui P, and so on so that

Coenel onal -
K w KU 5 P Let S™F be piven a metric d, so that tho
distonce from the point P(1), considered as the 'south pole,

each point of nel
tof the equator is ¥, and the distance from any point of &

to P(1) is 1ess than 1. Let k Sn"1 — Sn'LLlP, be a map

O rarmenr

T LA




ig just.a relative homeomorphism of ei"lrmod the.equator, onto

™1 mod ‘P{1). This extends to a relative homeomorphism,

k3 (e",8"1) —> (o®,5™ %0 P). Attach all of the'n colls to

K' just as they were attached to K exeept for g. For o we substitote

a new n-cell ¢! which is attached hy the compdsite map$

gl Ky gl p £oimio> g1 Kn"liicP. The only remaining

question is how to define h.on o'~3', since its definition is
immediate anywhere else iﬁ‘K'n. On g'-g! we define h as
R icT¥° Since f_, is Hy definition the restriction of iqk

this definition is consistent with h on the rest of K'"

19+ Theorem (Hoﬁotopy.Extension Theofem)i Let K
be a CW complex, and L a subcoﬁplex. If 4 é K->X1isga
map into some topalogical sﬁﬁce and h ;3 LxI —-> X is a
homotopy,such that han" £1L, then there exists a homatopy
H 3 KxI ~-> X such that HiLxI = h and K= f. |

Proof: While most of the foflowing proofs can be
done, as befove, ﬁy‘indﬁction 6n the skeletons, we will
nge instead the slightly faster methéd of Zorn’srlemma.

We note that the union of a chain of subcomplexes of a
given complex ié also a subcomnlex, under ofdering by
inclusion, and that the "union" of maps which agree
under restrictions is continuous since'we are dealing ;;?ﬂj
the weak topology on cells.
Let L" he a maximal subcomplex of K containing L such

that h extends to H" having the required properties on L".

g SRR
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"L o= L"g = L0, ie" where n,= dim g. By lemma ¢, this: .

We assert that L":is :in faect K, for if it were not; then let:g

be a cell of minimum dimension which is not - in L", Let . -

T

f
reduces the problem of extending the homotepy E" ‘to the 7:r u

problem of'axtending the‘homotOPy H“(fgél)r $hlyy ooxs
to a homotopy on e, B, such that Eu'éfid. Thus, we haver iz

reduced the problem to the homotopy extension theorem for

.siTplicial complexes. (See Mu p. 14, or Hilton and Wylie p: 83.)

]

An example of the uses of the homotopy exten31on theorem

"(though the follouing is actually just the simplicial VPrsion)

20. mema- ' gn-1

-ﬂ> X exfendq +o a map of
T > X it f is homotopic to a consfant map.
Proof: If X Sn_lxI ~> X is the homotopy of £

with the constant map ¢, #let ¢' be an extension of the

constant map. By the homotopy extension theorem Hl,is an

n

extension of f. Conversely, if f extends to f' : e" —--> X

then, using vector space notation, H(x,t) = £'(#x) is a o

homotopy of £ to a constant map.

Finally, we will prove the cellular approximation

theorem and the Whitchead characterization of homotopy equivalences..

Preliminary to these two results we require certain pemmas,

21, Lemma- Let f : (e“,S“'l) —=> {X,X") where

“w (,X') =0, n > 1, then £ is homotopic, rel 8™ i,

a map into X',
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Proof: . Pick a base point 8, in'Sn"'1

~and let xb;-,;(so).
‘LSiqﬁe 'ﬁ(X,X’,xb) = 0, it follows that there exists a homotopy

h, ¢ (en,ﬁﬁ-l,sa) g-}.(X,X',xa) such that h -= £ and hy = o,

o n o, S : .
. the constant map ef e into X However, we are looking for a

1

- ; .
~homotopy which keeps s fixed. We proceed in, two stepsi

. first, we will define our candidate f' : e" ——> X', which is

n-1

* the required extension of ?15° ~, and then we will .find a

homotqpy, rel s" }, of £ and £,

Cpagtt

xIve’x1 has image in X! and hence by the

;homofoéy extension theorem,‘this extends to a homatopy h' |}

- mapping e"xI ~=> X'. Let £' = h'.. Y
To define the required homotopy we define a

homotoﬁy of the "cylinder" e"xI as shown in the diagram:

A

—

ie. H is doflnpd on (e xI)YO\)(&nhl

xI Ue xl)xI as follows""
" H(x,t,0) = h(x,t), M(x,1,e) = h'(x,1~8) tor x € e” and ?E.;
H(x,t,8) = h(x,t(1-s)) = h'(x,t(1~s)) for x & S""1. Note -

that 1f ¢ = 0 or & = 1, I, S)us“"l - £157t
1)

+ By another
application of the homotony extension theorem we extend

‘N to a map of (ePxI)xI ——> X. Now we verd off the hemotopy ~
of £ and f' by"going ageross the "bottom" and up the fight
"eylinder". The required ﬁnmotony is h" defined:

" H{x,0,2t) 0
h'(x,t) =

<
n(x,2t-1,1) § <t <1

R PR
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.« .22 Theorem— Let K be a OV complex,  then if m >mn 21 .

.ﬂ.n(K’Kn!) ..n ‘O', S A A } T Lo

P A Pronf:-Firstb-ﬁe assume that we havarﬁravedvthat"”ginm,,

“n(1m+1 K" = 0 for all m >n > 1. By the homotopy sequence

.0f the pair, (mel m), we got that ", (h?) ~—> ", (Im+1)

is an onto map, and that L 1(Km) ~—> w l(h +l) has

kernel zero, for m and n as.ahove. We prove inductively-thaﬁsyf

w, (K1) —=> ,n(xmfr) is onto and wh_l(Km) -— (™7 tias

™M1

the two maps fagtor into : (™) -~ wn(Km+r"1) - ,n(Kmfr);

il e -

firat map is the inductive hypotheses map and the second i%
the case r = 1, which we know. We thén_have, by the homotopy
.quuence of the pair (Km+r,Km) that wn(Km+r,Km) = 0. The
proof from this that wn(K,Km) = 0 is just a specéal case of

.  the proof that w, praserves wank direet limitay thus, if

(en n—l’so) RS (K,Km,ko), then hecause f(en) is compact,

. _b m+
lemma 2, imnldes that f renresents an element of "u(K r

for some r > 1, and since ¢lg f i3 zmero in this group, it is |

zero in y_ (K,Km,k ).

To prove that y_ (h"‘H K™ = 0 : lot
m+1

(e",S ,s ) —=> (X k ) represent a typieal alement

ot ™ (K m+1 K" K ) By lemma 8, sincea f(e ) is compact, the .

imago of f ia contained in (U 02+1)y

O i :
i

a finite anhcollection of the index set of K :

K" for { o
Im+ 1

We will sghow that f can be pushed off each n2+1, ie. f is

1
homotopie (qel-Snﬂl) to a map inte Km+l--id (Int e:+l), and
i i

kernel zero, for m 2 n 2 1 and r 2'1» This is immediate since .

and 1(Km) —> L 1(Km+r—1) -—> ™, 1((m+r), in each ecase tha. .,

L)

Kk )

—
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is consequently homotopic to a representative of: L (k™ K ) which

s zero, By induction on the number of collsiin {o.§ we reduce

" the: problen. to pushing f offrég some e?fl. Assume that i (Image f)
does not contain the center of the celloe?+1 "Then if.

m+]1

0
r-:'-ec - canter ——> S m ig radial projectioﬂ, thon
o %

Yoo can define a: hematbpyi t*ﬂffbrhing Kmf=—i (center)ngnio

gr+l

‘-J(&f—& ) rel _Km+1

-(g - ), by deflnlng T, on g —(a ljcenter)
to be r (x) = i (ti (x) + (l t)r(1 -1 (x))). so finally f?-un
we are left with thu quest1on of how :o make sure that f does

not hid id(center)f Con31der @}S)-a closed m+l' cell contained iﬁ.
the interior of e§+1 and contalnlnp the center in itg interior.
Let U (_ o pe defined as U = - 14 (L—-b)) and X'= U with
A=U. nU = boundary U. ic, f:(X,A) ~3> (E,8). The gspace A
heing the boundary of an zpen’sét in " has dimension nw-l
(Hurewicz and Wallman page 46), while § ig a sphere of
dimension m‘which is > n-1, uy hypoth931s. Hence the map - .
d fIA mapping A znto S has an extension g mapping X into
S oby the Hop? ‘extension theorem (Murewicz and Wallman page 146).
£I1X is homotepic toéglx rel A, by the homotopy ht( x) = i (tg(x)
+ (lnt)io_lf(x)). Bectuse thig homotopy is constant on A, it
extends tg a homotopy of f with a map which agrees with ¢

except on X, where it dquala g. Hence, we have succeeded in
pushing f away from the eenter and can consequently push 14
entttely off the eell g, Proceedxnw 1nducf1va1v we obhtain a
homotopv of £ with a map which represents ap element of
Fn(Km,K ), as prom}sed. | |

The above proof ig somewhat streamlined hy the use

of the Hopf extension thearam, 14, N TR
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LMutivated-by the preceding theorem we?definé;rfor

any topological space X, a skeletal decomposition of X ag

' an ascending ‘sequence. of subspaces: X° ( Xl (_ ..;'(:?Xnﬂ(:Q:L.

with the property, that if ‘n <m, then ", (X Xm)‘a 0 {or

equivalentlv by the relative Hurewiczftheorcm i (X Xm) =0
X, K = 0 is ipterpreted to mean ( —> is epi,

ésl&gular homology?) ﬁote that we downot demangog ) F )

X = X". Theorem 22 states that for any CW complex the '

sequenice, K° (T K1 (-.--w (C x* (C ... is a skeletal decomposition

of K. We call a map f of a CW complex into a space with a
given skeletal decomposition cellular if f(Kn) ( X% With
theae definitions we ¢an prove the following general form of -
the cellular approximation tﬁeprem: e

23. Theorem- Let K be a CW complex with subcomplexI,
and let X be a space’with & given skeletal dgcompositioni,xng,
and f : K —> X be a continuous map such that the restriction
T1L is cellular. There exists a map g which is céllular ang

iz such that f is homotonic to g, rel L.

Proof: Let #% . ¢, We will construct induetively

gi+l such that £t gl YL is cellular and hi a homotony

rel K170 1 op #f wign £it1,

By the homoetopy extension theoiem it suffices, given
fi to construct h; on K k)L + The construction of ht
obvious from the definition we have given to the hypothesis
that “O(K,XG) = 0. Agsuming that fi.is defined we nroceed to
define hi. By lemma 9, it suffices to prove that for egach
o of dimension i,.the map fiia : (ei 1"'1) > (X, Xlﬂl) is

homotopic rel si-1 to a map into X' But since i1 (:'Xl,

)1: ‘."_ . t:—-'?,‘

T &
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'i(X,Xi) = 0 and hence the result follows: from lemma 21,

‘e, .Wo- now define g : K «-> X g0 that g Ki_l fi.

g is continuous ‘hecause: e have the wealk topology on skeletongl:mn

Assuming that hi = £l+; and hl o ¢l then -we ‘define- ht so that

1
hy(x) = ‘pi i+l 1(x) for 1/2”’1 Stg 1/? ‘and b (x) = g(x).
Since:on each skeleton these homotopies are eventually constant,
the fact.that we are deallng with the weak topology 1mplles
thg contlnulty of h.

This result has two important corollarieg;

24, Conollafy (Ceilular Approximation Theorem)~ Let

"1 K ~=> K be & continuous map of cell complexes and L be

a subcomnlex of K such that £iIL ig cel!ular, then there exigts
a cellular map g whiech is homotonic to £, rel L.

Proof: As we have seen, Theorem 22 implies that
the skeletons of K' form n skeletal decomposition of K', with

the result by theorem 23.

. a1 -
25. Corollary— Let K be a CW complex,twith L a

subcomplex and let X! he a 3uhspaco of a tOpologlcal space X

such that ,,i(x,x') =0 0<i < n<ow, and £ ; K o> X

! RN

.be a continuous map such that f(Ln) (' X'. Then there exists

& map g such that g(X") (T x' ang g is homotopic to f, rel L.”
| Proof; Letting Xi : Xt for i < n oand xi o x for

i >xn we obtain a skeletal decomnoaition of X {in particular,

it n= o, let x . X' for all 1 ang thv requirement ié

that £(L) (Z X' with the result that g(K) (ZX'), with the

result from theorem 23.
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First some prelim1nar1es. . 7 . o

"We gshall be particularly interes

;- -Using this corollaxy we will prove the Whitehead Theorem.

[}

Ve ahall say that a space A domlnates a space X if there

2
exist maps ¥ and ‘p' A¢7T,X so that p ﬁ ig homotopic to 1g.

Similarly, we shall say that the pair (A A') dominates the

”’JL’(X X') such that

pair (x,Xx4) it there exist maps: (A, A')sjnra

is hoﬁuﬁaﬁic Eg homotopy of maps of palrs) to I(X X')
. : . $

ted in spaées which are dominated

TR

\

by GW comnlpxes.

The key to the preof of the Whitehead theorem is

the use of mapping cylinders,‘fbr which we need one more

lemma.
96. Lemma— If we have a diagram:

P B, Q

win ""IY’ o8 '\'1X

..---_._._.>

_then tRe pair! (Mf,ﬂ) is dominated by the pair (M fz"P) and

the maps restrlcted to X and P are A and ‘A, (Becall that

X is ddentified with Xx0 in M, = XxI Ugf, with £'(x,1) = #(x}.)

Proof (Following J.H.C. Whitehead (2)): Let §,:X —> X

Y _-> Y he homotopies such that S = A, ?1 = 1y and

and ﬂ*t

Do = ¥ "B 7T
rification that they are gsingle~valued to the reader-

e will just give the maps and hemotopy and

leave the ve

This is an casy exercise and implies continuity since we are

dealing with ijdentification topologies.

S ™ Do

JR— . B Al et -
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Let vV 3 ’(Hi}?i) -+-¢>.(Mpf”,l’) be given by 3

v (x,t) = (Ax,2t) 0gtER
Capf Yy % Fgegr o b
P Véi“.tvy "'F'#y' I R . X;'f gY j: 1&.::%-1¢1-
Lét*vf:f(u#fzj,P)’n~> (M,,X) be given by :
e . C el T e e
4 (p,t) = (X'p,2t) 0<tga
” =Y et AP gt
Ve ewa O wemasel o
oy e : S o ieed lan
The map 'Y ¢ (}_-if,X) - (L{f,}{)' is then given hy :
. . ;:“.-..1. T ' _ o - it sETuwing
, o(x,t) = { Alix,4t) 0<t<E '
SR EACE W T T ' :
=Yy gyl AAX F<t<d
. ulil 1 1
Blaad EPYL zstsl
.vluy = p-'}ly

Let“p(s,t) ‘- %((4'—33)1: + 38 - 2), then the homotopy i"ié is given by:
5 (x,8) = ( §,x,(4-08)%) 0 <t < 1/(4238) 7
e Ya(aa Py M) sts
: o (2os)/(Ada) < e
= ysf'Fp(s$t)x - (2-8)/(4-38) <t <Y
BT A A B
One sees by inspection that X = '11.if and ¥, = Y, Farthermore;
we note that S JJX = §e and T = 7 g+ Thus, we actually have
that the triple (Mpf—;\llP"Q) (or triad since there is ne ineluaion)

doninates the triple (Mf!X,Y).
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 27.. Theorem (J,I.C. Whitchead)- If.f & X ==> Yiig

pathwise connected
a. continuous mapping, with X and Yadominated by CW complexes-

K.and L, respectively. If, letting n = max(dimension K,dimension L),

t, wi(X) -—> “i(Y) iz an isomorphism for all i sy §'i <n+ 1,

" then f ia a homotopy equivalence. /.

Note: If n = o, the hypothesis requires that ?, be an
isomorphism on all the homotopy grouns.

Proof: If Ef'is the mapping eylinder of £, i : X -— Mf.

3

? .
the inclusion of X as Xx0, and p : Mf ~=> Y be the projection

p{x,t) = £(x) and p(y) = y for x € X and y € Y, then the following

diagram commutes up to homotopy:

i .

x e Mf

. \}\\3 lP
.Y N

we:élsp note that p is a homotopy equifalence, and hence to prove

" that f is a homotony équifalénce, it suffices to prove‘that i

is a homotopy equivalence.
Agsume that there is a homotopy ht : (Mf,X) - (Mf,X)

such that h_ = 1 and hi, (T X Let h : M, —> X be given by

l

hl’ then ih ='h1,: Hf-—>1Mfis homotopie to Iugyht, but hi

is homotupic to 1y by kt = htIX. We necd only psove the exiaténcé

of such a homotopy. l
Since fy = pyiy, by the above diagram, and since p iéi

A homotopy equivaleénce, our hypothesis implies that-the map

i, Wm(X) - wm(Mp is an isomqrphisw.fér 0 <m SAn+1, and

hence, foom the exact homology wequence of the pair (Mf,X),

LD RA i i
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it followp. that ,m(uf,x) = 0 for 1 < m <-n+l, and trivially
wefhav(a_wo(}-(f,}{) = 0, ascording to the convention which defines

it. [V o i o oo A TR ] Lo . +

. Y /&
By hypothesis we have maps 3 KF?I’X and LF%rfY S
' ! } . '

with-homotnpies;‘g gt X => X and 746 l+ Y ~—> ¥ with 'fén AR,
f'lp 1y, T]Q = u'u, 7 1 = Ly Furthermore, since the dimension
L < n, vwe have, by corollary 25, a homotopy €, ¢ L —=> Mf

w%th‘gﬁo.u jp‘,lwhere j: ¥Y=>7Z is the inc}usion map, and. Rg

)]
We now spend a paragraph pushing the hypotheses a .

little farther by proving, it n < w , that “h+1(Mf9X) = 0.,

By the exact homology séquence,rit guffices to prove that -
w;1+1(x5c\)——i-i"-> w g (M Jis ‘ont§RTUBMNEY € u, we know that
€y bW ~dly = J, but then € up~ P = B %1, - Thus, there

. exiets a homotopy St : Mf _— Mf such that 5;‘= 1M and

§.(4,) (T X. Let v be tho path defined by w(t) =9 (x,) ard

lot w(1) = x;» We mssort thaj,,m_l(x,xl;) > e (Mxg))

composed with yw (M x ) ~Z-=>

n+1(H

f’xo) is onto. Fo:'

it o¢ is a map representing an element of "nfl(Mf’xo)’ then
-1

w cls o is réprosanted hy é}fn which represents an elenment

of "n+l(x’x])° HHowever, w is an igomorphism and hence i,

ﬂh+1(x,x ) wn+1(ﬂf,x1) is onto, and hence “h+l(uf’x’xi)'“ 0,

which, since X is arcwise connected is true for every base point,
Let P = KxIWL (disjeint union). This is a CW complex hy

corollary 15. Let § : P =-> L{}'Lm, be the identification map.

- {Note that Muf\' need not he a CW complex since pf 2! need not

:-(M}Lfﬂ.”

P T Y A S W AT A o S R T O I Ry

be cellular.) Let, v:(}_{f,x) —_— (Mufl”K) — K) -=> (uf,x)
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Let Q = Kx()uK_xluL (_ P and define. Q% t Q —> L{‘,-_

C.{Z(kéo),;" 'Q'}{(k,()), é%(kil)’“ (tﬁ(ktl)! ‘a'nd'q;;kt = Qtﬁka‘ .- '"".'!'i‘ .

for -k '8 K and k%8 Li Note that ¢! = '£|Q, since ¢ = ju' =
V'L, Note -also that ¢ {(Q) Cx Leti-:ing,fxp'd.n Vhor Pk Yo,
the homotopy extension theorem implies/thatn e% has an extension

. —— . + = 1 bt 3 .
Tft. P > Mf Since yi(Q) Ql(Q) (_ X and since the
dimension of P <'n+l, the fact that ,ﬁ(nfx) = 0 for 8 < m < n+2
irnplies, by corollary 25, that there is a homotOpy’q% $ P, me> Mf
] . _ . L
¥ ' = ! . ' H -
(rel Q) such that Yo =Py and Pi(P) (C X. Let 6, + P > M,
be the resultant of‘y% fo}loyeé by’“qu We assert that . . iaiw,
r)Lt = Ot ﬁ-l : Mpf‘l,,'——)h{f is well-defined. Since the pnly
non-trivial identifications made by 4 are on Q, it suffices to
1o ;
exmflin.e OtIQ. '}thQ = '}LDIQ and so we are left with "}bt,lQ = Q%.
Q‘%ﬂhl is obviously well defined. Since the topology of Mpf}}

is the identification topology induced‘by ﬁlthis implies- that

: xt is econtinuous. Moreover 'Xo = vo}{—l = ‘u';{j(-l = ' and

761(Mufﬁﬁ) - V’i# (Mpfﬁ') (_ X. Hence,ﬂﬁtﬂ)gives a homotopy

of vy and a-map inte X, and thus the reguired homotopy ht may .
he defined as the resultant of ‘sl—t followed hy Z%V .

The construction of the homotopy ht would have heen
greatly siwplified if we assumed that X and Y were CW complexes
and threw avay K and L. Assuming n=.max(dimension X, dimension Y).

Then by corollary 24, we could assume f was cellylar, in which

case, by corollary 17, Mf is a CW comnlex, of dimension n+l, so

us saon as we proved that wm(MI,X) =0 0 <m< n+2, the

existence of the required homotopy follows from corollary 25;




e

EEEER ( 28. Corellary - 1¢ X is an arcwise connected space

dominated by a CW complex of dimension n, and wi(X) =0, 1 <1< ntl,
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then X is“contractlble.
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Getda A Proof “The map of X:ints"a point fie- @ zero cell,
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Exawpley-. .. . ... ... : : e

(.

1. Dug te Dowker:  JLet K consist of a collectiom of elosed ens

eells { AL with the newer.of the comtisuom, with & cemmon vertex

B

enﬂmlgt;nggﬁq;st-otugugablocﬁion‘qi,oleaed ene cells{lBJ}

'oﬂ
ij=1,2,00s with & senmonjvebtax_ve. Let K and L have the

weak topology am compact sets, ie. tha Whitehead weak topslegy,

“then Kxl, ff Kx, L.

Preof: Let Ai be indexed by secuemces of imtegers mot

Aequgl to 0, im (11,12,..f§ and let Ai be parametrized d»y ii

with x, = 0 implying x, - B o Similary, let Bj_be parametrized

,by.yj, with Y gorrespending to y3 = 0., Lat Pij = (1/13,1/13) in -

AxBy and 16t P = ?’pij'i . Since POKxB, wip;d, P is slesed

in kaL. However, we aasert that (u’,vo) £ the clesure of P

in ExL. For a mbhd U of u_ is given by ?xi < aﬁf: aa.>k0'§anl
similaxly V of Ve ig given by ij <:b3.}wh3 > Oil. Tﬁel,

let the sequence I = (11,12,... )} be chosem mo that for each

j, Ij > n?x(j,lfbj) and let J be eﬁosen so that J > I/ar o %

Then it is easily seen that pis.ﬁ Uxv.

3_\',;:._‘ ‘. .
g ‘);;E, .
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“get a maximal such G{2¥). and ‘wo!aghept that W - &

{
Appendix ': Paracompactness of CW Complexes '« ¢ & f ' " .

R AT DR B ] ;."tl]‘ui"’s vt

. 'Thle” tl;eorrom ‘,Of Morita (1) that ‘a’ CW '30'-01“!',1 ex-with 'the
weak “topology is a“paracompact topological space, ‘ig an

interesting exercise in point-aset topology.

Poeghooie r
1. :Lenma— If A is a closed suhset‘dfﬁq'parécompact
space X, and ‘U is-a (relativély) open,~tocal}f ‘¥inité cover
of X, then there .eﬁs‘i;s a Yothllyifinifeccollection Gt apént
Bet‘a‘{- Vy : UBUX such that Vynh =T, 0 -
Proof: By Kelley; chap. ‘5, lemma 31, theére oxists

2 neighborhood D, of the diagonal of XxX, such that " IR

the collection of open sets IDIUI : U EUWU % -is 10cally - .

finite. Let Vg = DLUT N (U wX-A). C L e

uan -

<

2. Lemma- If (R %s a ollbitiénnofrclobédrgétn of
atnarhelfspace Xyoand §-U, §,A-6L 3 iscanlocally finite
collection of open sets, then there exists a eollection

3 GA : A B RS of open sets such that A (_ G, (_ GA (_ UA’
and 1f @;(\ N F\G: £ tor a finite subcollection ot & )
1 .

m
then AN ... oA £ 4.

4

Proaf: For subcollections W ot & , let’ e

GOW') = iGA : A € (8% which satisfy the required inclusion

and intersecction conditions. We apply %orn's lemma to

+

‘If not, then let A 8 U8 .fl,(};; +BewWiuf B i BE & _‘w‘f‘

is a locnlly finite collection of closed subsets of X, since
the eonllection of open-gets FUA1'rik‘10£éll}cfinite. Then

Y, the Eol]ention of intergentions ofi-finite subcollections
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‘1oca11y f1n1te cover of A, w1th cach plemant of U an F_

i

L s
is also loeally finite, Hence, A = U, N (X~ ULF 8% Faa = 45%)

ia an open neighhorhood of A, Letting G, be an ppen neighborhood
of A, with GX (:}E defines GQlei A3) which obyiously has all .
the, required properties. i
) . / o
i Lomma (Mdfita)u It A is a cgosed sﬁbqpace of

a paracompact space X, and'bﬁ is a (rolatlvely) open,‘

9

then there_ex1sts a lncally flnite collection of open Fc's

ivU : U 8 Ulguch that VynA = U and if len oy A4

for a finite subcollection of U , then Uip voo Nl # 4.
Proof: By hypothesis, each U =L) F with the pl
Let (V. : U 8%U% he the locally finite collection of lewmna 1.

Lat Gé v ﬁ. Then, inductively, we define, using lemma 2,
b4

_‘i_‘;_..
Gi,U as an open subset of X such that Giel,UfJ ¥y (_ Gi,U (_ Gi,U (_

00 00 N
= e G .
Let Vy = U 463 0= Yia %y
4. ! THedrem-—-Asgume that arvegularjbnoimal space X
1sfthewedk - unidén:ofian inofeasing"geqﬁéncéﬂ:Fﬁn~ufioﬁosed

baracompact sbhsnacesiiThen X ig paracompact.

Proof: Let U be an open cover of X, we will construct’

an open g-locally finite refinement, with the result hy Kelley :
chap. 5, theorem 28.
Since'th% space is comnletely regular, we caﬁ

assume that the elements.of U ape F 's, by poing to a
. o . :

" refinement if necessary. Let th he A (relatiyely) opén

locally finite refinement by F_'s of {UnF : U § UL,
We will construct a locally finite collection of open sets,ﬂ?“n
of X, refiving wn , and such that iV:an s vV Gﬂcwngu UUMH'

’\
[ -

o closed.

T
AT

e

iy

=

T A ] e T T e DD
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Congider ‘V* (since we are dealing with a fixed‘U~£, wa
drop the subscript). We will construct simultandously, ¥ and
a sequence ‘-LJ‘{: ', with each Wr ‘an open .cover of F ... which
Ptests" the ldcal_fihiteneés.of P there; ie.;chh memeber of
QAfL-intersects onl&'finitely many membe&s of VA,

Let V" =%, and let WP be a locally finite,
EelatiVely open cover of Fn,-hy Fo's, each member of which
intersects ad most finitely mﬁny members of V°. We can
take the union of the two collections and apply lemma 3, X = F

n+1°?
and separato out again to define totally finite oollectluns

' 1 T 0
' U g + r = U
B of open F in F 1) F 3 and?d‘ such shat GUU nF

ﬂhd'ldq'i n Fn = ?J‘g (where, for a collection Czr of sets

we define X0 A =i BpA ; B ‘ﬁ &}) Furthermbre, b!} the
sebond’ ¢onditién oﬁvlemﬁd E,_?nhyleméntfnf’%d\érigté;éegtsnch.
ah.element of UL iff'it‘intnésects theicotrresponding element
ot AU,

Thus by induction, we cénstruct collections
fﬂ?r and 7LL?\: (s é r) of sets wﬂich nre open Fd's Ofan+r
and sneh that U ' n Fn+r—-1' = YT 4 ‘w‘: n Fn+r-1 =‘w‘:"1 (s < r)
and such that asach element of 2% ; intersects an element of 5%
iff it intersects the corresponding element of‘tWr_l, u&‘g“{rr1)y,
gnd, finally, such that ouch-elgMQnt~ofv?01§ interscets only -
finitely many members of ar F

: *
3
“FhugRor V & » there is a sequcnce EVri with vF open

“in B, oand Via Fopy = vl 80 1ot ¥ oy V) a Uy, where

U g %{ whiech contains V. Since V¥ 0o F = V! t\U nP
+
and irs henece open in F e ¥ is open in X since X has the

weall topoloy on the wnion. Lot 4% a ¢V v eve.

A

T
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To prove that “~ is locally finite, we use the <°,
teaf collections. If x € P oo then let x € WOSTAfi. There
. Wk e il r+i ia ood=l
is a sequence ZN 5 with W @‘h?r , and W'nN Fn+r+i—1 W,
Let asJiwl, and és,ahnve,'w is apen in X,'qnd'iSTthus*an
open neighhorhood of 'x, and if W'er'# #, then for gome i,
sutficiently large, WA V'™ £ ¢ which by construction
. . Q_ T A
impliés that Wa VvV £ ﬂ, and this is only the case for a

finite numher of V's.
3

This completes the proof of the first keystone of

of the result we want. For‘the_seéond, we congider f : A --> Y

£

with A a closed subsnace of X, and we form the adjunction

Lot iy
space X!JfY, by the obvious quetient map ﬁ : XY > XtJfY. '

1

5. Theorem - If X and Y are peraéompact,:thdnr -~ f

fY'isﬂPﬁ¥ﬂ¢meaEt-pY fo e Yo di b - 0 Tnn e Cniaere neh,
v

3
Proot: complete regnlarity : For a point x in XU,y

t
and a disjoint closed set B, we haye two cases: 1) x & ﬂ(X—A)-
In thias case we find a continunous function g : X —-> I,
which is 1 at x and is 0 on Av{{~}(B) nX), Wy complete
reqularity of X, The map XUY --> I yhich is # on X and 0 on Y
is ohviously consistent with the identification of ﬂ and hdénce
defines the required map. ii) x B K(I)- Define g : ¥ —--> 1
which is 1 at x and 0 on ﬂ“l(B)n Y. On the c¢losed subset
Au(ﬁ_l(B)r1X) we define the continuous function to I, whieh is
éf on A and ¢ on A‘I(B)r\K. Ny the Tietée'extenéion theorem
this extends to a continnous -function g! ; ¥ —-> I and the
map XOUY --> 1 whi;h is g' on X and g on Y is obviocusly consistent

with thoe identification of 4 and hence dofines the reaqurirved map.

£




This prOVeétthathlJfY.isfoompletqu regular and, :a fortiord,:

regular,
L. i"guie‘;‘; ' M"\flh"f de ey A B »y!él‘ Y omarataan .
Now given an open cover QL of \ ufY Identify Y -
Fesai: frods ER TR R L AN ine g ny vy this
w1th the closed suhset of X u Y ﬁ(Y) QA11Y has an open
. U "’ st -4"' LS ERCMItE "‘ ?' j - - w"» T 'f-'il E") é;‘ i3 '~‘I*'l".'-‘f,"
(1n Y), loeally finite refinnment W y With each element of
: rorio owenat L4, o b ia
1} an F since Y ia parncompact f'lq)' ﬁ—qu‘ , is a
' Y oan "\i' 1 N E TR \‘—-"';3.!’) %’ hi,
(relatlvplv) open locilly flnltn cover of A by ' 's. Let
£l i it ,vu.,*“i«n

QAP.b an Open lo&aily fxglte covgr of Y, by P 's sugh that'-

u;éh ;ember Af‘ifdéeéés unly a fiélte numher of niemen{; ofliﬁ

ﬁf i;;@nfé,:ﬁeﬂggﬁ find locally finite col1ectioﬁslof open

sete U and W, of X, such that Wn A = 171 D% ang 22t ah = 271950
and an element of &' mects an element of W' iff the corresponding

elements ot ¥ and 2J' neet, and we may ohviocusly assume that

QJ" reflnc¢ 'a 2L . For V G“U‘ or W 6?& ‘assume that AARE B 2l
b i"L N

or W' € P such that Vie A = 1(V) and W' oA = f"l(W) and

n for: V
then let ¥ = ,&(v'u?‘) and W = 3(\.%; N.{%: vevi is an

open colleeticn in XtJfY and we gee Lhat it is locally finite

by teating with the W's, finally, this collection refines & ;
and covers A{Y). B = X U g71qx i, . cloged subset of X disjoint
from A. By naracompactneas of X, we can find a locally finite
collection Qj of open sets of X, which i) coversB, ii) are

each contained in X-A, iii) vefines ﬁ"lix,. Yu X s the
required locally finite refincment of U .

]

8. Corollary- Lvery CW complex is paracompact in

the wealt topology.

Proof: Let K he a CW complax. K° i discrete anl hence

b

paracompact. K" iy an adjunction épnce of X1 with a disjoint

union of n-calls and Yanea 70 : e a b e T e

ISP E U e e e
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- It is possible to strengthen this sorollary somewhat:

7. EQQoreg - Evprf aubspace of & CW complex is parasompact.
. Proof' It ie easily seen that it suffices to prove this
- fop. apeu subapngeso If U i3 an .open subspace of K then sinee
K is perﬁertly 20rmal (L theorem 10), U is an P 4o Soiip
henca an union of an aacending sequence %F { 0f eloged subsets of K,
. and sincq K is normal We oan assume that F ( Int F +1° It follows
that U has the weak topokogy on “the union and hencoa U is para-

compact by theoren 4.
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1. The cl&ﬂl“w o Co . e ety AN

Pxopc 1. - Iﬂ g 8 E ﬁ--) K, &lq L is the !!&11!!‘&-
subcsmplex of X coatainilg !(A),.them L,is Rinite omd 5~

dominates A. : ‘ " e S

Prop. 2. « That L ie coumtable followe frem the ..
closure finiteness of K, together with the lemma that &

Lindoltf subspace of a CW complex K meets omly cauntably

., many oper cells. The proo! of this is analogous to the

2, The class L™,
Theorem 2. {e8) <-—> (d) : To prove that the open

cover U is lecally finite, let V = lx ;%) i- Max .. Erg .

It x 8 K, then %y Haxlj‘ix) - ‘;,l,(y)\ < Mit(-Jle*,H.ax*f#xl) ,,}i,lulaxﬂr x,(y)) '

is a meighborhood of x and if it imtersects U ,them x § V
Simce (V.5 is easily seem to be point fimite the result

follows.

Lenma 2. Te prove that Zfl-!in( 3",,?\) is a .continnous

fumctioen, let (x A ) be a net converging to (x,y) and let J

be the finite set of vert-ieea at whioh eaeh x c;' y hn a non-—noro

baryecentric ceordimate. Simce M( Svy f‘/) is. eontiunoua

we need omly check that M-J.uig(gv \]{) uww o

2: J.“il( AN ) = 0. But we have 0 < ?J,Hh(g '7

N

Z. J'S( +2~J,*)f'<_d(xx)*d(y,y)whore.d is the "Illlj

the term we want goea to zero.

L

.. Notes to Jobn, M:Ll\y.um.?q, ,"0n Spaces Havingthe. quotq;gy I’ypg of &

. proof of the lemma im the compact - fimite case. Coivaient

. of abaclute values™ metrie. The right goes to gero and hancqﬁ.ﬂ",‘-

“w‘—'—_m- - .

i e
e
-
o

[
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Ssitows . i .Gombining results of this paper with resulis of

. chaptexr L. of.%the nates, we san preve the -fellowing theorem:

NS

a o+ ow ot 2. Theerem:: Let £ §: X we> ¥ be a sontinuons map,

with X and Y in Q&?, thﬁn»tho.ﬁriai,gytgxxoay)rgfq ,T3Q

‘f=Prootr.By lemna 26, this triad is domindteé by »

{
)

? htfiiép(usgﬂxﬁ;Q)'where P and Q are CW-complexes and g is

& continuous maﬁ g : P -.> Q. g is homotopio te & sellular
Vo . .
mep £y {»y a homatopy £ with g, ™ & let us say) and

e, sPx0,Q) is & CW 4riad by theorem 16 of the Rotes se
1 :
v the result reduces, by theorem 1 of the paper te a

. proof that if g~ g, then_(uz iPx0,0) is komotopy equivalent
. o |
to (n‘ 1Px0,0Q).

1

Let H 3 H‘ — M‘ be defined as ¢

° 1 _

H(q) = 3 g 8&Q

H(p,t)= (p,2¢) o<tk p B P

Hp,t)= gy oy (m) ikt per

Let K.: M —>M_ be defined as :.

] 3 €

K(q) = q q 8 Q
. K(p, t)= (p,2t) ostsk p€F

K(p,t)= g5 4(P) istsr p P

. These are easily seen. te.he,hometopy inverses and
the homotopies can be kept fixed om Px0 and Q. Thus givimg

.. the veguired result.

This generalizes to neads direectly, That is, if
f: ﬂ - ﬁ is a map of n-ads, then we define the mapping
oylinder 3n-ad to be (n;nlﬂ...,un_l,A,B,Al,...,Ah_l,Bv,.,.B‘_l),

where M, is the mapping ecylinder of f : A, --> B,. Since Lenna 28




following gemeralization:

Theorem:: Let £ ¢ L. «-> F be a map 8f m-ads. If
K.and B are im LS, 'th_un Koindm DR, vup wp

Theorem: If (A Aygeoreyd n&l'B) ia :im qh5u+1, then
(A/B;Al/aoﬁl,..., G/BNK ) ds dn R

Proofr If ‘the n+llad has:the homotepy typé'”t”

1
UL -

(KSK.A;HH
(K/L xl/x, NKypeee Ky

_l,h) then the n-ad has the homotopy type of

P

Lo s T o kb B,
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" such a cateéory, c y is?

20—

Chap. II -3 "Homology of CW Complexes ', -

o, e tol . . PR
Lo . . e

In: this ohapter we shall be considering homology

and cohomology theories on several categories. These will

all be categories of pairs of spaces (Y A) with A (T X,
satisfying certain weak restrictions which are required for
homology theory (see Filenberg and Steénrod pages'4.énd 5).““;5
In particular, each such category is closed under the appli&ation
of ‘the restriction functor R : I(X,A) = (A,d) ana it S

f : (X,A) ——> (X',A') then Rt = flA. A homology theory on - =

a) For each integer q, a functor: R ; — G’-‘
where Gi’ is the category of abelian Eroups, ' o SR

b) For each inﬁeger q, & natural transformation ' :
ibq : Hq —— Hq_1°R, with the inde; of ?Dq usually dropned.

These functors and natural transformations satiafy

the following axioms:

i-(Exactness) For each pair (X,A) in &, the sequencet

O (A gy 1t > | (x g) x5 (x A) P i(A,ﬂ)..;

'13 exact where the maps i : (A,f) > (X #) ana j : (X,ﬂ) -

(X,A) are inclusion maps and we write i, for H i, etec.

ti~(Homotopy) If F : (X,A)xI —-> (y,n), P and R, are
all elmments of [o y then Fu* = FT*'
. iii—(Eicision) It U is an open subset of X with
U™ (C Int A, and if (X-U,A-U) ——> (X,A) s admissible, then
1t induces iaomorphisms of the homology pgrouns.
%v—(Dimension) It P ig a apace in é consisting of

a single point, then W (¢ #) 0 42 5 /g




E RS B B

it

=,

' iz‘inducesiiaomorphisms hy excision. On the other hand K

-30=

We will, in general , write Hq(A) for nq(gx,ﬂ).
«t .. ..'For cohomology on »tz , We require:ni"‘uiﬂ
‘¢ + &, ra) For each integer q, a contravariant"fugctor
Hqizwc:-—-w> &. - - -
b) For ¢uch integer q, a natoral transformatxon

D s HY > pitllp,

ey

——

b - e . . 3 '\ . *r .
Satlsfylng fhe duala of the four ax1oms of homoloyy.
tioorae Thant

+

In generalizedk of extraordlnary homology and‘
oohomology theories the dlmen31on axion is dropped. Consequently,
it w111 be of interest to note at what stages the dlmension
axiom is requlred in the proofas of thls ehapter. anolly, it
we speak of a homologv or cohomology theory on a class of
topoloq1ca1 spaces, we shall mean a theory on the category of
pairs of such spaces with the morphisma all continuous maps
of ouch pairs. | | |

First we congider a homology, or cohomology, theory
on open subeets of CW complexes. \

1. Theorem- If'KP and K2 are subcomplexes of a
CW complex K; then the inclusion map, i : (Il,Kr(WK ) —-->
(KlL)K2,K ) induccs isomoxrphisms in each dimension. Consequently;
(K;KI,Kz) is a proper triad.

Proof: Without loss of generality we may assume

that X = X, UK_, X is then a neighborhood of K,. Let V he

1772 I
an open neighborhood of Kl” ag defined in the proof of
theorem 11, and let Ft be the homotopy constructed there.

L ean be factored: (K, K,0Ky)) 11> (v,var,) 2 (1,%,).

¥

" is a stronpg deformation retract of V, and we note that the

deformation P, waa nonatbenat o1 1. T RN P




then so is each point F;‘x). Thus, K1r1K2 is-a strong deformation

retract of VmK,, and in fact, the pair (KI,KFrwﬁz) is a
strong deformation retract of (V,Vr\Kz) and hence i,.

induces isomorphisms by the homotopy sxiom.

2. Theorem— Let K be a CW couwplex with subcomplexes

Kyyee- K, L such that K —LUU Ky and K; K, (._ L for i £ j.

Let L, = K,NL, and let ¥, : (K;,b,)  (X,1) ve bye inclusiona. Then:

i i

. \' : ) Homology case: Ehe homomorphisms k., form an
in$é0£1;§ rcpresentatlon of H*(K L) as a direct sum. {Where
.H* r;presents the graded system of homology groups. )
o b) Cohomology case: The homomornhisms k,* form a
projective representation of H*(K,L) as a direct sum. (Where
I* represents the graded s&stem of cohomology érouns.) | )
- Proof: p=1 : Since K = LLJKI, this follows from tﬁ;arem 1.
| ‘r=2 : By theorem 1, the triad (K;KIU L,K,uL) is
proper. Hence, the maps ki H (KiLJL,L)‘(: (K,L) induce tﬁe
. proper direct sum diagrams by Eilenbefg and Steenrod theorems
I.;4.2 and I.14.2.¢. Furthermore, ki = ki preceded by the
inclusion (Ki,Li) - (KiLJL,L) which induces isomorphisms
by another application of thecorem 1.
Assum%ng the resuit tor r-1,we prove it for r :
Let XK' = LJi:ilKi. By inducfive h&potheﬂis, the maps
(Ki,Li) ﬁf’(K'gJL,L) induee & direct sum, bhut by theh
case for §=2, k and the inclusion (K'uL,L) (T (x,1)-

induce a dircct sum.
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Note  that the. special. cage of thig theovrem where.
L w f is true.without the restrtction to CW complexes,
as Eilenpbeyg and Stcenrod theorems 1.13.2 and I.13.2¢.
Many homology apd;pohompiogy theories;,such:as,singular and”
Cech satisfy the‘fgllowing generalization!of:this theoren

to the inginite case, which we will codify as.a fifth axiomt

v~(Direct Sum) If X = \JiEIXi.(disjoint union,: {. .,

with the weak topology, over some index set I) and the-
Al

inclnsions k; ¢ X, (_ X are all admissible then - = .

the homomorphisms k., form an injective representation

- of H*(X) as a direct.sum._(Dually for cohomology.) :

I

';<¢ -~ ‘We will now consider the rather general.case

of - a homology or eohomology theory on CW pairs,‘that is,

on pairs (K,L) where K'is a CW compbex and L is a subcomplex,
Furthermore, we will require that in addition to the
Eilenherg and Steenrod arioms, this additicn axiom. We

will eventually show, following Milnor (1), that singular
ﬁomology and cohomolagy are characterized on CW pairs hy
these exioms. This ié the smallest category, we will consider,
and.the proof will pgo through for the category of spaces
having the homotopy type of CW complexes. Thus, we will

not he oxplicit until we need to be and prové results

simul tanecansly for the category of CW pairs,lcategory of

CW¥ complexes, ie. pairs (K,L) of CW complexes where L (::K i
but nced not he a subcomplex, and spaces having the homotopy :

type of C¥ couplexes.
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First, we will consider a property which we shall
gshow iéwcloéely'reldted-togthdsdirecﬂ'aum axiom. Let.;'CW'F
complex, K, be the union of an 1ncrea31ng sequence of
snbcomplexes. K ( K ( t: ced Applying B, to this

'sequence we get a dlrect system of proups, and applying
H* we get an inverse system. The ineclusion map k, : K. (- K

i :
induces maps k, TR *(K ) —> F*(K) and k * ¢ H*(K) -_> H*(K )

.-}~
Wﬁ now give deflnltlons of dlrect and inversge limits of
sequences which while slightly dlfferent are equlvalent to
the specinlization to sequences of the usual deflnltions.
.. ; t v,

Deflnltlon- leen a dlrect sequence of proups

- Gl-> G, P> ... the direct limit is defined as _the
cokernel of the map :E: G —-> E: G 5‘which maps g into
g"Pgs ie. d(gljgzx"') = (glsgn"pgl:f"a-puz:"")‘ We will .

-—u-

write this ns G or Lim. G

Deflnltlon- G1ven an inveFse sequenée of groﬁpé
G <Jl Gy < G,... the inverse limit is defined as the
kernel of the map T_[.G. - TTiG. which maps g into o
g=pg,ie. d(gl,p2,...) = (gl-pgq,gq-pgg,...). Ve shall
. write this as G or E:; G.. We will akso require notation;
for the cokernel of this map which we shall wrlte asg
L'(Gi), the first derived functor of the inverse limit.!
fuﬁctor. | |

We note thﬁt the use of the word "functor", abﬁve;fks
justified. Direct and Inverse limits (as well as L') are functors
since maps of direct (or 1nverae) Sequences induce maps of
the direct sum (producf) which commrte with the map & and

‘hence induce limit maps on the kernel or ecobiornel oF 1.

e =

g npd gt

e
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Also we note that .in-the topological cane above we get limit
—_—
maps K _ 3 Lin Hy(K,} ——> H,(K) and K ¢ Hi(llc) —— Lnn (K ).

gt

3.Théorem (Mllnnt)— In the above 31tuation'
co s
a) Homology case- I Lim H (K ) -—> H (K) is
an isomorphism. 7
N ' . N T <_- Mot ey
b) Cohomology case— k™ : HMX) --> Lim Hn(Ki) is
an epimorphism with kernel naturally isomorphic to L‘(Hn'l(Kf))-

Note: In addition to the Eilenberg—Steenrod axioms

this proof requlres axiom v, thnugh we only use it for the

'case when the index set I is countable. Ve do not use axiom iv.

~ Proof: Let L denote the CW comnlex:
k x[d 1]L)K 2[1 2JlJK xL2, 3]LJ... hndﬂlet@ﬁ,nGTvahe“y ﬂ*o;;oﬁs
the union of all of the K, jxli-1,1] with i odd. S1m11ar1y, let .
L2 be the union of all of the '. xli-1, 1] w1th i even.Dach of
L1 und-L2 are CW complexgg_by I.theorem 14, and the fact that
the weak disjoint union of CW conplexes is obviously a CW complex.
L is then a CW coﬁplcx by I.theprem 16 and LI and Lz are subcomplexes.
Tne projection map L —-> K induces isomorphisms of homotopy groups
in all dimensions. This is because the restrictioﬁ to a map

le[O,IMLNKnanrl,n] —_— Kn is-a homotopy equivalgnée and L is

the weak union of the left hand terms, while K is the weak union

of the right-hand terms, and bhecause the homotony groups are
- el

continuous under weak direct limit. Then by Whitehead's theorem

(1.27), applied to ecach component of I.,, we have that the

projection is a homotepy equivalence, Note that cach component

of L is of the form L N Cx[0,00) for C a commonent of XK.




alio bl

‘we cannot amply theorem 1 {our homology theary need not ..

&) Let i, : K, ~-> K;x[ilipithe obvious: fashion. We

consider the triad (L3L1ng)' This triad is proper. While

be defined on all the open subsets of CW complexes), ‘we -

can apply its method to each of the excisions in question,

-and in each c¢ase we note that the naighhorhood V can be chosen

to be a subcomplex of L so that the method of proof of
thearem 1, goes through. In fact cach set K,x[i-1,i] can

be thickened by adding on K, ,xLi-2/2,i-11. Lach of the HLNTE )

-subcomplexes Ll,La and LlﬁL2 can be represented as an injective

‘dirsct sum by the ji*'s by an application of the direct sum

axiom and in the cases of Ll and Lz,‘the homotopy axiom also,;“
eg. Hy(K)) BN, (K,) & 11*(1{5) @ ... ¥M,(%) by Zimmji*.

Using these identifications, we compute : H (L ML) —=>
! ol -

?

H*(Ll)(3 H*(Lz), of the Mayer-Vietoris sequence. If h E'H*(Ki)
thenly(h) = h-ph for i odd and ~h+ph for i even, where

p ¢ M(K;) —> M (X, ,) is induced hy the inclusion map, ie.
W (hl‘,hg,hg,...), - (hl,,ph2+}13,...) @ (~phyrhy,=pho-h,,...}.

It is convenient to precede ¢ by the antomorphism e of
H*(Llr‘\Lg) which multiplies each h, by (_1)“1. We ehuffie
the terms on the right side of the equation te ohtain:

q}“3(h1sh2!h3"‘f) = (hI’hz"phl’ha"phz"")° From this expression

it is obvious that &P has kernel gero and .that the following commutess

T (K) -S> T (x))

l;‘s l o

1, (L,~L,) Yo, (L)) @ M(Lyhe

g ot e = it
43 4 g
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Hence, we have an igomorphism of the cokernel of d, Linm H*(Ki)

" with the aokernel of Y = cokernel of Y which is, by the

1

Mayer-Vietoris sequence, since ay Hés:kerneiLzéro,’H*(L).z?"“g"
Furthermore, this isomorphism followed by the isomorphism

of H (L) and M (K} induced by projection is precigely the 2y
map ku)’ this since di followed by this projeetion is the . .
inelusion ki'

i

' b) As in a) we can caleulate the Mayer-Vietoris ..

map ¥ : M*(Ly) @ H¥(L,) —> H¥ (L A Ly), P ((nyyhg,e o) @ (hy,h,,..0))
= (h1~ph2,—h2+ph2,h8-ph4,.;.) where p is the map induced |
hy‘inalusion p : H*(Ki+l) — H*(Ki)' S0 if @ is the ayto=
morphism of I*(L)AL,) which multiplics the 1% place by (~1)1*1,

we- have, as in n), the commutative diagram:

T oEk(K) —t> T (K ¥

&JT : Tgb . St e
H(L)) @ (L) XE> 1*(L, NL,)
This time, however, the Mayer-Vietoris sequence doesn't break
up into short exact serquences since . need nnf h;'bﬁéoy
However, by exactness we do get a map from H*(L) into
the kernel of d, which is EI% H*ﬂKi), and which, preced;d
by the map induced by the projection of L ~=> K, is just

k% This map is onto as shown in the follewing diagram:




L LY

~3Tem

Lo
0 ——m-> Lim H¥(K,) > T (K, ) .-—-)TH*(Ki)

(m*(L)) 1‘_‘21.:..> 1*(L,) @ II*(L ) EF> II*(L kL

) -
% ,)rk‘)
f

n*(L) o : | TR e

. ‘ n : ‘ 2 L
Since g is onto its image, k™ is -the composite of

H :
Yoy, S1. . i . P : - [

~an onto map and an isomorphism. We also get :that the kernel af
e LI - H M .,\’. i

¢ 4]

k is precisely the kernel of ﬂ. Sincé cpzu identity, the

ngerAVietpnis sequence remaing exact when-we rpplace”\v,,byq;}
o« and & hy &o4 Hence, the kernel of ;{ is the image of
Aeoc which equals the image of 4, Which is isomorphic to

L‘(H*(Ki)), with a lowering of the index by bne, as can be

seen from the diagram:

T at) Lo T ) w10 (K ) > 0
RS I b
1P (1y) @ 10 (L) (1) AL,) A5 Tna < Kexnel {7y —> 0.

This proves b).

P

ﬁnmﬂldgyﬁanﬂvnohoholog? witheut assuming that K and the

Ki's are CW complexes. We only require that the wnion have the
weak topologmy on the sequence. This can either be proved directly
by considering singular simplices or using the previous method
replacing that apnlication of theorem I1.14, by thé Whitehead
theorem that a map which induces {'somorphisms of homotopy

must induce isomdrnhisms of homelogy.

Note 'that theorem 3 implies axiom v, for the - = =i, i3/
special céase of a countable index set. ; S NN AR
The previbas theoref nnnhhenpfnvndn!brtsdnghlnrinn*zjﬂfT'*3»

a8 Ky

.
it - 1 e e e e
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The paradigm case of a complex as an inoreasing union ‘
of a sequance of subcomnlexes ia, of course, the representation

of K asfthe union of skeletons K. 1rL is 'a*subcomplex of K,let‘ﬁnnKngaL.

n

. l‘. i . : . -_1 — — ;_}_ \
£ Lemma- Lot i ¢ (%,5771) > (R FD), o 6 3¢ - I

be the set of attaching maps of the n-cella to EW‘1.<

.t

- ( n'n-l —n .l
a) Homology case~ ie s H*(eo,sd ) —> B (K ,K )

is an injective representation of a direct sum.
b) Cohomology case— 1% H*(ﬁ“;iﬁ"l) -~ H*(eg,Sﬁfl)
ig' a projective representation of a direct product. Co
Proof: Let (E,S) be the disjoint union of the
(32,32_1) with the wealc topology. We will assume that each
'eg is a unit disc with center the origin in some n@dimensional
real vector space and will use vector notation throughout.
Detine i 1 (E,S) —> (K KX"!) so that i!e:: = i_. By the
" additivity axiom, it suffices to show that i induces
isomorphisms.
b et J = K"PU i({x 8 E : x = ty with y € S and t §[},11%),
En—l

and let U= wi(lx &L : x=ty with y 6§ S and t € (2/3,1]%).

J is a closed subset of K" and U is an open subset of K", Turthermore,

Eﬁ‘l ig obviously a deformation retract of J and we have the

diagranm:

.. . — - —1
(B;8) —=2a-> (™, x™) S .
’ (EJATfmkuuu ) Jwtﬁhaﬂqﬁwvj AL L,
‘_'CJ e dant an wr.b% S L A mﬁﬁbﬂh
(X", 5.0) . _
9 uﬁ.al-u\.tghx _,Lg‘ -!-vm.u‘\’ow Oy, LA~

i'(E,s)
Where i':(E,S) - (K“,J) hy x o i(éx). it and i are homotepic
nag maps into (Kn,J) amd i' i8 a homeomorphism onto its image.

Binullr, the iwvare of 1Y 1w o doforantion ret-nel of the

T

B et

T

T e
e

T T T L R O kT et A o -

P P —

A Pt



Since the diagram commutes, the fact that i' : (E,S) «-> Im.i!
is & homeomorphism and hence induces isomorphisms and the .
fact that it is homotop1c to i and hence 1nduce the ‘same map ..

it follows that i 1nduces 1somqrphlsms.

5 Corollary; If ﬁh is the ﬁnsﬁpleéén of EDa cw complex,pair,
a) Homology cage~ then H ( -n"l) = 0 for m ﬂ n
b) Cohomology case—~ then (K" Kn"l) = 0 for m f n.

ﬁ o Proof° This follows from Eilenberg ﬂnd Steenrod

I theorem 16. 4, which proves that X ( & n—l) =0 for m f n,

: f_and theorem 4, or I.thcorem 16.4c and theorem 4 for the

céhomology casé{ These calculations require the dimension
axiom and this is the first time that we have réouired it.
Since the rest of the characterization requires this

corellary, we can no longer dispense with the dimension axiom.

We can now define the Homologica] and cohomological

chain complexes associated with the CY pair (K,L).

Definition~ For a CW pair (X,L)
..;) llomolopgy case— We define the chain complex
C4(K,L) as follows: C (K1) = H_(K*,F™1), with the
houndary 9 : Cn(K,L) = Hn(ﬁ“,ﬁn-l) > Cn_l(K;L) = anl(in"}ﬁn”E)
as the houndary of the triple (Eﬁ,ﬁn-l,ﬁn_a).
h) Cohiomology cnse— We define the cochain

complex C*(K,L} as follows: Cn(K,L) = Hn(i? En_l) with the com

boundary &: ¢™(x,L) = (I, EY) s ™ (x,1) - mvt (L

as the coboundary .af the trinle (Yn+1 Knﬂl).




‘That these actually are chain and cochain complexes

requires the proof that 2P u 0 and §S= 0s But-?g can he

factored’dsa Hn(ﬁniﬁn-l) £%> Hn_llﬁnnl) -—? Hnﬂi(in-l,ﬁp—a) E&)

il

b

- -2 —1a , ‘ ,
N 2(Kn-2) —~>-Hn_n(ﬁ“_ K" 3), which containsg two consccutive

(ﬁn"l,ﬁn-2) whose

“maps of the exact sermence of the pair
compogition is thus 0. 5§ = 0 follows gimilarly. '

Qur immediate-goal is the proof of tﬁe theorem that
homology of the pair (K,L), ie. I, (K,L), is precisely ‘the
homology of the chain complex, ie. H(C*(K,L)) and similarly ..

for cohomology. To this end, a preliminary lemma, and corollaries.

6. Lemna~ For a CW pair (K,L),

a) the homowntphis@ Hq‘ﬁn,L) - Hq‘ﬁp+%i)
induced by inclusion is an isomorphism for q # p,p+1'and
is onto if q = p, and is meno if q = p+l. |

b) the homomorphism HQ?E“%L) ww> HY(E L) induced ;
by inclusion is an isomorphism for g % n,n+l and if onto .

if g = n+l, and is mono if q = n.
Proof: Consider the segquence of the triple

(ﬁn+1,ﬁn,h) with the result from corollary 5.

7. Corollary- For a CW pair (K,L) = =~ . ...y -
a) 1_(F*',1) = 0. ‘
bY¥ R L) = 0. C e e
Proof: From lemma 8, it follows ¥y induction that

B (T,L) & 0 (F77,L) for r = 2,...,n+1 and i (X7,L) =

un(E,L) = 0. Similarly for cohomology.

o -
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8.Lemma~ For a CW pair (X,L)"

{.

1.’ 'a) the homomorphism Hn(ﬁm,L) —_— Hn(K,L)-
induced by inclusion is an isomorphism for m > n. ’ :
o b) the homomorphism H"(X,1L) —> Hn(K L) )
induced bv inclusion ig-an isonorphlsm for m > n.
Proof; First, we prove that If (Rm) N - (K) ;F“éi
induced by inclusion,is an isomorphism. By the exact aeq&énee
of the pair (En;§p+l) and corollary 5, Hh(ﬁm) — Hn(§m+1)
-is an isomorphism. By the result on direct Iimitsfof'seﬁuéhéeé;
theorem 3, and a general result on direct limits (Eilenherg
7and Steenrod VIII theorem 4.13), the inclusion Hn(ﬁm) —
Hn(K) is an isomorphism.
Now the result follows from the ¥five lemma"

applied

to the sequence of the pair (ﬁm,L)s and the pair (K,L) ¢

ML) > W) > B (R > (1) o Hn_,r(i“{)?‘,z,.;.
4 oo ! |
: H(L) —> 1 LK) > (K, L) — thl(L) —> (K)

Dually for oohonoloav

We can now state and prove the following:

i

9. Theorem— For a CW pair (K,L)

a) Homolopy case— H*(K,L) is natdrally isomorphiec to
n(c,(x,L)).

b)'Cohomolngy cage~ H*(K,L

) is naturally isomorphiec

to H(C*(K,L)).




_ Proof: Given all this preliminary wnrk,,tha proof isa
a matter ét looking at a diagram. .

1 . f 1

a) Wi Do (T{.n+1 ...n) Chee v (T{'n-aL) -0

L LIRS - ) n+‘%¢ % nltatagyg el J’

o N_(Bl1) —pn (B,1). 43 @ (@ "“"1) @-> B (@, ),,;‘ -

Yo

P .y.,‘."}

: N R wn+l EEARTE R S 3 N1’ -n-2
Hn(I{,L) <_3I§ Hn(Kl »L) | . U n—-l(K )
‘. 0 1

. v P
ro- . " N o At N

This diagram has exact rows and columns. Ifwzn(K,L),;L> ¢, (KX,L)

is the inclusion map of the cyclés into the chains and o
j

Z (K L) 2> | (C*(K L)) is the projection of the cycles onto .. ., -

the homolopgy group, then the required map is defined by the-
switehback [V 7-&jq*j2zljl;1. We leave tbe the reader the
‘diagram chases that prove this map to be well defined and an

isomorphisé.

. 0
b) ALl goe2y (k") <& K n(K,L)
N
N ] L)
“"1(?‘"1 1) S 1 E,E A (%L - i (E, L)«
Vo 45 = 0 ™ nﬂ*l‘(%“‘,ﬁ“)

1t y : ZM(K,L) -=> ¢™(K,L) and <: Z™(K,L) --> B (c*(X,1)) are
the inelusion and projection of the cncycleq reapectively,
then the switchbaclk of the isomurphlqm is y j*-l J83%- We

again leave the details te the reader.

The isomorphisms of a) and b) are obviousiy natural
ﬁﬁder cellular maps, £ : (K,L) —_—— (K‘,L{) slnce such a map
"projects" either of the ahove diangrams for (X,L)} onte the
corrcaponding one” for (K',L‘) (or vice-versa in the contravariant

erse). For non-cellular maps t, we definc the induced map on

< , PN . L. . Y
- . ! - . B A
shaire oo s i '
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be a céllulaisApproximation of £, ie. let g,: L —=> L' be a
homotOpf with g0=gﬂhnd 2, cellular.-Extend-thigit;-a homoﬁopy
hy with h = f and hy: K --> Ki, then hllL is- cellular and hence
h, is homotopic (r?I L) to g which'is.ccllulaféuénd hence ? is
homotopic by the resultant of these two homotopies to g. Uﬁfﬁftﬁngﬁéiy,
the map of chaina: or ‘cochains induced by the cellular approximation
g, of £, is not well-defined as a funetion of f. The map 0 =~-> 4

0f, 0 —> I, has two ecellular approximations 0 —>,0 and 0 m-S I

and these induce diiféréﬁﬁtﬁéﬁé on; the ‘chain vompleXecs.

. N ey ) S o L )
However, any two such induced maps: give the same: maps on homology

namely the image under our ispmorpliism of f, or f*,_by.the_HomotOPy'axibms

T

‘Now‘consider‘h cw péir (K,L). It is easy to see,
“using lemma 4, that the incluéion maps (Ln,Ln‘l) —
(Kn,Kn-l) -—> (En,ﬁT"l) yield a short exact sequence of chainss

| 0 —> C, (L) ~=> C (K) ~> C (X,L}) ==> 0

~anl cochains: 0 —-> C*(K,L) —=> C*(K) —-> C*(L) ~-> 0.
The exact homology (cr cohomology) seaquence of the short
exact anueﬁce of complexes is teru-hy-term isomorphiec to y
the exact homology sequence {or cohomology sequence) of |
the pair. Furthermore, hy naturality‘the isomorphisns
commute with the mappings induced by the inclusions.
Thus, the quesfiqn of the isomorphism of tho two sedquences
is reduced to the question of cormmmitativity of the isomorphism
' of theorem 9 i) (resp. Q b)) with the bhoundary oppratbrs
{(or coboundary nperatnrs), of the two sequeﬁces. Before

we can prove the dommutativity, we shall require a preliminary

1omma.

pre

i TN A e e

L T T T

O R S T

i

P i

T

Ry

.

T A S A o P

fdt

_—
3

A Y

5
Bt
T

e e
Rt i it



44w

10, Lemma—~ For a CW pair (K,L) IR

4
a) thp homomopphism Hn(Kp,Ln"¥) -->2Hﬁ(ﬁ?}h)l§

induced by inelusion, is onto.

-1,
b) theqhomomorphlsm H R ,L) __> Hn(K Ln—l)
! ST
_.induced by 1nclu510n is nne—tn—one. ; "u \‘ ) T
Proof; a) The hO!‘l!DmQrphism faotors lnto‘ L ’-;‘ngm_;‘

Hn(K“,L“’l) (), B (K",L") 2), n (X",L") £2l>x§n(§?,L). We will
' ghow that each of these three maps afe onto. o

(1) Sequence of the triple (XK*,L",1™1)

nn(K“,ﬂ"“l) > (K7L 2> N AR ) ;‘d:kf

(2) Sequence of the triple (K", XK",L") : T T ey
n_(x",L") --> 0 (KNLLY) -1 TR % (Lommg 8, on- (K LK),
noting that ﬁ“)“*l K1 (K“*l k") = 0. . o
(3) Sequence of the triple (¥",L,L")

HH(E“,L“) — Hn(ﬁ“,L) SRS H(L,L7) % (Lemmﬁ-8:0n (L,iﬁ))'
oo™ - o,

b) The homomérnphism factors into

1"(¥", L) -7-5 B, LY > B (RN, LT) o> B, 1Y), 1
is proved as in (a) that each of these three maps has kernel

zero, hy considering the sequence of tha relevant triple.

il. Theorem— For a CW pair (K,L), ghe isﬁmnrpﬁism
of theovrem 6 a (resp. 9 b) commutes with houndary (resp.
cohoundary) opprators.

Proof:‘The proaofs are a demonstration that the

larger rectanﬂlq In each of the followinm diagrams commutes.
F

il
TR L et e b e Sk

iy

F R e DL

it
T r—in,
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SRR : . Zn(KsL)f
o A
EOR(KL) <o B (R L) e B (R,RRY)
T ° n=-ly n-1
T L n - -
| (X ,L ) _~_> H (K"K ) |
ot 2 e Ry b L \L'a . .
L o cANS o Hn_l((““ K- )
o . n—l n-1 . n-2
e an-l(L) Semm M 1 ) - Hn~1(L Al )
) . p’r.‘,\ ‘
Z:-21(1)
o is an epimorphiam by lemma 10. "
2"(K,L) |

Caa

CEMEL) > HMENL) <ee T ;1E“ —“"1)

m
. Hn(Kn ,L‘n.-.l ) Ce e Hn(Fn Kl’h—l)
Y 15
Cen . ! S]\ - n_l(rn—l n—2)
. _ 4

A n-1;.n-1 ~1; 0=l (n-2y
L) aee> TN <o W1 T(Ln ,L“‘.)‘

771 (n)

[ "

m is p mopomoprphism by lemma 10.

The proofs follow from diagram chases of the two,

Alagrams using the fact that each rectangle involving the

term introdueed in the center of the diagram (ie.

HH(KH.LH-I) in (a) and Hn(Kn:Ln—l) in (h)) commutesy and

the properties of e amd m mentioned ahove. The actual

chase is left to the reader, whoe ean find it in LEilenberg and

Stecenrod pages 98=100.
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“the latter group as a direct sum. We define for such a

To review what we have done: given an additive

homology theory on the category of CVW pairs, we have
construéted a cﬁain cnﬁﬁleg.ﬂ* for eaéh ﬁﬁir ;nd proved

that I, os a homology functor is equivalent to HC,.
Fﬁrthermore, given any two such hbmol&gy theories H, ?nd .

ﬁ*, we note that by lemma 4, the groups of the corresponding

chain complexes C, and E% are identical. If the boundary

’

operators could be proved to agree in the two chain comnlexes

thaltﬁe composition of the two equivalences would prove;that
H, is équivalent to ﬁ*.‘we éhow helow that in the subcategory
of (infinite) simplieial pairs, the houndary operators do,
indced aYree, as they are both the boundary operators of the

simpliciﬁl groups. All of this dualizes for cohomology.

Let a" = ACEER M be fixed as the standard n-simplex.

A'gimplicial complex K, with a fixed ordering of the Vertieés,
is-a CcwW c?mplex with maps iCr for g = Ao...An, an n-simplex,
defined ns the simplicial map which takes vy — Ak' We
will use the notation and theorems of Lilenberg and Steenrod
chapter IlI, sec¢tions 3 and 4 and theorem 8.4, which deal
with homolopy and echomolorny thcoriés on a siﬁplex and
ita suﬁchmplexes.

a) Homology case— Bf lemma 1, we knew that

. - - -l ,
zld*ﬁnn(.ﬂ'rb B) —->Hn(i:n,in ) s O € I;} - IE% represents }

. n
g = AO...An, gAO...An g Ch(K’L) = 16*(gs). If o & IL we
define this symhol as 0 and this still equals ic*(aa) gince

id then factors throngh (EB,E). e muat prove that

L

ek e A P

—y

ST




"’4?"" .

ng' . An = z (—l)kgi'to. oA.k- .An. W(.; uge the -ﬂ‘iﬂgram:" oo , F, H\‘ :‘

) !‘ .y . - ot - ) ST . ' :; f' F‘

it (u,‘as) ...lﬂ.i..’} 1§ (T“ 'ﬁn‘l) tE

-‘ Py '1'4 i B fanar i ,c) ’ R . n ) ) %
'I'Il

n-1
I . "T("K* : cronbis et ol

(S!"asi) & 3% g = s.n’r‘aa - an"l.
€, P Doy s

By Ellenberg and oteunrod theorem 6.4 for the case of a

1 T SRR | ('Bs 'Bsn 2) -:-i> Hn 1( l—n—-?.)

Lt

simplex mod boundary, we have 7 (gs) az (—-1@‘ k*(gs )

1
Hence) d 1 (FS) = J*a({fs) ::2_(...1) (]* I*(gs ) =
Z (—1)k 3 a*(“g ), which is the a‘bove required result. : ' "
A-k » . . _ L. ”-\i;i:“ |
b) Cohomology case~ By lemma 4, we know that f = |
1 _ ) , o . r i| t,
! i.u* s HNED XD 1). ~> Hs,28) , o & In - Iniropresents _ * 'i §
1
the former group as a dlrect product. We defino for such a !kf §
. 313
-g:-A.. A, and malementcﬁﬂn(KL), e(A .o A) =g l ;
where i *( ) = gs, or in sh;rhtlv different notation, 8 3
c(AO...An) = 10*(0)(5). We must then prove that ‘
1 PN :
{ gc)(Ao...‘Ana =3 {-1) {C(Ao"A'k"An-rl)' We nse the diagram: :
II“+1(3A,‘Z) 3) <Ll Ifn+1(1_‘“n+1 R | \ i

st ST “ | 1
Hn('as 'Qan—l) <...‘.}.i H"(Fn,'}-{“"l) .

L/% o | T

By Eilenberg and Steonrod, theorem 6.4¢ for o € A™( 8,7 sn-l)
(3'3')(3) = Z_ (—l)kii'*c‘(g)(s'). So we have for ¢ E Hn(f{-}] Kn”l)
(1,58 e))(8) =( S (5*(e)))a) = T (1) igyx(e)(a’) =
(-0 x (a0,

k
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" 8ince éingular homology aﬁd qohamology are additive,
the ahove proves that the simplicial homology and cohomology
groups, being naturally equivalent to -gingular; are - <. - ann
topological invariants. Moreover, ﬁe have the following:

12. Theoreﬁ— On the categorf of-simpliciél paira,
a) Homology case- any additive homology theory .» ...,
is naturally equivalent to gsingular homology theory.--n%gdm

v b) Cohomology case— any additive cohomology is - .3

naturally equivalent to sinpgular cdhomology.

Let CM[\ be a'iuil*suhcategory*oi?phdrslofich.3

tnpologicﬁlhspaées, containing all simplicial pairs and

auch that if (X,A) is in 94", then X and A have the

"t

B cannfidiag
homotopy tyne of COW cominlexes.
t

'n13. Theorem= On the category C)(q , any ..l
additive homology theory is naturally equivalent to - Py
gingular homology theory and Any additive cohomolomy theory
is naturally_equivalent to sinpular cohomolopgy theory.

I'roaf: J.II.C, Whitehead (2) constructs a
functor S" from ﬁho category of topologieal spaces to _“
the fuil subactegoyy of (possibly infinite) simplicini
complexes {S5"Jis the ;econd derivation of the renlizafioﬁL ‘
of the siﬁgular complex S(X)). If A {_ X, then S"(A) is
a subcomplex of S§"(X) and if £ (X,A) ==> (X',A') is
‘a map of pairs then S"f1S"(A) = S"frA, and so S"f is
a map of pairs (5"X,S"A)} —-> (S“X‘,S"A'). There is.

also defined a natural transfovrmation « from S" to

the identity functor, ie. «d ¢ 3"(¥)} --> X whieh induces

-~y




st Qem

then hy Whitehead's theorem (I.theorem 27); to is a homotopy. -
equivalence, . .. .

iv, o6 Let H*-aﬁd-H* be;respectivelyfkgingular homology: and
gingular-cohomology functora. -

Let H# he.hnother additive ﬁomology theofy. -

Since W3 S"X —=> X and w: S"A &> A are homotopy equiooien;es,
the “five lemma" 1mp11eo that <, and CO# are isomorphisms
for all pairs (X,A) 1nﬂ4" Let h ; H, —> H# be the natural
equivalence of H*‘ﬂith H# on simplicial pairs, which we
Sl

know exists by theorem 12. The required equivalence is oJ¥h Sy

L.

de. M(X,A) <L (8", g1y B (5", $"A) "L #(X,A).
Natfrality and commutativity with the houndary operators
easily foiloﬁs from the naturailty of and the oorrésodﬂding
property of h.

Similarly, if H# is another addltlve cohomology
theory and h 3 II* -—> H# is a natural equivalencéﬁn¥%1cl%ﬁ pairs,
requ;red equnivalence is glven hy Lvﬂ 1hnu* ie.

H*(X,A)‘i_> *(5X, S"A) B> H*(S“K,S“A) <32”-H#(X,A).

This comnletes the proef of Milnor's characterization
of singular homology and cchomology theory. However, the
expression of the chain complexes C, and C* given by lemma 4,
and the isowmorphism of theorem Y, are themselves useful
tools and we shall spend the rest of the chapter examining
themy, for singular homology and'cohomology. We note that
sinee the singular theories are defined on all topolngical spaces,
theorems 1 and 2 hold for singular. Se for the remainder of
the chapter, M, nnd * will be singular homoloegv and cohomology

with C, and C¥ the corresponding chain complexes.




. Wg will 'now begin to consider different coefficient
groups. -So ﬁe will write 0*(K,L;G) for the chain groups of
H,(K,L;G) and .similarly for cohomology. C,(X,L) and C*(K,L)

v

will he reserved for G = the integers, Z.

4

We will ﬁegin'by investigating the relation between
the chain complexagJC* and C_ and the singulaf domplex S.
1t is d;sirable'that the isomorphism of HC, with Hy be realized
b& an actual cﬁaiﬁ map of S to Cye We can alﬁost'get this.

. Given a CW complex K, consider its singular complex,
S(K). Sn(K) is thé free group on continuous mapnian_T : 8 > K,
Now (sn,i)sn) is a siﬁpliciul‘pair and is hence a CW pair.
So'wé.can consider SC(K’ a-subdompkex of S(K); where S;(Kj
is.thg.freo aroup on thoéc mapas T 3 8" > K, which are
ce]lulart It T is cellular then T(i) is, and so this actually
is a subcomnlex of S{(K). We sssert that SG(K) is an
admisnible subeomnlex of‘S(K), in the gense of Eilen£erg
and Zilber (3), The two conditions 4het must be vefified
are: (i) For xoka fixed base point of K, the conétnnt RS
gimplices g7 > x  are in Sc(K), and (ii) Iz T € %gk)
and T(i) & s°(K), for each i, then there exists T' § %:(K),~
such that T is homotopic to T (rel 2s™). Choosing -
the hase point X, to be some point of KO, (i) is true and
(ii) follows from the cellular apnroximation theoram.

It . follows (sce Eilenberg and Zilher (3)) that the

inelusion map S°(X) (T s(X) is a (chain) homotopy equivalence.




It L is a subcomplex of K, then S°(L) = S(L)NS°(K) and hence

8°(K) is relatively admissdble, and hence the inclusion of

pairs {s°(x),s%(L)) (C (s(x),s(L)) isa (obain) homotony

equivalence. It follows A'from thig that the map ;induced by
inclusions Sc(K)fSc(L) —> $(K)#s(L) is also a homotopy

equivalence. .jince We also have (s®(x)® a,s%(L)®6) (C

(S(X)® G,S(L)®G) is a homotopy equivalence, we get - + = fiir...-an ‘
that S(eS(K)/E5(D))8ET ——> {(S(K)/E(L))@ G is a homotopy ¢
. e.lquivalence,- and Hon( S(K)/S(L) ,G) —=> Hom( SQ(K)/SO(L),G)' !

is a homotopy equivalence. o i R RN

14. Theorem— There exist natural maps-:
e (W) /BON@F ~> 0 (K,156)  and o e T
1 C*(K,L;6) —> Hom(S%(K)/s®(L);6) . “whieh induce . *,0 4 ™).

the isomorphisms of theorem 9. o e ~ e g

Proof: o {{els H@g) = T,(gs), where - = = ' -7 .rg

T : (s,@s) - ('ﬁn’;jn—-l) (s = s“), gince Twis coellular.

We note that (f, g ~~> T.(gs) is bilénear and hence is a
a wall-defined map of the tensor product SC(K) ®G. Purthermore, . -

if T & S(L), then T factors through (L,L) nnd hence T,

hasg image zero in Hn(ﬁn,l-{nﬁl)- ¢ is thus well defined. ' 1'
@le){(cls T) (where ¢ & H"(Kn,ﬁn_l)) = T*('c)(a'), : |
where T : (s,@s) ~—> (KT (s = s™). Ay ahove if -

T & S(L), then T% = 0 and so ¢ is well-defined.

s e

To prove that o induces the main isomorphism:

W't‘af-hmre ~thel diagramg -« 1o o ol ot ,'.;f‘.': cpopanm aial ’,
s 1P(KGR) oty Hf!'('}?,“,-Laf‘Q.Lﬁﬂg‘fg'ﬁ“;,‘i{'“ﬁl,) Nein deemment i ; |
. o ,k|¢ . ) :k,',lr\» R ,_”l'(‘{-._iu SN (:r—‘:v]’-.i-:r‘,_])- §
CI(K,L) Gk nnf(ﬁ“,L) iﬁ_>‘. i'tm(‘f(?‘,i““l_) .” G =
N e o=l ) . 1

Yo will nrave that o indneeg W 4 ix which armals 1=1i%




gince Ik, k' and k"-are isomorphisms. s

. Let Efiiola Ti)éDgi repreaeﬁt'n hoﬁologyiblnsa of
H;(K,L}G). k" ji i:"l( 22 i(<31 g Ti)(i)g;)L’_i"s:?é}ii‘eﬂehﬁd; i
as a:class in Hn(ﬁn,ﬁn"l) by - Zji(cls' Ti)&Dgie.Sinqe.

e

-

T,xle1s 1 @8 =fels 'T:.L@p;ig, we will be finished if -

we con prove that els ls@ g represents the,homology'diass;gm

of H (s,®s). If n = 0, this is hy definition of the identification
of G as the coefficient group by g _—>§13d8)g§. To complete an
inductite prpof, it suffices to shew that the incidence
isomorphism Csn:sn_ll tnkem:icls Isnébgg into féIS'lsn_ldigs.

The indidence isomorphism is the houndary of the triad, - * ‘heor
(sn;sn"l,cn-l) (cn"1 i3 the faces of a" other than snGlln'aosn):
B(s™, 96" Zom (D" 651 (25",e™)) <om n (s
fcle 13n'®g§ ST (- ].ai n@g? _->22( )X s 1,) et =

{cls'lsn_léﬁg %<;- {cls 1 lﬁbpg(Nntatlon following P]Ienberg

n—l )

3 L]

and Steenrod papes 78—79).
" To prove that ¢ induces the main isomorphism:
We have the diagram:

Hk,L) A5 B L) <dX e, 7l

k) k! i lv'L : 3A *;u P

m(k,L) o> (", L) PR LR N K“"l)

R ]

We w11’L show that ﬂb induces 1* [i* lc"IZn(l L) whlch = A
N
J*lZn(h,L), gince k, k' and k" are isomornhisms.

Let ¢ 3 8 (E“)/s (K®=1) ——> G represent an
elgmont of “"(X,L), that is, if J is the cohoundary
operator B"(K,L) —-> Cn+L(11,L), then & Zef = 0. To

interpret what this means about the howomorphism ¢, we

I R iy I

A
o




look at the short efact sequence of complexess - > .t v 1.y
0 > T6M(S(EY) /8(E") ,6) ~=> Hom(S(R™1)/8(F"1),0) —ms
Hom( S(E") /8(K*1),6) > 0.
i; n is the connecting. homomorphlqm of Fhe cohomolopy sequence of .
thls showt etact sequence. To say that S icfy 0 is to aay o
o
that ¢ can he pulled back to a ¢! in HBH(SH(Kn+1)/Sn(ﬁn"1),G)w'A!!h
guch that ¥c!' is a coboundary when pulled hack go |
Hom(S(_n+1 /S(En),G),.ie; is 9 d, and replacing &' by ¢'-d
i? necessary, we can assume that Set = 0. Thus-, 'to say that
3el = 0 fore : (K /s (-1 > G, is to say that therie
exists a.c' & 3 (I +1)/S (anl) ——> G extendlng ¢, and suéh ékﬁt
c!'d = 0. Ve ohviously have that j*k"z { is represented by }
the homomorphism & § (K )/3 (E) > Sc(ﬁn)/SC(—g—l) 2> 6.
By the above cnnditlons, ct is a coeyely of HBm(Sn(K)/Sn(L),G)
and hence represents ig'lji k" ¢ . For els T in Sg(K)/Sg(L),
c'(cls T) = clels T} = T*(c){els lsn)._As in pke homology
case we reduce to a gquestion in Hn(an,ﬁ)sn). | ‘
Ve must prove that if ¢ represents an element of
' (a™,9 ™), thend &L (o) = ¢(1,). By definition, {34 (s) =
g, where?%% = g8+ So it suffices to prove that { e8¢l cls 1;§>= g
where ( , 2 is the Krondcler index, which commutes with
boundary operators.nnd hence with.the incidence isomorphisms,

so the above follaws by iﬁductinn, and the fact {proved in the

- 1ast section) that $cls 1;@ represents the homolopv chnss gs.

Yaemd o




We note that mand% are certainly’natural under
cellﬁlar"iuap.s, b N AR Y

15 i-v 1 -We next.turn ‘to the universal i;oefficihqt-itheoremsﬂg A ;‘1 A
Pl s - : ' : : . S

15 Theorem—- There exist na’rural iaomorphisms

R (1( L)@ 6 —> Cy(K,L:6) and §: C*(K LvG) .._> Hom(C*(K L) G)
' whlch commute with oo and p. These are the meps glven by the

universal coefficient thnorems.

Proof: By "glven by the universai eneﬂflclent
N
thoorems" we mean thaty H (-}-{'n —n—l) @ G —> (-ﬁn -n-I:G)

and ? 'I-('n T(n"l'(}) -— Hﬁm(Hn(K -n-l) G) are the univérsal .
coefficient maps for each n. These are certainly gg%u%ng

when we prove commutativity with o and ¢ , we will have

=~

commutativity on homology, with the wain isomorphism, by

theorem 14. We must show that the following commute:

s®(x)/s®(L) ® @
' lx@i&
C*(K’L)QEG ‘}2"> _C*(K:L;G)

Mom( 8°(K) /8 (L), &) y o
T o (, G0 N*‘ | B

CHom(C,(K,L),6) <%~ C*(K,u;6) - o Lie

The tirst requires, for a pair cla T®g, t};at”.

1. ‘ ' . - -
(T*® 1(})( E cls 1'3%9{1) = T*(E els 13@;{9- But since

. {els ls®g€= \](écls lsf@)g), the former cquality holaé

RS

By naturality of the universal coefficient theovem mapv .

grilsﬁ wii?h boundari




* The-gocond” requires that for e 8 6*(K;L;G)*hnd el

vicla T'*E*“S-Q(K)/SQ(L)';‘that Mom( e ,6) 6 (e} (T) =" (e}(T)¢
w?i‘h‘ei"t%m;bn the*left: s §{e)(T, cls"'l‘“' ) ‘= Hom(Ty,8) 5 (o) (Lols 13 Y.
£t The' term on the right is” % (T#*c)(fecls 1'1) wiigE T*(c)(icls 1 3)

il Thess two are equal by naturallty of the’ unlversal coefficient
titheorem map- § «(Note ‘thq:appearance of § in the’ term on the

2 yright. @ (e)(T) = T*(c}(s), which we have shown is’ the

- L, game a8 taking a coeyele to'represent T#(c) and evaluating at
#8141, which is-the definition of § (1¥(c))(f els"1:}), also.)

B U e e b it

o Now we return to theorem 2 and give the nrnmaaed .
A : ire . . N b Pyl

Feneralization._

i L. . . L 1 c
el T g . U . . [ TS [T

16. Theorem~ Let h be a CW comnlex with suhcomplexes

L,Kl,}{z,... such that K ='Lu U2 K, and KinX,. (CLefor 1 £ §.
L.pet Ly = K;nL, and let k; = (K,,L,) (_ (I{,L) be the inclusionss Then:
" the hombmorbhisms1kg¥ =“H;QK}¥Liiﬁ)hﬁﬁﬁgﬂi(K}Lkg)'fbrm?dn AT

“t{njective represendation of *N,(K,L}G) ae didiréctrsum.’ - ™
Broott Lot My =-Lu Wyl Ko, then"the.ingludionsn

(is3)]
(Kf,L Yy (C (H L)Axnduca a direct sumﬁreprésentatinndoii

> K
H (H ,L). Now Lim H*(M } is canonically isomorphic to H (K)
and the direct limit of the counstant sequence H*(L) (for each j),
is canonically isomorphic'té " (L) and hénce, since diraect
1imits preserve exactneus, Tim H (M JL} & B (K,L), but the
--->
term on the left is isomorphic to Lim 2_ i< Hy (K Ty) by " °F

theorem 2 applied to (Mj,L), and this is isomorphic to

7 (K L).




-A direct proof ef the cohomolegy version of this result
would .imvolve & reproving of Milmor's limit theorem for the
relaﬁiye case. Iggtdad,_ie can obtainm the cohomology wersiom .. ;.

. directly from theorem 16. For if we have & situvatien as im
théﬂhypothagis of theqren,iﬁ, we can defineAiz = K;L.!Li and
theorem 1§ impliss that H‘('ﬁ;,'ﬁ’;“l) — Hn(f’,ii’,"_'l) is &

girect sum decomposition of the latter amd hence we have tkg#
(KL, =-> €, (K,L) is a direct sum decomposition of C,(K,B) . .

as a complex. Hence, By the idemtificationm $ of theorem 15,

we get that C*(K,L) --> c*(Ki’Li) is 2 projective representation ;-

of C*{K,L) as a direct product. Such a representation is preserved'

wher homolegy is takem amd hemce we gef the dual result:

17.Corellaxry~ Let K he a CW complex with subeomplexes
) o
L, K}, Ky, +.. such that K = LU U Ky amd X, 0 K, (C L ter 1 ¢ 4.
Let L, = K, L, and let k; = (k,,1,) (T (K,L) be the imelusiem map.
Thon: the homemorphisms k * : H*(K,L;G) =-> H*(Ki,hi;G) form &

projective represemtation of E*(K,L;G) as a direct product.

We also formalize the under lyimg resuli about the

chain an cohhain complexes:

- 18.Corellary— Let (x,L), (Kl'Li)’ (Ka,Lz),-a} it as
in the hypothesis of theorem 16, Them:
a) Homology ease- C*(Ki,Li) —> C, (K,L) is dn injhciiiih
‘ropresentation of C,(K,L) as a direct sum,
k) Cokomolegy case- C*(K,L) --> c*(Ki'Li) is a

projective represemtation of C*(K,L) as a direct preduet.




We now turn to an examination of the homology of -

product complexes. We will require in our oonstructions, the _
HE et £y

‘notions asaocxated w1th that of simplic1a1 object, and qimplicial

: modules;‘ie.,semi—aiﬁplicial complexes, and the Alexander- i me il
Whitney map, as constructed in the proof of the Eilenherg-
Zibher theorem, for all of which see MacLane pages 233-245, © ¥ !

Consider pairs of spaces (xo’Un) and (XI,Ur).‘The

" Singular complexes 8(X,,U,) and 8(X;,U}) are simplicial modules,
where Sn(xo,Uo) is sh(X;)/sn(UB); We ¢an takeitheir productoast
-S}mplicial"moduleéuahg.wewassert;thht?there:is a natural mappinge
of S(KQ’UO)XS(XI”UI) into the singular eomplex of the

- product S((XO,UO)X(XI,Ul)) = s(xoxxr,uoxxrgjxoxqr).
(s(_xo,uo)xs(xl,ul))n - sn(xo,Uo)Gisn(xI,UI) =

sn(xo)/sn(uo)<® sn(xi)/sn(ur) % (since the éingular conplexes

are frec) 5,(X,)®5,(X;)/5 (U )) @s (X,) +sn(xb)¢gsn(ﬂl)."“r-;}
Thua, we use the following exaet scquence:;

0 —-> B(U xU ) ~-> s(xoxulygs(uoxxl) —=> 8(X xX;) ~-> S(XO,UO)xS(Xr, 0,

- -—-> 0.
Wo identify S(X xU))ES(H xX )/S(U xU) and ths imige of
S(XOXUIX£B(U0xX1) in S(XoxXr) and we call this eomplei
S(XoxU1)+S(UOxX1). The inelusion of this gomppex into S(XoxU

rLJonXI)

and the identity on S(Y xX ) induce a map ki

0 ==> S(X XU, )+S(U xX;) -=> S(X xX)) > S(X_,U )xS(X r)'._.'.>°o

K i, 1\L K 1,

8 —> s(x oy VU X)) - 5(X_xX 1) —> s((x,,U o) x(X 11U3)) >0

k is obviously natural with respect to mappings of nroducts of

pairs.




Al bl 1o s

. Wa congider three short exaotisequences of complexes:

—>lb(X _U )xs(Ul,Ar) - s(x v )xS(X ,,A ) ..§ s(x U )xS(Xl, Ur) ->0

YA .f

0 _>"s(uo,go)xs(x1.,u‘1i) -> §(X6,A0)XS(31,,'U1~)"—> s.(xo,.Uo)xs(xl,,Ul,);..> 0

0 > S(X?{;ﬁUl,U;me‘ir,AOngquxHFuXOxAl.) -> S(Xg{Xr,XOxXIu:UG_xUltuiquAF)
- => S(X x%,X xU0U xX,) ~> 0

(For triples (Xi’ Ay ) (10, 1))

! The corresponding exact homology sequences , have -7

boundary operators 1?0’-2>]_ and 2@ . . .  ‘,", .g;l?3lj'mx ‘

We assert that the following diagram commuties, giving

a relation hetween the three boundafy operators:

lh - - ey
H_*( S(XO,UO)X‘S(KI 3U1)) ——i> H*((XO’UO)X(le 1)) oty
, . . l« 9 :
prPS H*(XoxUlu.ﬁoxX A XX QU XU U X xAr) |
Loy % Cyx E L N
‘ H*(S(XO,UD)XS(UI:,AI)) H*((Xo.pUO)X(Ur)A]:))
@ 5N ' ®

H,(S(U_, A )xS(X, ) (U, )x(X,,0,)) -

Our method of proof is to amalgamate the first
two sequences together aﬁd map the result into the third
dequence.

It we consider the 3x3 dingram of which the first two
sequences are the right and bottom rows, we get the short

exact sequences

0 -> (s(Uo,Ao)xs(_Xl,Al) @ s(xo,n:o)xs(ul,Al));fs(UU,Ao)xs(Ul, )

~> 3(X ;A )x8(X,4) > s(X_,U )xs(X,,0;) => 0

~
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to S(XO}QO)xS(UI“AI) + S(UO,AO)?S(XT,HI) and thus wo have our-.

Yamalpamated" sequence hy substituting this and ‘replacing the

firat inclugion by an obvious (that is, ohvious from.the’

3x3 diagram, the drawing of which is left touthg ;eade?),

e

switehback. - ‘ b L et o ~‘:-‘

The map of the amalgamated sequence. onto the third sequence

ig given by an intermédiate (but not ‘exact) sequence:

2 v
¢ -

0 -> s(x U )xS(Ul,Al) @ s(U A )xS(X U ) -> S(X;;Ao)xs(ki,A'r) |

§

S((XO'UO)X(UI’AID) @ S((UO’AO)X(IXI’UI‘)) _->"S(l(}.(:o;Ao)x(X1: ]_r))

;
\Lincl,

0 > S(X U0 U XX A XK, O Sy w X xA ) ~> 8(X xX|, & x%,UU xU,uX xAP)

e s(xo,Uo)xs(xT,Ul,) -> 0

> S((XO,UO)x(X11UF))

- hig i
S(XoxX X xUpo Uy xx}_,) ->0

The triplet of waps represonted by k, commute because

k is natural. The trinlet reprecsented by inel. are all inclusions

and hence cormute with the inelusions which define the middid and

lower wequences.

This proves our result since thz boundary of the

first sequencexis easily proven to he TDQ +’91.Furthermore,

r

k folluwed hy the inclusions induce ky and (10* + ir*)k* on

the two end complexes.
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5 Consjder the satuation when Ui is open in Xi (1-0,1).

P = EX xU‘ ,U xX ,f ig an open cover of X xU,u U xX, end, in

. the notation of Bilenberg and Stecnrod VII.theorem 8.2, §

s(x xU )+S(U xX,) = S(X.xU'L;U xxl,F) (:lS(KD;UPLJU;xXi),

and the inclusion {g a chain equivalence by the theorem S

just uwentioned. It follows that in this case k is a chain

equivalence. o
Assume now that Ui-is a deformation retract of Vi

in X, with V4 open (i=0,1), and that XoxUlquxXi, is a

diagram: . , e ¥

s(x U )xﬁ(Kl,Ur) X s((X,,U )x(Yl,U ))

W

R A eI AL (CIRAR ))

the bottom map and the two inelusions induce isomorphisms of
i i .. [ T A

P PR !

homolqu and cohormolopy and heonce so does the top map.
The other homologieal map whieh we will require is
the Alexander-Whitney map T s(xo,vo)xs(tl, 1) —
’ C
isomorphisms of homolopgy and cohomology groups (it ig in .
fact, a chain couivalence). SR
Hsingitheséwmwﬁ:hnmbmorbﬁ§pm§§andﬂth%lKﬂYheth cv ety
foriulhitve wdland?fanQngenhbmqugyrp&ngpb;;%¢}padrsfof
‘épécég;?gﬂQ£H¥(Xb}9;}@bﬂflxl, )“a-$1HL((Kn|U1)x(Xr,U'D)t
It-is ﬂe#ined-by'settingup*nvk‘f““}ﬁfw'the!e € is the -~ «lss
map of the Kinnath formula M (% 23U b@n*(xl,u‘) anbine ihat

B*($CK5,‘JQ§5(Y1"? ) The:homolqyy,prnﬁpg¢ }s nﬁ%upglnaince i

TN P C R S A B B e L AL LA o 17 et el PU-TIV.I vy \,‘), )

N T PR T AP P obhe booe o N

éeformatlon retract ot X leL}V xXl, then in the commutativa..n-:ag

Takrde

PRt

s(xo,uo)6§'s(x1,ul) which is a natural map which induces: -t o0 Y,

‘:,‘..'q’..;‘,_g\;,;v;t;:“;ii % 55
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o
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k, £ and . are each natural,

"_,[For_triples ,(Xi.,'Ui,Ai:) (i=0,1) we assert that the following:

f,(x_,U )®n (xl,ul) B> | ((x U )x(Xl, UB))
2a1 o <
183 .t ' 54 (XXU U Xx-l A XX].H U XUIU.( x'b‘l\) [
v e G T Cp “
H*(XO,UO)QH*(UI,Ai‘) i ((x UREILANSY)
® =P @
H*(UO,AO) @IH*(XI,UI.)l' . | H,( (UofA‘I)x(Xl"UI) commutes.

For we lknow that f is a mapping of short exaclt sequences;

0 -> s(x'o,uo)xs(ul,z\l) => 8(X_,U )xS(X}, ) > s(x_, U, )x8(X,, Uy ) >0

N2 K
).->0

0 => s(xo,vo)ci%s(vl,ml) <> s(xo,Uo)aas(xl_,Al.) -> s(xc,uo)@s(xl.,ul,

dbcdbiens b s

Hence, f induces a mapping of the homology sequences and thus #g

commutes with the boundary operator. f) as thovifinneth formula

map, is natural with respect to counecting homomornhisms and

hence we have the following commutative diagram:

n,(x,U )® n*(x u;) S5 m(s(x,,U )2s(X,0y)) <t m (S(X U )xs(xl,, 1‘))«53

w2 3 3

? §
1 (wc U )@n (U, 4,) ——> B «(8(X 3 )@':vs(ul,,Al)) et }I*(S(XO,UO)xS(UI, 1))!;-:

And similarly for cl. Gomﬁinlng th1s diagram with the previously

ves the required result.

constructed diagram for k, gi

Now given two CW pairs (K L ) and (Kl' 1), we will

ghow that C*(KO,LO)G?B*(LI, 1) is isomorphic as a chain complex

to C%((I{O,Lo)xk(ﬁl,Ll,)).
We note.first, that the sinpular complexes of KxK!' and

kaK' are identical and henee in the homology product formulaw




‘ “Aﬁ‘a preliminary, we. consider ﬁhé %omolggftpgoduéi
on H*('IE '1)@H (K 3 1y, with i+j = n. ;
v ;3;a First, wé.nqte"thptlfi is'aﬁ'isoﬁhrphiémrsinéé the

Tor term in the Kunneth formul_a'i__s Zero. f, we know to. be an ™

isbmorphisrn; and for k,, we let v, {'}-('i -1 (e )e o‘ E I 1l 3’ ¢ = center

‘and simiiarly, define Vi. Vo and V. are open in K and K% I a’

=ji.]l

1

respectively and it is easily seen that K and Kii* ~1 are

atrong deformation retracts of vV, ond V., resnectively, and

\
=3, wiomiel
that 1( Tty O K xRy

v xKJ U I{ixV

is a stroug deformaﬁinn retract of
1. Hence, ky is an_ isémorphiqm!_and ifc follows
that the homolngy vroduct on H*(I J 1 1)@}1 (KJ Ki—l) is': r
an Isomulphlsm. |

(m, (&, -1-{1'-1)®H (&) - Z

o (hv corollary 5) H. (h ’ 1—1) &, (K Ki_l)‘

=i ,1-1 3-1
mmun‘m(h )@ (Kl’ ] )
\‘ue now define the map v : C*(Ko"Lo)@C*“‘(K_I"LI) —_

C*((Ko’Lo)xk(Kl’Ll))' un the nth group: as f-ollows: '

._Ll‘._

b t4jen (K 1“1)®H (IJ 1\3 4 SR S
lZp Pig” homology product on the {i)j) pair
E ipjun U UG S (KJ ®-h) |
lZmij* migT inelusion of th‘.e (i,3) pair
(K K)", (Ko k)™

Since eaeh p.‘j is an isomorphism, - Zp .j is, and
Zm *18 an igoworphism, by theorem 2. =
To prove that ¥ is a chain map, we ohservc that the

following diagram commutes:




i ((K xl“l) (D) Pages (R K0 (K 5™

)

=1 =il ] 3—2 7 7 0 W [ "iu-—j-E 2 ‘w
HnsK)ﬁ{ K kK K? ﬁ%{l_uKo x, K3 bekKl) “

SRATY n-Y, ; n.g
Y ekt _HJ)(_* 9 L ((E lel) (KK )™ %)

=i minly  mjal mje2
(R, (13, T2))
.

=il =i-2 -1
Hn-l((k; ,h;‘; k)xk(m’ 1(1 ))

K Vi
j' A i\‘*

.n.;;

é : - Patching this diagram together with‘the‘didgram

<o tor pirj on the triples (KX, 71, K% and (®,E -1, £i-%),
and gumming over pairs (I,J) with i+j = n, pgives the diagram_
which proves that'f»n =D~ , ie. that ¥ commutes with the
boundary operator of chaing and is hence a chain map.

.19. Theorem- For CW pairs (KO,LO) and (I’CI,,Ll), there

are naturad isomorphisms:

C*(KO,LO;GO)ac*(Kr 1i6y) ® C*((ho,L )x (hl, 1) G @Gl)

’ ¥ K * o * .
X C (LO,LO,GO)@ c‘_(Kl,Ll,Gl) % C ((KO,LO)xk(Kl,LI),Go@ Gl.).
Proof; These igomorphisms could be constructed directly

N
as Y was constructed ahove, but ingtead we will use Y and.

the isomorﬁhisms '7 and r of thenfem‘IB, to prove the
i results: _

Tor homolopy: C*(KO,L Hs )QQC*(K ,L ;G J <J&§EZ

C (K L )®G Bc (1(1, 1)®G c=B-> 0, (K L ) ®C (Kl,Ll,)®G a6,

V%%%A(KO,L YK )6 6 @6 T 0, (1,1 )x (K, L)) 16 @6,)

For eohomologmy: C*(KQ,LO;G)éﬁc*(Kl,Ll;G) SL?&L)

- : _ _ §
om(C, (K _,L ) ,Gu)é@llom(ﬂ*(hl,hr ) 2>




¢,@ 0 ) < Lom(~

25086 )

et [ T

k(Kl’Ll))’JOGG ) <"""" C*((ho

, 17)Yk(x‘:l,l. ); ;G.® 6 )
Whare o ig the "middle Tony lntprvhanwn"

and b_1s the -
Nome @ interchanrze "

(seo MacLane pagas 124-105), Thig firat jq4
lways an isomorphign and the facond igq gn 1qnmornhism'in
this "caqe becanse ¢ (KO,L ) and .C (FI’L ) are hoth corinlexeg of
free aholian Zroung,

4

We éhail in the followingy chhpters, use the.
somorphigmg of thenrem 17 as iden

tificntions. We also

i L

on the

atlon the tnfluenco of

’ 1f “e, su,q stlvnly

et o alsarepreqenf i

a1
B, Rl

1

4 amhlnuously

L.., .

*(a generator of I (e , n-l)) in
. » and 31mllarQy T for i) (E? E n-l) thpg
t ig easlly vnrlfled tha+ ’Y(o@'u) = oxT. .
The case in whlch e are nes t 1ntnfp§+edww11}‘

,L ) = (I ﬂ) or (I S ) In these
erge
AELEN X 19 Just x. ‘

T
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