Chanter IV Spectral Seguences:

The theory of spectral sequencesjwas_iﬁteruced
by J. Leray [1]l. Leray obtained épectral séquénces from
differential filtered méddles:(see below). A more.genéral
prgceduré'df obtaiﬁing'specﬁral.sequenges was introduced by
W. S. Magsey in his theory of exact couples [2]. Yet - ﬁi
another way of obtaining spectral sequenﬁes_was introduced | %;
byzs.-Eilenberg, and 1s expounded in his forthcoming book _‘ ﬁ?
with H. Cartan [3].  This method has the advantage that - '
there 1s both an inductive and a direct definition of the - ]é;
L

term ET in the spectral séquence,_and consequently will -~ - Eif

be followed here. S o i

Notation and Conventions: Let % be the set ZU{-w,w}. g
Oorder % by - ®<{r<{ o for rez, '

Definition 4.1: et Be the category such that
| 1) objeCta.of (Zj‘ére pairs (p,d)'of elements of -
Z sguch that p > ¢, and |
2} & map in (. 18 an assignment to an object (p,q)
1n.'CL another object (pf,q') in_CL_such‘that p!' 2p, a4t q.
If o (p,a) —>(p',a’) and B (p',a') —> (p",q")
are maps in (. we say thatb (d,p) ié a gouple ifq = q',
p!' = p", and q" ='p (see [4], p. 11k}, In other words there

13 a correspondence between couples anﬂltriples'(p,q,r) “of




ylements of fi': suc'h‘ that -"’p Zq}_ r, the correspondence
eing that which assigns to the triple (p,q,r) the couple
(&, 07 where o : (q,r) —> (p,r), andf: (p,r) """'>(P:C1)

' Notation: Iet A be a commutative ring with unit. Denote
by _%h the category of [\-modules and N ~—1'1omc>1rt:10I'phisms,
and by %\' the category of graded l\-modules and graded

A -homomorphisms.

Definltion %.2: A covariant 3 -functor bn‘thé category

" with couples (L conslsts of 8 covariant functor H: a.—-#—>%ﬁ
together with & homomorphism B(al g) :H(C) —> H(A) for
each couple (ul,p) in &, 4 A —> B, P B—> G, satisfying

the following condltion:

1) Lf'

bo

l

::-e—-——-:»
ot
U:M-——-——tu
'!---'-O

i1s & commutative diagram in @, where ( o[,p) and (0(1, pi)

sre couples, then

3
H(C) (£2p) > p(a)

lH(Uﬁ) o i H(T,)

1s a commubative diagram,

2} For every couple'(.al, P) -

in &, °(_=,A —> B, F:Bw—-}C,

19 :
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the gsequencs

- H(A)——Lﬂ—mtB) H‘—F—)—>H(O)———L> H(A) -

19 exact. !

I H: a,»—~—-—> %_,; . gatisfies 1) and 2) above,

> s e e

end 1f in addition ’d(d F) n+1(c) _— Hn(A) for every
couple (e, p) > B —» C, then H wlll be sald to be

graded covariant d-functor on a (I&1, p. 115)

Definition h.3: et M be a diff’erenti‘al A-module.

A filtr-ation on NI is a set of submodules inMlpe A
'such that
' j) 'F MCR +1

.'},“MC M : B
2) dip Fp, |

%) FmMmO

*) FmM. ="

_ If M 1s a graded. differential A—module, the
f'iltration will be assumed to be compatible with the gra~

dation, 1.e. ¥ M = fh(F M)NM, for all pe Z.
- The module M together with 1its diff‘erential

operator and filtration 1s called a differential filtered

N -module, and 1f it 1s graded 1t 1s called a differentlal

' e:raded filtered DO -module.

_ Definitiorl hohe Let M,F Mi be & differential f1ltered
I\—module I (p,q) is an object of &, let |

- ~J7‘H(p,q) = H(F JI/F M), end 18 & :(p,a) — (' ') 1s 2




. |

ma,p, 1et H() s H(p,q) —-——> H(p' ,q') be the natural map.

Ir o :(p,r) = (p,r), p-i(p,1) - (p,q) 1s-a couple in [

Qs ,th_en;there. 1s an exact sequence
0 —> F M/F'IM — > F M/FI,M —> F M/F‘ M ————> 0 -
and & resulting exact sequence

| —> H(d,r) > H(p,r) ——H(p,q) ""—> H(q,r) —""
I1st '&(i P) H(p q) > H(q,r) be the homomorphism denocted

by 9 in thls exact gequence (He_nceforth 3(0{ F) will be
o - s

denoted merely by 3.) -

‘Tt 13 evident that the functor H just defined and :

> H(g,r) f‘om e covarlaunt

the homomorphisms 3 :H(p,q) -
3 -functor on @A , and that this functor 15 graded if M

13 graded This covariant 2-functor 15 sald to be the one

asgoclated with the differential filtered A -module !M,FpMi .

| Def‘_inition 4,.5:; If H: A —> % 15 a covariant J-functor,
define | '

Z, = Image H(p,p-r) > H(p,p-1)
B = Image 3 H<p+r' 1,p) -—-"*> H(p,p-1)

P .
for r,peZ r_}e. c1e H is graded ‘define

Ay — - -
Zyq = Tmage Hp+q(p;P r) > Hp+q(P:P 1)
r = J1me -1,] —_— -

Lemma: zf’:azg”:) :;»ngDB‘I’D ‘DBPHDBPD"' ,
and 2% T+ .. ZP o8 I’” ce
'yq 02 Zp,q= " 29,0y, g2 1 PP, Bj, D

The proof of this lemma 1is straightforward and
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-Definition h--'-6-' L If H: QA #3%(\ 15 a covariant L

"J—functor, define E; Zr/Blr; for ‘r,peZ r) 2.

Define Ep,-— H(p,p-1), and get " %Er I "H ig

BI’ _' EP g .
q p’q/ q 7 Ep E P Q’ 3 EpJqu}q

{gF lr)e 18 the spectral sequence of H. If. H ig the

graded, set E

covariant ‘9-functor aggsoclated w:Lth & dif‘f‘erential filtered
A ~module !M,Fp,Mi, the spectral eequence ‘will sometimes be
denoted by {ET(M)}. Further in this case Eg(M)‘-: FPIVI/F'p M
and EC(M) = T EQ(M). o

. We now have spectral sequences defined but we
have not as yet proved two of their basic properties. First,
E™! ghould be the homology of EX with respéét to some
_differential operator. Second, 1f M is a flltered A -module,
E®M) should approximate H(M) in a certain sense. We
now proceed to define dr:EY ——> ET __ eo that EX w111
be itsomorphlc to vH_(EI'). |

Lomms If p}q)_rZs then '
| Hmﬂ)*%?HMJ) >Mrm,mﬁaa 0.

Proof:  This follows lmmediately from the commutativity of
the following diagram |
voo = H(p,r)—>H(p,q) — H(q,r) — H(p,r) —D ««:
. - |
l e °

H({r,s)

that the horiz(mhal_ sequence 1s exact.
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efinttion 4.7:  Notlce that the diagram '

Sy H(p-1,p-1) —H(p,p-r) —> H(p,p=1) —— +++

ﬁ. _ . |
~ H{p-r,p-2r) —> H(p-r,p-r-1)

15 commutative,  Consequently there 1s a natural map
?P:Z£'-w> EE_? guch that épﬁz) is,thé:equivalence clags
of ‘athze H{p-r,p~r-1),. Further it follows frqm'the
commutativity of the diagram |
_ o o |
H(p+f"1,p) > H(p,p-r)
2 B
H(p,p-r)
&
H(p-r,p-r=1)}

and the fact that 39 = 0, that (Bg Y= 0. Defins

dP:E§ - Eg_r to be the homomorphism induced by
ar:zﬁ———~> Eﬁ_r. Further denote by d° the induced endo-

morphiasm of ET,

- Propogition 4.8: dfo a¥f = 0, and H(EP) is naturally |

isomorphic with g,
Proof': The fact that d%0a” = 0 Ffollows from the

I

dlagram

133




Lol

H(p,p-r) > H(p,p-1)

H(p-v,p-27) ———3 H(p-r,p-r-1)

H(p—er,p-Br)A-———-*> H(p~2r;p-2r-l) s

and the fact that 33 = 0.
Further it follows from the diagram

H(p,p-r-1) —> H(p,p-r) > H_(ph,'p-'i)

h

0= H(p~r~1,p—r-1) ~*>-H(p4r.p-r41)

that the.seQuenbe
0 — FEH > B S5 wE
0T YR = By

is exact, or that the sequence

ZI’+1
p .

18 exact. - From the diagram

> H(ET) > 0

H(p+r,p) F"m——-—> H(p+f,p+rf1)

H(p,p-1)
5 |
(?Fr{p~r—1}_
and the fact that 33= 0, 1t follows that BJ™ =
kernel Z£+j ——> H(E"), or that Eﬁ** ~ . SH(EY)
|
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as was to be proved.

Notice that if HiQ——> s , then
G A |
aEy g T Bppqer

. _Def‘inition %.9: _.We define a filtration on H(oo, ~®@ )

by setting _Fp(H (m,~m) )= Tmage H(p, - 0 ) — H{w, -0 )

Proposition 4.10; Eg(H' (0, ~c0) ) 1s naturally isomorphic

to EP for all pe? .

Proof:  Recall that Z;O= Tmage H(p, ~oo‘) —> H (p,p-1),

Bgo = Image H(ow,p) 9 > H(p,p—ﬁ }. Further the sequence S
.f‘

Tt '.#> H(P"1)'—m) '-_"-> H(p, -0 ) "__'} H(p’p"1) _..___.,_..> et

1w exact, and Image H(p-1, - w)} —» Hoo, ~-®) = FpﬁH(oo, -co)f éfﬁf
Therefbre there Vis a natural map Ego —> EI%H( 00, =M ), | ;u‘!:.
and thls map 18 clearly an epimorphism. However, 1t follows i
from & gimilar argument that it is a monomorphism, and the

result follows.

ProposiﬁiOn .11t Suppose that H: A— %& 18 a graded
covariant 3 ~funetor, and ‘

1) H(p,q) =0 if p {0, and

2) Hn(p,q) =0 if mn < q, tilen

Eg q 1s naburally ilsomorphic with Egj‘{l for vy sup {p,q+1 i,
2 - . s




figgi; Suppose that r > sup {p,q+f|. The horizontal
BqUence | o B
' H(Ij)p_‘l )

. o"-*’? H(p"'l", ~ O ) """_"""> H(p, - 00 ) > H(p,p—r) . > .o

18 'ex'act,_ and H(p-r, -o0) = O, Therefore,

7Ll = 799,
P 23

Further, the horizontal sequence in the diagram

Hmé(p,p-i)
S N

H(p, ~o )~H(p,p-r), and

sl ooprr) %+§+1 (pHr=1,p) ~> B g (0P) D {00,001 )

ig exact, H_(co,p+r-1) =0 for n = p+q+r2,p+q+l, and hence

Ir — . ) : ; . -_‘
Bp,q Bp, q° Then the proof 1s complete.
Definition: If H: (L —> %;\ is a"graded_ covariant -

_'3'- functor, then H 1ig fegul&r if H(p,q) = 0. 1r p £ 0,
and Hn(p,q) ~ 0 1if n < q; 1in other words if t_he hypotheses

of the preceding proposition are fulfilled.
I M, T M|. 1s a differential graded filtered
A - module, then ?Fle 15 a regular filtrvation if
1) -FPMF 0 for p« 0, and
2 F M. | |
) Mp C D

Notice that this definition assures that the covariant
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d - functor assoclated ﬁvith M, Fp M} 1is r‘egulra-r.' : -Almosﬁ (
a1l of the filtration in which we shall be interested have
this property. | ) ‘
We are now in a position to prove the exact
sequence theorem of Serre [5], which Vwirll be used éﬁ{tensive'—

1y later in the notes.

Theorem %4,12: Suppose that H:{l— g/rl\ is a
"rsgu'lar covariant 39- functor , and that 1, j, 'are'
'positive integers with 1< j ,I‘Z 2. Suppose f‘urther '
that 1f 1 {n<j ‘then | o |

| 1) (an,bn) and (cn,dn) are pairs of int‘egers guch '

that n=a.n+bn=cn+dn, and B‘n<911’

2)_'PQ=0 if p+q"—~ —1,p<'a -x, and : (
T2 .
r —
3) By =0 if p+q n, (p,Q)§l(an,b )5 (cn,d )
I —
L) Ep,q— 0 if‘ p+g=n+1, pﬁ)_ §n+ r.

Under these hypotheses there 1z an exact sequence

Er. (o, —00) — Ly g —_ ,'
ajpy 7 Myl T >E03’ J >E&j-1:b3~1 7o
Siry——— I‘ rerrr———
7 Fay,py, T2 i ? Eci’di '
Proof : It follows immediately from the hypdthesés‘ of

-the theorem that Ep, q 0 1if .p +‘q n, |
(p,a) ¢ i(ag,by), (cn,dn)l, where 1 < n <5 From
this fact and proposition L4.10, 'with gradation conglderad,

it follows that there 1s an exact sequence |




3

0 “*—-> Ea by, 7 Hpleo, @) — Ecn:d —> 0.

However it follows from 2) above that 1f n > 1, then either

&) rg_-g = c &, an? Ecn,d s the kernel of .
3,58 g : |
a”:E - — & or
°nsn I
b) rOc =g and EP = EX ,

Consequently there 1s an exact s’equenca

0 — Eg ,b, "‘">Hn(oo,~oo)*—~'-> C,' —>E ..

_ n~1’"n-1
Hox;zever B 4 =% , B2 = EF ., and
n’dll cn’dn ’ B‘n—1"bn 1 ‘-B‘n—i ’bnri’
P is the cokernel of - 3558 - ES
8n~1 sPp~1 cn’ dn > &n-1 ’-bn'-1
in case a, or ES ' in case b. ‘This follows from |
' 817 Pn-1 ' A

2) and k) in the hypotheses of the theorem. Theée facts

combine ‘to imply tha,t‘ there 1§ sn exact sequence

') - o
0 —> 5, n""'> H (00, ~®) — Ecn,b > .

) an—1_’bn~1 > Hn..-‘ > 13d -1
To complete the proof 1t 1s hecessary only t0- contime in

this mammer.

'Def"initon h,13: If M, M' are f1ltered A - modules,

‘then f:M — M' 1s f:iltratiori preﬁervim, or is a map

of filtered modules 1f f£(FM)C FpM_' _for pe 2.
| If f,g:M —>M' are maps of differential

filtered mpduiés, a Homotopy of degree 8 "between f,g

is a A- homomofphism D:M > M such that




1) dD+Dd =f-g, and

..2) D(F M) c p+sm'.

If M and M' are grade‘d, 1t will Be assumed that

'D(M ) CMn+1 .

Propogition k.1k: 1) If M —> M' g -8, l_nap' of
differential filtered A- modules, then f induces
BT (M) —> BT (M) ) : i

& map of differentlal A -modules for r> 0,  and further “”
f M amd M' are graded, then fT(E] ((M))CE] (M')). i
2) If f,g:M — M' are maps of diff‘erential

filtered A~ modules which ars homotopic by & homotopy of

degree s, . then ff = g¥ for 1rds.

Proof: The first part of the proposition is obvious,

and 1ts proof will be omitted. |

. To prove the second part 1t suffices to show

that if D 1s a homotopy of degree & between f and g,
then D induces a homotopy “ D° - betweén 8
and gf. If xe FpM repregents [x]é€ Ep(M), define

D¥[x] = [Dx]e E§+S(M' ). Tt will be left to the reader

to verify that the definition s independemt of the cholce

- of fepresentatives, and that a0 4+ .p% % = f‘s—gs.

The preceding definition and proposition could have

been extended to include maps of covariant @~ functors on d .

However, to avoid complications we now abandon c_:ovar'iant




3~ functors, and for the remainder of this cha.pter congider
only gpectral sequences which arise from filtered modules.
Before proceeding to the proof of some comparison .

theorems, we flrst study. coefficient sequences .

Dofinition h.15: Tf N 1s a differential graded A~ module,

and % 1 & N\ - module, then gﬁN 18 the differential
g_re.ded N -module such that (%@AN) %9@1\ q° and |
d(a@p) = a@db for aeG, beN.  The homology of G XN

18 denoted by H(N; (}) o
If ¢ 1s graded, then g’p@" q 1o the submodule of

. gradetion (p,a) of the bigraded differential module (}GAN y
and d(apb) = (- ~1)Pamdb 1f aeQbeN,.  Thus |
%QAN = Zpg’pg“ N. 'I‘he elements of total degree (or

gradation)n in %@r\ are those of %Jrqsng/pml\f

Definition k.16: Let f£iM—) M' be & map of differential

araded modules.  The mapping cylinder of £ 1s the

differential graded A- module M" - such that

n'=' 1
1) Mq Mq_1 +Mq+M , and

2) dla,b,c) = (- da,db-a,dc +(a) ).
Let 1:M ——> M" be the map defined byA.I
4(b)= (0,b,0) JM" —>M' the map defined by
jla,byc) = £(b) + ¢, andn M =—~—~—‘>M by ) = (0 o, ).
Let D:M" ;_ﬂ>'m“ be defined by Dla,c,c) = (D,0, 0).
If MM' are filtered and f 1y filtration

preserving, define F‘pM = Fp,_‘lM + FpM + F M.
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Proposition 4.17: Under the conditions of the preceding
definition we have ) |
' 1) £=j1,
2) jA 1s the ldentity,
3) dD+ DG = Aj - ldentity, ang
k) 1e p is filtration bregerving, D 1g g
homotopy of degrese 1, | |

Corollapy: Jx * HM") ~——> 1(M"), | ang 1If f 15 a map .

Of filtered modules, then 12:m2(y") —> E2(M').

Dofinition .18  Iet N be g differential graded - module),
f-‘:g' —> gf & map of A~ modules, -Th'en'f'_m 1 :(}_@N ——
g,' @ N, let M bpe the mapﬁing cylinder of re 1+ Then

M 1s t_hé mapping cylinder for N of the gogfficient

omomorphism f, 'Def_ine

FM=@o Zq'gp N, + g"@%ip N+ 0'e %SPNP_

Further let A be the kernel of £, ang ¢ the cokerne].

_ Note that the filtration !FpM_I Induces g filtration
! "= Mo

{FpM } on M M/gm N.

Propogition 4.19: If in addition to the hypotheses of the
breceding definition N 1s a free A - module, then there

15 an exsct fequence

ST E (A —S ) — By(M0) =5 1, (W8) — ..
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Proof: We have Eg,q‘M')~= 0 if g+ 0,1, and -
Ep,1 = g@Np s Eg,o = qup. B;r an eagy calculation

11 = A ! - . . T p
_Ep!1 ® 1\13 , ED,' 6 C@ Np The proposiilon now follows

from Theorem k.12,

T

Collary:  If in addition H,(N) = A+ Hy(N), then
1) Hy(M') = 0 implies C =10, and
2) HyM') = H(M') =0 implies A =C =0, and
£: g => g . '

Proof': The last term of the exact sequence of 1.19 are
L Hy(N;A) — H (') — H, (I;0)

—5 H_ (N;A) —> Hy(M') =2 H(N;0)

Therefore 1f HO(M') = (), we have HO(N;C).= Q, &nd"
since H,(N) = A+ H) (N) 1t follows that C = 0. Now
if € ="0, Hy(N;A) ——> H (M') and the result follows.

7 It is not difficult to prove that 1f A is a
| principal ideal domain, then the exact sequence of .19
- reduces to " . ' |

0 —> Hq(N;{x) — HqH(M') —> Hg,y (150) —> 0
Furthér, even in the general case, there ls an exact
gequence | |
L= By (NGG) — By (N30") > By —H L (NG) —> oo
gince M' 1s the relative mapping éylinder of _ :
ga¥ —> Q'eN. If A=, then 0 — G=> ¢ —5 ¢ —=> 0,
and Hﬁ‘M')’z'Hé(N;C). Thus the preceding exact sequence
reduces to the ugsual one comlng from the exact sequence of

‘coefficlents 0 —> g;—-> (oz_' —> ¢ —> 0. Similarly
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if C=0, then H _ (N;A)= ‘Hq(M')‘, and our exact
gequence reduces to the usual one corresponding to the {

exact sequence of coeficlents. 0 — . —> g.~—> 8f —> 0,

Proposition k,20: Let f£:M —>M' be a map of differential

filtered N- modules, and let M" denote the relative

mapping cylinder of f. Then there 15 an exact sequence
2 2 ! 2l 2
. ' e e —— — —— M‘—'-'-— LRI )
> B (M) — E(M7) — E M) —> By (M)~ P
and further 1if f 18 a map of graded A~ modules, there

are exact gequences .
2 2 1y o - o)
o om—— M) —> E — "y D e
—> Ep,qM) — By oM Yo B M) =D B () D -
for each q. '

Proof:  Iet M' be the mapping cylinder of f. Then

there 1is an exact sgegquence

0 ~—> M i>1v1‘“'—~§—->1\:1"—»—>-0'.

Further there 1s a map A : M' —> M such that a 1is
the identity ‘defined by ala,b,c) =Db. The map A 1is
only a map of N - moduleé,'and ig not compatlible with 4.
However 1t induces a map A0 :EO(M&J — E% (M), and for
this map we nave .A%3% = dbAQ' It now follows
easily that there ié an exact sequence

0 —> E'M) 5 B oM — EW) —> 0.
,On passing to homology this gives rise to an.exact gseguence
P BN > W) —— BEMT) — B )~ -+

_ NQ{ | : L Eﬁ(Nﬁd 18 naturally isomorphic with
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E°(M'). by 4.17 and k.14, the result follows.

We now wish to prove a comparison theorem for
gpectral sequences of differentlal graded A - modules.
Since the hypotheses of this theorem ars 'somewhat complicated,
they will be 1isted first in a section of their own preceding

~ the theorem.  *

Hypotheses. of the theorem: i.et g:M -f—) M' be a map of

‘differential graded filtered A- modules, h:U —> U' a
map of graded A- modules, ®:N —> N' g map of differential
graded A~ modules, and suppose that N,N' are free N - modules.

Finally, suppose there 1s glven a commutative dlagram

g' |
‘{’l - w'l
hxE
U;KIAN - > U.@AN'
. ' ' 1 1 1 t !
where \P(EI’)_’Q(M) ) C Uq,wNp, ¥ (Ep,q(M )) CUq 2N,

'suAch that -¢ and ¢’ aré maps of differential A - modules,
and induce isomorphisms | . '
g, E2(M) > H(N;U) and ¥ :ER(M') S H(N';U').

Under all the preceding hypof:heses;, one has the
followlng two theorems: B

Theorem A: If g, : HM) — H(M') is an isomorphlsm,

h:U —> U' 1 an isomorphism, and if Uy e N+ U, thon
Ey tH(N) —> H(N') is an isomorphism.

fyu
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Theorem B:  If g, tHM) — HM') iafaniiSOmorphiSm,

é&:H(N) —> H(W') 1is én.isomorphism, and HO(N)ﬁsJ\+-H6(N),_ .
then h:U —> U' 1is an isomorphism. L - :

Proof of Theorem A: We may as well assume that h 1is the

identity map.'. Iet M" be the mapping cylinder of g, M
the relative mapplng cylinder. Further let N% be the

mapping cylinder of B, N' the relative mapping cylinder. §
) 1, At . 1 |> ':‘ 3 - ’ S ' ;
Since EP(M ) = Ep_1(M) + EP(M)*fEb(M ¥, welpow nge 8 . I

commutative dlagram:

0 —> B () —> B') —> E'M") — 0
"V S ‘.\p"““ ' " '
. Vo N/ 2 .
0 —> UON —> U® i —> veN' —> 0

of differential modules such that the horizontal iines are ( |
exach. Passing to homology, we have the commutative , i

diagram

. 2 o 2 | S, 2 My e N s
: : > Ep:q M) > Ep;q(M ) > EP,Q.(M ) > EP“?;Q(M)‘ >

(
ia¢ ' !s& | ’.- | I ad
, v A ‘ _Sf : OV
' . . . A L ", ___, | . —_— e
D BT D (50— B (N5Ug) > By (N50) =

ﬁith exact horizontal lines. Thérefofé, by the » -lemma,

we h_ave B2 q(M") cpr(N'f ;Uq'). ' Nowfs'ince g, H(M) == 'y

2

we have H(M") = 0, and hence E;?q(Mﬁ) = 0 for all ©p,d.
- ’ e .

Assume. that Hp(N") = 0 for p < Por This means that -
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HP(N )—- o for p<p0, or that Ep q(M 'Y= 0 for
- P < pO . However d Epo’ "”‘—> EPO"I' 11 and therefore
0
= 0, = 0.
we have Epo’ Epo’ or H? (N,U ) 0] Now since

U,.= N + U this means that H? (N") = 0, and proceeding
inductively we have Hb(N") = 0 for all p. Then because

14,

N was the relative mapping cylinder of g: N —> NZ g;:H(N)—{}EKW)

is an isomorphism.

The basls for the preceding argument may be found
by making a diagrem for E"(M") by plotting Eg q - 86 the
point (p,q) in the first quadrant of the plane.

v Bpen qer-1

i | : ]
onq . + pJq

r
Ep;

Now in this diagram ar is reprasénted by an arrow golng

up and to the leftb. In the preceding argument the assertlon
" — . ) ll\- - :

that H,(N') = 0 for p<{p, meant that Ep’q(M )= 0

for. p < Pg» OT that only O groups appear 1n the shaded
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~ portion of the dlagram

N

. N .
Po71 . Po
Consider now Eg o : 1t sits on the horlzontal axls, and '
0 ._ . i
. therefore contains no boundaries. Further since ‘dr slopes - -

up and to the deft, 1t is mapped inﬁo ZeT0. In other words B
we have the well—known.principle that a spectral sequenné

with EP= 0 identically has no corners. . ' .

Proof of. Theorem B: In this case we may assume that @

~is the identity. Iet MV be the mapping cylinder of g, M"
the relatlve mapping cylinder, and let N" be the mapping

| eylinder of h®1:UgN — U'eN. lWe then show as before
thaﬁ E<(M") = H(N"), and recall thét N" 1is just the
mapplng cylinder aséociated witb a coefficient homomorphi am

which we have already studied (L4.19 and the corollary to b.19).
. - . ’ !




— 4
21 8

L _ o o
Let .Aq be the kernel of h.Uq - Uy » and let Cq

be' the cokernel. Now since o S H(M) ~—> _H(M’) is ail
{gomorphlsm, H(M") = 0, and Egjq(m") . Therefore
2

o2 ' - 2 t .
oM") = 05 but Ej (4') = H(N;C().  Therefore G, = 0.

Now we also have E12 0(M") = HO(N; A, )y =0  from the corollary
s .

af: BT —_— E

to %.19. Therefore AO = 0, Suppose now that Aq = Cq =0
N e
for g < qy- Then Hp,q(N y = 0 for g < dgs OF

" . r 1} —
p,q(M ) =0 for q< P This means that Ep’q(M Y =0

for q < dyo r>2. Conglder Er 9. It consists
- 0:Q0 S

entirely of dr cycles for r>2, and since

it contalns no boundaries. " There-

r,qytl-r 0,4, ’ '

2~ _ g® -
fore Ej 0,4 Eo,qo 0. However, EO qo = H, (N ; Cq ) and'
this means that C_, = 0. - Now consider EY . Agaln
. ) Q() - ' . 1 3qo
1t consists entirely of ar cycles for 1'2 2, and contains
‘no boundaries. Therefore E ECD = 0; Dbut

1,dp ’qO ,
E2 = HO(N;A } , and therefore A, = O. Proceeding
1544 Qg g ,

by induction We_ have Aq = Cq = 0 for all q, so that

h: U —>. U' i8 an isomorphism for all q. Thus the
prfoof 18 complete '
The idea of the preceding proof 19 agaln that there

can be no "corners” in a spectral sequence with EP= 0.

‘For E° =0 for gq¢< dq means bthere are only 0 - groups

!

P,q
in the shaded region

aT&(

EI' x& l( .
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A version of theorem A I1nvolving only spectral

sequences was proved by Borel, and by Serre, but is un--

publighed.  However, theorem A as it stands will sufflce

for what we need here. For completeness we now state

a well known theorem of leray.

Theorem C: If h: U —> U0 49 an.isomorﬁhism, and

gy :H(N) —> H(N') 1s an isomorphism, then
gy tH(M) —> HM') 1is an,isomorphiém.

Thig theorem may be proved by the usual procedure

of observing that since g2 5P (M) —> E® (M") i1s an.
| 1.somorphism, gS:EO(H(M) ) —> E0(EM') ) 1is aléovan

.~ isomorphism.
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. Chapter v

DCA Algebras and_the Construction of Cartan

| We shall nowprepa:r’e to m_ake Cartan's calculatlon
of Hq(X), where X-V is an Eilenberg-—Maclaﬁe gpace; 1.e.
: TTq(X) =0 for q+ n, T (X) = T . A number of prelimi-
nary notlons ai-e Iiecessary before we can actually do this,
and we shall pregent these in a mannsr simllar to that of
{11, Iﬁ the course of thif_s work we shall obtaln a special
— ¢ase of a theorem of Borel [2] which 18 useful in the study

of the topology of Ilie groups.

Conventions: In this chapter A will denote a fixed com- -

mutative ring with unit. If N and N' are graded
. '

N - modules, N =%, 5Ny, N = 5o, then N, N'

1s the graded N -module guch thatb (N@nN' )Il =

Trio=rlr @ N'g-  If NN’ are differential graded

A-modules, then N®, N' 1s a differential graded

- N~ module with

d(x@y) = dx®y+ (-1)" x@dy

yeN' .

for xeN,,,

Definitions: A graded N -slgebra 1g a pair (A,d)
> A
18 a homomorphlsm of graded A - modules such that 1f we

"where A 1s a graded A -module, and nb:A@nA

denote ¢{x® y) by x.y, then (x.y) z = (x.y)-z.
If', in addition to the preceding, A 1s a
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differehtial graded A - module, and ¢ 1ig a hdmomorphi:‘sm

of differential graded 1\_-- modules, then (A,¢) 1s &

differential graded N - algebra.

Uéually elther a graded N - algebra or a
dlfferential gradéd A_—a.lgebra will be denoted merely by
the syxﬁbol for its underlying module . o

| Thé graded (- algebra A has a unlt if thers
oxists an element 1¢ AO guch that 1.x = x.1 = x for
xe A, and 1t 1s anti-—conmgaﬁétive 1f x.wy = (-i)ray-x for
Xe€ AP:y eAS.

The ring N 1itself wlll be considered as elther

1) a . DM~ module, | |

2) a graded N-module N guch that N =0

. for n» 0, and Ny = N

3) a differentlal graded A - module with d = O,

k) a graded A - algebra, or

5} a differentlal graded M- algebra.

, Ir AA' are (c_]if‘ferential)" gmdéd N ~algebras,
then A@AA' is the (differential) grafded i\~ algebra such
that (x@y)-(x'®@y') = (-1)"¥xx'®@ yy' for x'eA,yeAl.

Notice that 1f A 1s g graded N -algebra, then
the multiplication ¢ :AgA ~—> A 18 a homomorphism of
graded A- algebras if and only 1f A 1ig antl-commutative.

Definitions: An gugmentation of a (differential) graded
> A of (differential)

A~ module N 1s a homomorphism ¢ :N
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‘graded A -modules. A DGA-module 18 a differential L (o
graded (\ -module N together with an sugmentation L

PANR
If N,N' are DGA-modules, then N®N' is a

¢ :N

DGA-module with ¢ (n®n') = ¢(n)¢(n').
An gugmentation of a (differential) graded

A-algebra A is a homomorphism ¢ :A ——> A of (differential)
graded N algebras wlth unit. Note that this implies that
£ 'is an epimorphiém. A DGAnalgebra 18 a differential
>N .

graded A'-algebra together with an augmentation ¢ :A

- Example 1: let X be a semi-simplicial complex. Then

C(X)N® A 18 in a natural way a - DGA-module. It already
has a diff'eréntial operator and a gradation, so it suffilces
to define an augmentation. - This is done by setting £ = O
on positive dimensional elsments, and E.‘(x ®n) = N for

xeXy, NEA

Example 2: 1t was polinted out.in Chépter IIT " that if

X,X', X" are seml~simplicilal complexes, then the diagram

(ORI ®OX" )@ CX" )y o (X X Xy @(C(X" )y _y
| lw C{XxX 'xx" N
, wy 10V . ooy
C(X)yy @ (C (X ) @C(X" )=y CIX)OC(X'x X" )y
1ls commutative, |

Thls means that if  1g a monoild complex, and

a multiplication is defined in C(F)N by the diagram {
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C(M®C(My —2> C(PxPYy —> O(r)
N N N N

where C((‘x(‘)N — C((“)N 18 the homomorphism induced

by the multiplication in [ , theil Ciry is a differ-
ential graded algebra over the ring of integers. Further
i1t 15 not difficult to gee that the unit of rlO glves rise
to a unit in the algebra C(()y. Consequently C(r')y@N
13 in a natural way a DGA-algebra. Finally if [ 1s com- -

mutative we have a commutative diagram
v
C(P)N @ Q(T")N — C(FXF)N '

T s oy
Gy ® C(Fy ——> C(Pxry "

 where T(g{ oy) = (-1)® y@x for y of dim s, xof dim r,
and T' 1s the map induced by the map of [ X r Into
1tself whlch interchanges factors. Therefore, 1f  is

comnutative, then C((‘)N ig an anti-commutative DGA-algebra.

Exauple 3: If A 1s a DOA-algebra, then Hy(A) =%H (A)
1s a DGA-algebra with d identlcally zero.

" Definition: If A 1s a DGA-algebra, then a graded .

augmented (left) A-module 1s a gra_c'iéd dugmented module M

and a homomorphism ¢ : AQ%M > M _of graded augmented
modules such that 1f we write ¢(a®@m) = a.m for
ae A,meM, then a_-(a’,c.m) = (ara')ym for a,a'€eh, and

Tem = M.
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M 1s a DGA-module over A 1f, in addition to the

preceding, ¢ 1s a homomorphism of DGA-modules.

Q_efinitiog: Ir A,-A'_ are DGA-algebras and f:A ——> A
1s & DGA homomorphism, M & DGA~module on A, and M' a..

compatible with f  1if the diagram

fog

WM

Ag®
M

1s a commutetive dlagram of zﬁaps of DGA~modules.

! !
) A K_’;\M

> M

Definitiont: If A 1g & DGA-alfgebra, 'then a gonstruction

on A consists of ,
1) © a flltered DGA-module M on A such that if
meF M, seA, then anmerM

P
_ 2) a DGA-module N, )
P 3) & homomorphism of DGA modules p:M —> N

which is compatible with s :A —> N, and

@) pe(i@n) = q,

b) pFI,M C 2q<rNI' 3

©) AT F(AeN) =% (rAON

‘n s then
VE(A® X)) CFM, and

*—*

D@A-module on A', then g:M —> M! '.i_é a D.GA-homomo,l_rglg" lsm

4} & homomorphism of graded augmented left A-modules
V :ARp N — M subject to the followlng conditions:
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d) VO:EO(AQA N) > _EO(M) is a homomorphlsm of
DGA-modules such that v“:E'(A@, N) ~= E'(M).

A construction on A will be denoted by
(A, N, M).

Definltion: A construction (A,N,M) 1s fres If

vV :AgN --'—~> M 13 an isomorphism of filtered A -modules,
and N 13 a free A-module, In this case we will fre-
quéntly ddentify AQ@N and M as AN -moduleg. Note,
however, that the differential operator in M 1is not
_necessarlly the natural one of A®N; in fact it is usually - -
twi_sted; | | '

Dofinition: A DCA module M 1s acyclic if € M —> A

induces an isomorphism €x tH(M) —> A , or in other
_ . .
> A

d : .
.« Pereetrem— P [ 3 ] d
words 1f —_— M > My — Mg

1s an exact sequence. _
A construction (A,N,M) 1is 4cyclic if M 1is
acy'clic. '

Theorem 13 Let '(A,N,M) be a free construction,
(A'",N'",M') an acycllc construction, and f:A —) A!

a DGA homomorphism, Under these conditions thers
)-M' which 1s com-

exlats a DGA homomorphism  g:M
patible with £, If g' 18 another such homomprphism,
then there 1s a homotopy D:M ——> M! guch that




T

dD+.Dd = g —-g', and D a.m'=_ (-1)F £(a)Dm for .
~ae A,  Further if the filtrationon M 1is regular
then g 1s filtratlon preserving, and D 1s a homotopy |

of degree 1.

Proof:  Let C, be a basis for N, over A .

-Fpr this proof, idemtify x e C; with 18X eM. Now if
xeCo, define g(x)} to b_e.an;)r element of Mc') such that
¢g(x) = ¢(x). TIf ye A®N, then 'y may be written
uniquely as Zaj® x; where Xx;¢ Cy and gly) is
defined to be Z_f(aj) g(xj). ‘

For x€01, we have dx‘eAﬂNo and .| |
£(dx) = 0. Therefore g(dx) 1s defined and ¢€g(dx) = o.
Define g(x) to Ee some element of M% “guch that dg(x) =
g(dx). Now 1f ye A®N,, vy ;Z 8y mxj where Xy € Q1
end we define g(y) to be Zf(aj) g(xj). |

Suppose now that g 13 defined on

AR Zq(r I\T‘:l = Fr~1 M, For xe(}r;" we have
dx e FP_1M, g{dx) 1s defined and 'dg(fix) = (0, Therefore
we may define - g(x) to be any element of M‘I, guch th&tl
dg(x) = g{dx). Congsequently the exlstence of g 1g
proved., |
Iet g' be another map compatible with f.
Then for xeCO, ¢g(x) = €(x) = sg‘(x), and
s(g(x) -~gt(x) )= 0. Define Dx "to be any element of
M; guch that dDx = g(x) -g'{x). Now extend D to
FM by defining Da ® x = (-1)7f(a)Dx  for xeh,. (




,for’ xeC

e
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Supposge tha.t D is definsd on Fr-— M « Then
P’ we ‘have dxeF M g(x)— '(xr)_-Ddx is a
cycle belonging to Mr , and we define Dx -to be -any
element of MI',+1 guch that dbx = g(x) -g'(x) - Ddx,
"Notice that g1 ® Nr) C.FIM' if M' has a
regular filtratlon (1.e. M} CFM! ), and then
g(A@ N ) C FIM' gince for x&A' meFIM‘ we have
X-me FI,M'. 1 The game reasoning shows that DFI,M C F M

or that D 18 of degree 1.

Definitons: . If (A,N,M) and (A',N',M') are constructions,

.a mgp of the first into the second consists of a DGA -

homomorphism f:A —> A together with a filtration pre—'
serving DGA homomorphism g:M —> M! which 18 compatible

- with f. Under the preceding conditlons the map of con-

structions will be saild to be compatible with f. Further,
gince g 1g filtration preserving, g Iinduces

'Er(l\}i)' ¥—--'-'—> EN(M!), Now consider f\ as an H(A) module
by defining x.8 = X+ & (&) for xe\ , a<H(A). Similarly
consider I\ | 88 an H( A'Y module, 'Then N —-A@H(A)E (M),
gand N' = A& H(A! )E (M'), and thera is a  DGA homomorphlsm
g :N —> N' induced by g‘} or by g. |

Theorem 1: Iet (A,N,M) Dbe a free constructlon, (AT,N',M")
en acyclic constructlon with a regular filtration, smd

> A' a DGA homomorphlsm. Then there is & map of

‘(A,N,M) into (A',N',M!') compatible with f. Further the

1nduced homomorphism EX“:H(N) —> H(N') 1s independent of
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the cholce of such a map.

Proof': The first part of this theorem is. just
a restatement of Theorem 1. To prove the last part s‘uppose
g,8":M —> M!'  are compatible with f. Let D be a
homotopy between g &nd g! satliasfying the conditions of
Theorem 1,. and define D:N —> N! 'by. Dx = pDx for
xe C, where Cr 1s & basié for I\I11 ad 1n Theorem 1, and
> N'  1is the projection map of the construction

DMt

(A',N',M'), One verifies easily that dD + Dd =-E - g,

Theorem 23 Supposde tha.t (A,N,M) eand (A',N',M') are
~ constructions, f:A —> A' and g:M——>M' are DGA

homomorphisms which determine a map of éonstructions, and
N,N' are free N\ -modules. Under these conditions 1If
fx:H(ﬁ) > H(A!) 18 an 1somorphism and gx:H(M) —> H(M!')

15 an 1somorphism, then ?gX:H(N) > H(N') 1s also an

isomorphlsm.

The preceding theorem 1s almost a special case of
Theorem A of cha:pter_r 4, The difference is that we have
not gsgumed that the isomoyphlsm H(A)'®N — -E1(M) 1g
compatible with differential operators, Thls, however,
s the case 1f Hy(A) = A . With H (A) = A , the
map p:E(‘M ,._;_,.> Nq 13 an isomorphism, and therefore the
differential operator d! 1is of the correct form on
ZQEJI;O' Now as & left H(A) modulg;,. EIQ(M) = HA)® N,
ad  d'(x®y) = (-1 e (1oy) = (-0 Xx (1 p ay) =

(-1)3 M X ® dy, and we see that in this case the

< —

|
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differential operator 1s just the usuai one in;VHKAJ‘w N.
We will now indicate the changes necessary in the
procf of Theorem A to prove the sbove theorem without the
gggumption that Hy(A) = . Let M" be the relative
mapping cylinder of g:M ——> M', and N" the relative
mapping cylinder of E:N ——> N!, It 15 easily seen that
E’(M") = H(A)} ® N", and to usge fhe-same proof asg befofe we
need to know thsat E; O(M") = 0 for rq S.p 1mplies that
E; q(M“) =0 f?; all dq.
Iet N = HO(A) ® N". We haye a differential
operator in N induced by d'.  Further
E'(M) = HA) Oy (x) 8. Lot o ve any right. Ho(A)
module, and define. H(N ; G) to be H(Gﬁ}H (A) N ). Now
o) = B H (A) ), and W - Amy () N'. There-
fore to prove the theorem it suffices to show that
Eﬁ(N#;HO(A)) = 0 for ¢< p lmplies that HQ(N%;G) = 0 for
g {p for any right H,(A) module - G, However, the fact
that H (Nf;H (A) ) =0 for q<p implies that Hy(WHF) = o
for q<{p where F 1is any free H (A) module. Suppose
now thet 0 —> R~—>F — ¢ —> 0 . 1s an exact sequence
of right HO(A) modules. Then since N 15 a free
'HO(A) module (this follows since N" 1s a free A -module),

the sequence

O RO N D F oy W —>a © g (ay' —> 0

1y exact, and there 1s a resulfing exact sequence

*o— Hy(IGR) - —> Hy (N;F) > Hy{N;G) —> H _ (NGR) —> ««+

57
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Consequehtly for F free we have Hq(N;Gd ﬁin-1(N5R) -
for g g_p,- and by induction thig implies the desired (e
regult.

| Having given some properties of constructions,
we ghall now show how they arise. We shall first prove
that eny twlsted Cartesian product (17,B,E) (Definition 2.1%)
gives rise to a construction, provided 1s & monold com-

plex. To do this,some‘preliminary definitions are needed.

Definitions: If (T ,B,E) 1is a twisted Cartesian product,
let V”:C(VON © C(B)N —_ C(E)N be the compogition of fhe -
natural map V :C;V)N ® G(B)N —> C(T'X B)N- of the

Eilenherg-ZilbeP Theorem (Chapter 3, p. 17) and the.;dentl-.-'
fication of- C(E)ﬁ and C(17'x B)N as groups. We shall ' .
say that a simplex o ¢ E 1g of filtration p 1if its

pro jectlon lies in the p-skeleton of B, l.e. may be written

as 311---81rt5' where teB 1is a‘simplex of dimension
less than or equal to p. Define FPC(E)N to be th? gub-
group generated by simplexes of filtration p. Further
when [7 18 a monold complex conﬂiderl C(E)y -as a left

‘C(F)N module by using the diagram
v S
C(My ® C(E)y — C('x By — C(E)y
all maps belng the natural ones.

Propogition: If T 1s a monoid complex, and

(7,B,E) 1s a twisted Carteslan product, .then
(C(F)N,C(B)N,C(E)N) 18 a congtruction with a regular
filtration,

@ L 4
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Proof: Al‘l statements which need to be \ferifi_ed.'
follow at once except the assertlon that
v:C(r')N ® C(B)N —_— C(E)N commutes with a® . and
induces an isomorphism  §! .H(C(r‘)N) e G(B)N — E! (C(E)N)
We shall prove this by showing that E° (C(E)y) = E°(C(rx B )N),
that this identificetion 1s compatible with d°, and that
the proposition 1s true for a Cartesian product.

’ First identify E and "x B as sets. Then we

have to consider ?i(e’ xT) where @ x T 1s of filtra-
tion p. If 1> 0 it does not matter whether we mean

the 1-th face operator in E or ™ xB by 3, . If

1 =0 W_e sti1l hé,ve the relation E]O(q‘x T)= 450" ’60(1}:1: ).

The fact that @ x ©  1s of filtration -p means that

T = sio.'.'.sirz:' where '.1:‘ e..B hag diﬁlension less than
or equal to Dp. If ' has dimension less than p, then
T xT represents the zero_element in C(E)N.. Thersfore
assume that dimension (T') = p. . Now 30(1 XxXT) =

0 (1x si “'Si T')y= 3 051 ...sir(j x7')., Assuming, as

we may, that 1 0? ...> 1, 1t follpws that the element

d 1 x2) = 8-10“1 comy g 90(1 xt!) 1s of filtration (p-1)
unless ir = 0. In this case 30(1 x )=

85y _1...8111 . (1 xt'), and this formula is Iindependent

of whether we mean the 0'th face operator of E or I'x B
by 30. Thus, we have sghown that EO(C(E)N) = EO('C(T‘X B)N).
It therefore remains to show that .

7 1E(G()y) ® C(B)y — B (C(MxB)y) 1is an isomorphtsn.

To show this, recall that we have defined a map




F:0([ x B )y 7> C(I"y ® C(B)y (Chapter 3) such that
£V 13 the tdentity! and ¢r 1s homotopic to the
identlty. Since f 1s filtration Preserving, f! V'
ls the identity, and to rrove the propos;tion.we need only
show that ¢'f' 1is the ldentity. Forlthis it suffices
.to know that the homotopy of f with the identity 18 of"
degree .0. However, this is indeed the case, for the
homotvpy 1s.natural
.. | The following comments may help to clarify the last
:assertionm The fact that the homotopy' 18 natural mesns
that 1f f:X —> X' ang g:Y —> ¥Y' are maps of gemi-
simplicial‘complexes, then the homotopy commutes with the
> C(X' X Y‘)N, However,

induced map of C(Xﬁx Y)N
any simplex of & Cartesian product X x Y 1ig the image of
a gimplex of Ap Xlﬁq for some P and ¢, and every
glmplex of ‘Ap or zsq ‘can be obtained by applying face
and degeneracy operations to the basic simplex. Therefore
the fact that the homotopy 1s naturasl means that it may be
expressed by using faﬂe and degeneracy, opesrations. HOWGVGP,
from the very definition.of the filtration onn the chains of
a Cartesian.product or a twisted Cartesian product proauct
it 1s evident that the filtration.oan not be raised by

applying face and degeneracy operations.

Definition: A construction (A,N,M) satisfies

the condition B' 1if

1 In Chapter 3 it only stated that fv  is homotopic
to the identity, However, one verifies eaglly that it is
actually equal to the ldentity.
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1) €& Ny =D A, and
2) xeZy (M) and £(x) = 0 imply that there

exlsts a unlque y e 9(1 © Nqﬂ) such that 'dy = X.
The construction satisfies the condition B 1if it

gatisfles the condition B' and 1s free..

. 'mgorem 33 I (A.N,M) 18 8 f‘rée construction,
(A',N',M") 18 a constructlon satisfying the cor;dit.ion B!,
and. fiA ——3 A' 15 a DGA homomorphism, then there is a
unique‘ map Qf._ (A,N,M) 1into (A',N',M!) .such vthat v{1 @ N)

maps into V(1 ® N').

One we note that the condition B! implies that
‘the construction is acjclic , the proof of this theorem is
entirely similar to the proof of Theorem 1, except that at
each stage where a cholce had to be made in the proof of
the eérlié:r- theorem, there is now avallable e unique element

of V(1. ® N' ) éatisfying the requir_ed Aconditions..

Theorem #: If A 13 a DGA algebra, and kernel
€ A > N\ 13 a free A -module, "there exists a con-

struction (A,N,M) satisfying the éonditi-on -B. Further ir

(A,N',M'") 18 another such construction, then there 13 a
unique lsomorphism of (A,N,M) with (A,N',M') which maps

(1 ® N) into v(1 ® N').
The uniqueriess 18 clear from the preceding theorem.

It remsins to prove existence. This will be done in two
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different ways. The first way 1s ‘perhaps more intuitive,
but is valid only 1f N isa principal 1deal domain.

First proof of existence: We assume now that N
is a principal ideal domain. Recall that over &a principal

ldeal domain sny submodule of .a free module 1s free.

Therefore A = kernel & :A - > N 1 automatically free.
Proceeding with the construction, let N,=A
. = ' N
MO = AO'®NO “‘AO" let N1 =_A0, lV'i1_=A1 ®N0 +_A0&N1,
and define d:1 ® NI — AO- to be the natural map,
Suppose that N. and M. arve defined for qafr

q q
g0 a3 to satlsfy the conditlon. B. We have

My= Zjgeq My @ Ny.  Define N, = kernel d:M,, — MH.,
erd M, = Sy, pq A ®N,.  Further defins .

d:1 ® Nt — M, to be the natural map. It 1is now
evldent-that (A,N,M) 48 a constructlon satisfying the
condition B. | ) )
. Second proof of existence:  Again let A denote
kernel £ :A > A . Define E"?(A) = I\ , and for

n > o, ﬁ-nm)_ to be the tensor 'produc;t of A with itselfl

n-times, and denote an element of BT(A) by [ai,;..,an].
Define a new gradation in B™(A) by' setting dimension
a8, =n+ _Z’xi where d; = dimension ay.
Define B(A) to be = B™(A), and B(A) to be A @ B(A).
The object now is to place a differential operator in

B(A} so that (A,B(A), B(A) )is a construction gsatisfying
the condifion B.
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Consequently d 1§ defined, and a® =

“then x = d[x]. Suppose that we also have x = dy,
. where ye€ PT(A.); then y = s(z) where &(z)= 0, and

N e ) . EOE . A -
e - . . c . . _..-.‘:‘ "53 N ‘G)b‘

Demote A @ B™(A) by BYA ) ' end denote an element
of’ this module by a[&1,...,a I+ Define s:B(A) —> B('A).. ©

" by setting s(a[a1,..-.,,an]) = )[av— £(a), a1,..;,e;n]. We

want 8 to be a contracting homotopy for B(A), 1.e.
we went the relation  ds + sd = 1- ¢ to hold, where 1

1s thé identity map.  Since B(A) 1s to be g loft

'A-module we shall have the relation d(a.x) = (da).x+ (- 1) &-dx,

where A = dimension a. Therefore 1t sufficee to define
d on é’(A). én EO(A), d 1is zero. On B1 _(A.) define
dla;1 = a, € AQ® ﬁo(A:). Assume that @ 1s defined on
BT (A) for r{mn, such that d:B° (A) —> BU(A). A
typlesl element of B2*1(a) may be written as

la,5.04,8 1.  Define dla

n+1] = sa {ae,.,.,a

N1 EAREEL W

8, [ee,..._,a'nﬂl TRy n+1}’ Then dd[a sesey n+1]

da1[a,2, T S ] --c;ierlia.1 {8,2,'. RPN ], and assuming by in-

- sda, [a
duction that ds + sd = 1 -~ € this last expression is zero.

To show  that this conetructien satiafies the
condition B, suppose that x e B(A)'0 and £(x) = 0;

a([x]-8(x)) = da(x-z) = 0.  However, .(x-z) =
de(x-z) + sd(x-z) = 0, and x. = Z, 80 that y = [x].
Now suppose that x€ B(A)q, a >‘ 0', end that dx =.0.
We have X% = dsx, where sxe¢ B(A), and If x =dy




where ye B(A) ‘then y = 8z, and ds'(‘x-*z) = 0, This (”\
meang that x~z = gd(x-z), s(x-z).= sed(x z) =0, and | |
cOneequently 'y = 8z = 8%, The proof of the theorem
18 now complete. _ |

In nelther of the preceding proofs have we shown
how to obtaln the differemtial operator in N 1in the |
: cemtruction (A,N,M)._- The construetion, however, is Tree,
so that N= A® , M, and the differential operator in A
N 1s the natural induced ons. | | |

Proposition: Lot U be a monoid complex, and let
(A,N,M) .be the construction arising from the twisted
Carteslan product ({ ,W(P),W(ﬁ') ). Then (A,N,M) satisfies

_the conditign B!, S (
Proof: WO' ‘has one element (cf‘.definition 2,173},

and consequentiy q :AOE)NO —> MO 'ig an isomorphism.
Further 1f 8 1is the centractin,g hometopj for W(T)
uged in the proof‘ of 2.15, then 8 e'e.ti.sfies the 1dentity

°SQ==BOS, and 3:Wq 2 x WQ+_1 . 1s Qﬁtq. . Conseciuently,

a+t
denoting by 8 the induced contracting homotopy on M, we.
have 8M —> V(1@WN), 32=0, and sf—>yueh

18 ‘an epimorphism (recall thet if € 15 a DGA module, then

G = kernel & :C —> AN ). - Suppoee, therefore that if
X € Mq 18 such that g(x) = 0 for q = 0, or dx =0
for q< 0, then x = da8x. If. X = dy, ‘Where ye v(teN),

then y = Sz for some de ﬁ, and S(x z) = 0. -Con-
sequently x -z ='Sd(x-—z), S(x-z) = 0, and_ y = 8x. This

proves the desired Eriesult.
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Definition: Let (A,N,M) and - (A',N',M') be con-
gtructlions. Consider (A® AV, NON',MBM!'). Define

v A@A'M\mm' —> MOM' . by v(ama' ®n®n')

(- 1)/5 V(axn) ® v(a'xn') whére ‘o = dimension a'

and 8 = dimension n. . Suppose that M @ M' 1s provided
with the usual filtration, 1l.e. F- (M ®M") - |

‘ A Zi‘+s=p FI,MEF M!', and the usua.l differential operator. 5
Congider M ©@ M! as a left A @ A! ,module by defining
(a®a').(m@m') = (-1 )dv.r g.an ® a'm! where d = dimenﬁion

" a, and.y= dimension m.

Pronosition. If  (A,N,M) sinﬁ (Ai'N"M‘)' are’co.nstructions

whose underlying modules are free over N , then .
(A®A'",HN @ N* M o M') 13 a construction whose underlying
modules are free over N\ . If in addition '_ |

1) (A,N,M) and (A', N‘ ,M') are free, then
(ADALN®N MOM) is free, and

2) if (A,N,_M) gnd (A',N',M) are acyclic, then
(A®A N N' M o M) 1s acyclic. .

The proof of this proposition follows lumediately

from the definitons.

Co’rollai*y: I A,A" are DGA algebras such that A,A
are free as N -modules, end (A ® A',N,M) 1s an acyclic
construction such that the underlying modules are free over
A . then H(B(A) B B(A1)) ~H(N).  If H(B(AD) is e
free N -module, then H(B(A))® H(B(A")) = K(N).




LN G ) LA A S

LT ) e
5-19.
Notation' - Let E(X n) denote the 'exteriof algebra over (“

r\ with one generator X of dimension n, In dther words

E(K;n)q = 0 for},_.__ q +# 0 ST E(x,n)0 ~ A with basis element

1, the unit of E(x,n); and E(x,n)n _z N ,' with bas,is .

element - x.  In the algebra *° = 0.

Let P(y,n) denote the divided polynomial ring

" with basic element y in dimehs‘ion . In other words

P(y,n) = 0 unless q 1is of the ‘foi'm kn for 'soﬁle
non-negative integer k, P(y,n)kn,_ N with basis element
Yics yo 1 is the unit of the algebra P(y,n), y1 = y,

“and. the product in the algebra. is defined by Y= ! I Yy R

Notice that for n odd', both E(x n) and

.?(y,nﬂ ). are anti ~commutative. - For each n we dafine

a free acyclic construction (B(x, nj, P(y,nﬂ) M) as A - {
follows: since the const:r'uction is frée.
v :E(x,n) ® P(y,n+1) AN M,- ami we will assume that
13‘ the ldentity map aé far as modules' are c_oncerned. De-
fine d(1 B yk+1) =X B yk; d(rx © yk-)l‘ -’--‘.0.__ Nowv' M ‘18 an .
algebra with an additive base [x & y.,;1 ® § 1. Further
amj ® v @) = a1 8 wy¥y) =a((M0eyy, ) -

1+ ‘ - . . _
(71Y) x @ Vipj-q» ond a(r @ 7y )1 ®y4) '+ (1 @yl @ vy =
(x@y; )1 @7y + 1@y )xBY )=

1 IR TS N |
(G T x ey = D x ey,
These calculations show that d 1s an anti-derivation

on the algebr& M. Moreover, 1t is ¢lear that the algebra /

M ‘1,5 acyclic. Its structure 1s désci‘ibed'by' the dib.gram (




1) ey 30t
i‘@v(y,nﬂ).‘

Combining the results of the calculation ‘Just made s the com~
parison theorem for constructions ’ e.nd the previoue pro- -

poeition concerning conﬂtructione over tensor products » We

‘-obtain the f‘ol]_.owing regult. ‘ Suppose that

(B(x,,n;)e. .. ® B( xk;nk), N,M) 1§ an acyciic' coneti_ructien-
with N and M free A —medli]__es. Suppose further. that.
ny - 1s odd for 1= 1,. ..,k. | In this case .,

H(N) = P(;gr1 5T +1 Y®... 8 P( yk,nkﬂ ). This result 15 quite

weak, but we he,ve & much stronger result due to A. Borel [2].

-Theore;g:‘ 'Suppoee that '(A'N M) 15 an ecyclic construc.tion

such that the Lmderlying N -modules are free R and that
H(A) =~ E(x X, 1, 1®... ®E(xk,nk),' where ni 18 odd, for

1= 1,...,k. In this case H(N)~ P(y1 s+ Y., .®P(yk,nk+1').
. { S :
Proof: It 1§ sufficlent to prove thils theorem for the con-

struction (A,B(A) ,B(A)).  In other words 1tis sufficient

to prove that H(B(A))= P(yT,n + 1)@...@P(yk,nk+ 1), To

do this we Shal;L look &t & spectml sequence for B(A)
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© As usual let A = Kermel & A———) "
- and recall that if we define B <(A) =A® ... ® A4, the
tensor product' beilng taken k-times, then )
.E(A) = N+ BTA) + ... +’J§"“(A)+... . In B k(A) the -
‘dimension of & typlcal element [a,,...,8,] is S o(i + k:,"
- where o(i is the dimension of &y .
~ Defime F,(B(A)) =Z k_'<p""k(A). Then
EY(B(A)) = N+ H(A)+ “HA® ... ®R)+ ...  with the

appropriate conventlions Conﬁerning dlmenﬂioﬁﬂ. Now if

H(A) 5__5' a free N -module, then H(A B ..o @A)

AA) ® ... ® H(A), and B! (B(A)) = BH(A)). Furthe_zr 1%

is not difficult to verify that_in.this:case ,EE(EIA)) e

H(B(H(A))). However, we have more'déta avallable, iWé o

have assumed ‘that H(A) —-E(xl,n.) 8).;. ® E(xk,nk) Con- (

sequently by our earlier remark H(B(H(A))) =

P(yT,n +1)® ... 0 P(yk,nk4-1) This means that the total
degres or dimension of every element of EQ(B(A)) 18 even,

and therefore that E“(B(A)) = E (B(A)). - We then have
CB(y,m 4 1) @ © Plrpn+ 1) = B (B(A)) = E°(HB(A)).

Since EC(H(B(A))) 18 a free N -module wé now see that

H(B(A)) = F(y,,n+1) @ ... ® P(y.om, +1), which i the

desired result.  Note that this last lsomorphism is not

natural,
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Eryats_to Chapter IV

p.h-2 line 9:  read tpunctor H:A —— qm“. instead of

npunctor Hif —> A"

p.h"10.1ine 5: read "theorem of Serre [51" 1nstéad‘6f
"theorem of Serre [ 1." K
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