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Universal Coefficient Theorems for K-theory

by D, W. Anderson

This paper supplies some universal coefficient theorems
for K-theory. 1In the first two sections, we glve as applica-
tions calculations of the KU and KO homology of various

spaces arising from groups.
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There are two proofs of the universal coefficient theorem
for KU* given here. The first, in section 3, proceeds by
providing the theorem first with Zp coefficients for op
prime (this would work equally well for p any integer).
Then a geometric resolution is used to obtain the proper
theorem with integral coefficients. A second, algebraic proof
1s given in second 4, This has three advantages over the
simple proof of section 3. First, we do not need the
Toda-Araki result on the existence of multiplications on
mod p KU-theory. Second, this technique is adequate to
handle infinite complexes, and indeed sheds light on KU* (X)
whén X if infinite. Third, this technigue gives us results
for KO* which could not be obtained by the first method.

We make applications of the universal coefficlent



theorem to KU, 1in section 1 and to KO, in section 2,

We call the readers attention to the result at the end of
section 2., There we show that if G 1is a simply connected
compact Lie group whose fundamental representations are all
either real or symplectic, KO*(G) is a free primitively
generated exterior Hopf algebra over KO, (pt). Examples
are Sp(n} and Spin(n) for n #2 mod %4,

1. Results and Applications for KU

If X is a CW-complex, we shall write limiKn(X)
o
for 1imi;u(X)Kp(X ) where 1](X) is the set of finite

1 is the i-th derived

subconplexes % or X; and linm
functor of inverse limit. We show that limiKn(X) = 0

for i1 if K¥* is any cchomology theory for which the
groups K@(point) are all finitely generated, and that there

is a natural exact sequence for all n, X:
0 = 11 K (X)) = K (X) = 11mCk?(X) ~ o.

(Here, cohomology theory means representable cohomology

theory. )

Our universal coefficient theorem (Th. 4.4) tells us
that for complex K-theory, KU¥*, we have an exact se-

guence for all n, X:
1. n=-1
0 = 1lim KU (x) = Ext(KUn_l(X),Z) -

11:0kUR (X) - Hom (KU _(X),2) = 0
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Our first application is slightly unusual.

Theorem 1.1 If X is a CW-complex for which the groups
B, (X;Z) are 2ll finite for 1 > 0, then lin'KU®(X) =0
for all n, and Eﬁn(X) is the character group of
%Un+l(x), (The group of continuous homemorphisms of Re)
into the circle, where Eﬁn(X) is given the inverse limit
topology.) Thus, if X = K(w,1), the Eilenberg-Maclane
complex for a finite group m, EUO(X) = 0, and %ﬁl(X)

is the character group of the representation ring of n.

Proof, The groups Hl(X;Z) are all finite for i > O,

so that the image KUn(Xr+l

r

) = KU (x") 4is finite for all
n, r, Wwhere X is the r-skeleton of X, Thus the
KU (xF) satisfy the Mittag-leffler condition (see section 3),

so 1lim'Ku?(X) = o.

The groups %ﬁh(X) = 1imO§Uﬁ(Xr) are the direct limit
of rinite groups. Thus Hom(KU (X),Z) = O. ‘Thus  KUP(X)
= Ext (KU (X),2). Notice that since XU (X) is the limit
of finite groups, Hom(KU_(X),Q) = 0, so that |
Hom (KU, (X),Q/2) = Ext(KU_(X),2). Since R/Z, the circle, is
algebraically the direct sum of Q/2 and an uncountable
number of copies of Q, EUn+l(X) = Hom(%ﬁn(X),R/Z).. By
Pontrjagin duality, %b(x) is the character group of

™ x).

If X = K(m,1), Atiyah has shown [5 ] that Kﬂl(X)»m 0, .-

A _
KUO(X) = R(n)", the completed representation ring of m.
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The case X = K(w,1)} of (1.1) was proved by other

techniques by J. Vick [20].

It is part of the folklore thet 1if G is a Lie group
with classifying space BG, then limKu™(BG) = O for all
n. Atiyah has proved that KUO(BG) is the completion of
the representation ring of G, and that KUl(BG) = 0,
Thus, we see that Ext(KUO(BG),Z) = 0, and that

Hom(KUl(BG),Z) = 0, and that there is an exact sequence
0-*-Ext(Kﬁl(BG),Z)-*~R(G)A-*-Hom(KUO(BG),Z) ~ 0.

Tﬁeorem 1,2, If G is a connected compact Lie group,
KUl(BG) = 0, and KUO(BG) is naturally isomorphic to
1imOHom(R(G)/In(G),Z), the group of continuous homomorphisms
of R{G) into Z, where R(G) has the I(G)-adic’ topology,

and 2 1is discrete,

Proof. We know that the I(G)-adic topology on xu° (Ba)
agrees with the topolegy induced by restriction to the
finite skeletons of BG. Thus, as the natural map

KUO(BG) ~*Hom(K§O(BG),Z) has its image in the continuous
homomorphisms, we have a map defined KUO(BG)-@-Continuous

Hom (R(¢)",2) = Continuous Hom(R(G),Z).

We know that R(G) is the polynomial ring on the
fundamental representations Xl""’xm of G, and that
the ideal I(G) is generated by the elements‘ Py = Xy = dim(ki).
Thus R(G)/In(G) 1s the free group generated by the monomials



in 095...50 of degree < n, This implies that the seguence

N
Hom(R(G)/En(G),Z) is a sequence of free groups and split
monomorphisms, Thus Continuous Hom(R(G),Z) is free, and
the obvious map R(G)A-ﬂ Hom(C.Hom{R(G),Z),2) 1is an iso-
morphism, since R(G)/I™(G) - Hom(Hom(R(G)/17(G),2),2) is

an isomorphism for all n,

Tt is a result of algebra that if A 1is an abelian
group with Hom(A,Z) = O, Ext (A4,2) = 0, then A = O, Thus,
if we prove that KUl(BG) = 0 and that KUO(BG) is free,
we can apply simple homological algebra to see that
KUO(BG) — €, Hom(R(G),Z) dis an isomorphism, We leave the

algebra to the reader, as it is standard.

If T is a maximal torus for G, it is elementary to
show that KU (BT) = 0, and that KUy (BT) is free, In
[4] it is observed that the Todd genus of G/T is 1.

If we proceed as in [4 ], réplacing KU* by KU,, we see
that KU,(BT) - KU,(BG) is a split surjectibn, with the
splitting given by the Gysin map. Thus KUl(BG) = 0, an&
KUO(BG) is free,

Remark, The basis of monomials in the oy give us an iso-

morphism R(G) = C.Hom(R(G),Z); or R(G) = KU (BG).

The infinite classical groups U, Sp, 50, Spin are
defined to be the unions of the corresponding finite groups,
Then KU, (BU) = 1limKU,(BU(n)), etec. Thus KUl(BG) = 0 for

G an infinite classical group.
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Theoren 1,3, limleO(BG(n)) = 0 and KUL(BG) is free for
G = U, Sp, SO0. However, lileUO(Bvspin(n)) £ 0, and SURERE:
KUO(B,Spin) is not free. | < | SV

Proof. The maps R(G(n+l)) = R(G(n)) are split surjections
for G = U, Sp, and the maps R(SO(2n+l))-ﬂ-R(SO(En—l)) are
split surjections, Furthermore, these maps take fundamental
representations either to 0 or to fundamental representations,

so that one sees easily that our theorem holds in these cases.

The maps R(Spin(2n+l))~ﬂiR(Spin(2nwl)) are not surjections,
This 1is due to the fact that the Spin representations correspond
under A, .4 —}2A2ﬁ»l’ Since the group generated by A2n+1
is a summand in R(Spin(@n+l)), we see that KUO(B“Spin) con- JJ%ﬂE
tains as a direct summand a group isomorphic to Z[4], the
ring of fractidns whose dénominators are powers of 2, Now
Ext (2[£],2) # 0 since Hom(Z[%],Z) = 0. Thus |

1

1inm ku® (B_Spin(2n+1)) £ 0. Thus KU-(B Spin) # O. i af

In [2], it was shown that 1imKU(X(m,n)) = 0 for
any m, any n S 2, If =n 1s a finite group,
1im1§ﬁm(K(ﬁ,n)) = 0, since each group ﬁi(x(n,n);z) is
finite, Thus, if = 1is finite, Eﬁ*(K(w,n)) =0 for ns>1,
since the above result held for n > 1 if 1w was a torsion.
group. From the universal coefficlent theorem above,
Eﬁ*(K(ﬁ,n)) =0 if n>» 1, = finite. Since a torsion group
is the direct limit of finite groups, KUy (K(m,n)) = O for

n & torsion group.
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From a consideration of the appropriate Serre spectral
seguence, one can now observe that if n > 2, for any .,
~ -~ . .
the map KU {(K(m,n}) = KU, (X(rm®q,n)), where Q = rational

nunbers, 1s an isomorphism.

The groups H, (X(n®Q,n);2) are all rational vector
spaces, Thus the spectral sequence for KU, (X(rm2Q,n))
(analogous to the spectral seguence in [ %4 ]) collapses,
and all extensions are trivial since G is injective. This

gives us the following result,

Theorem 1,3, If n > 2, KUO(K(ﬂ,n)) is isomorphic to
the direct sum of the groups H,, (K(r2Q,n)), and KU, (K(m,n))

is isomorphic to the direct sum of the groups H21+1(K(n®Q,n)).

The previous results are all for infinite complexes,
and could therefore be considered to be the egoteric results.

For finite complexes, there are much simpler results,

Theorem 1.4. If X is a finite complex, there are natural

exact sequences which split for all 1i:
0 - Ext (KU, _; (X),2) — KU (X) — Honm (XU (x),2) = 0

0 - Ext(mi‘l(x),z) - @i(X) - Hom(KUi(X),Z) — 0

Proof, The existence of the first exact sequence follows from
1.1, The splitting follows from considerations which arise by
replacing X by X A Lp, as described in section 3. The

second sequence follows either algebraically from the first or by

Spanier duality from the first, depending upon the reader's preference
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To finish this section, we show how to exXpress KU%(X)
in terms of XKU*(X) when X is a countable complex satis-

fying the Mittag-Leffler condition for KU*,

First, suppose that An is an inverse system of abelian
groups. Let B, be the image of (1in®A ) ~ A, C =A/B.
I the An satisfy the Mittag-Leffler condition, for each n
there isa k = k(n) so that the image of A A, 1s B,

. .. 0 . 0 . .
Thus, C m*Cn is zero, and lim Bn'~>11m An is an iso-

ntk
morphism, MNotice that since lim0 is exact, we have an

exact sequence
0 — limoHom(Cn,Z) - 1imOHom(Bn, 7} — limOHom(An,Z)
- 3_im0Ext(Cn,Z) - limOExt (Bn,z) = limgExt (An,z) - 0,

Thus, since cn+k(n) —>Cn is zero, we see that limOHom(Bn,Z)
= limHom(A ,2) and lim Ext (Bn,z) - limOHom(An,Z) are both

isomorphisms,

Given any filtered group G m(}Gn, we define

Cont. Hom(G,Z) = limgHom(G/G,,Z), Cont.Ext(G,2) = limyExt(G/G_,Z).
Then Cont.Hom(G,Z) and Cont.Ext(G,Z) depend only on the
topology which the Gh define on G, as cofinal filtrations

can be seen to define the same linits (argue as above).

The following theorem follows immediately from the universal

coefficient theorem for finite complexes.



mheorem 1.5. If X is a countable CW-complex which
satisfies the Mittag-leffler condition for KU*, there is

a natural exact sequence for all n.
0 — Cont.Ext (K (X),2) = K_(X) = Cont.Hom(K" (X),2) = 0

Corollary 1.6. If G is a compact Lie group,

i

KO(BG)- Cont.Hom(R(G),ﬁ)

Cont . Ext (R(G),2)

x (26)
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2. Applications to KO-theory

There is a theorem which allows us sometimes to calculate

*
KO (X) from XKU*(X). A similar result holds for KOu(X).

Theorem 2,1, If there is a torsion free subgroup
P* c KO*(X) such that the natural map F* @ KU*(pt) — KU*(X)
is an isomorphism, then the natural map F* © KO¥(pt) — KO¥(X)

is an isomorphisn.

This theorem follows immediately from the exact seqguence
of [1], together with the usual 5-lemma algebraic arguments,
We refer the reader to p. 257 of [14] for the exact sequences
involved. As they are given there, they hold for compact
spaces, wae&er, since the segquences are pfoveﬂ by identify-
ing KU* and XC*¥ as "KO*—theory with coefficiehts”, they

hold for any complex,

As immediate applications, we observe that if
G = Sp(n), SO(2n+l), SO(4n), Spin(2n+l),  or Spin(4n),
every irreducible (complex) representation of G 1is either
real or symplectic. Thus, we can split R(G) up into two
parts, R;» R, so that R, < RO(G), R, < R Sp(G),

R(G) = Ry ® R,. We have natural inclusions R A'H»KDO(BG),

1
%fﬁK&@@mKﬁf@M.

Theorem 2.2, If we consider Rlé to have degree O, REA‘ to

have degree 4, (RlA@REA) ® KO*(pt) — KO*(BG) is an iso-

morphism for any of the groups above. Thus KO*(BG) is a

/10 -



flat KO*{pt)-module,

In [11], Hodgkin showed that for a compact simply
connected Lie group G, KU*¥{G) is the exterior dlgebra
generated by the supension of the fundamental representa-
tions., This fact, together with the observations above,

proves the following theoremn.

Theorem 2,3. If G = Sp(n), Spin(en+l), or Spin{4n),

the group KO0*(G) is the free exterior algebra over KO*(pt)
on generators which are the suspensions of the fundamental

1(

representations (in KO ~(G) if the representation is real,

KD”5(G) if the representation is symplectic),

From considerations of Spanier duality, it is clear that
the proof of 2.1 yields & similar theorem with KO* and KU*
replaced by KO, and KU, throughout (the statement of 2,1

wiil guffice for X a finite complex), To prove theorems of

/11

the type above for KO*(X), we need only prpduce appropriate ‘

subgroups of KO, ({X).

Theorems 4,4 and 4,6 imply the following version of the

exact sequence of section 1,
Theorem 2,4, There is a natural exéct sequence for a2l1ll X,n
0 — La'k0™H(x) — Ext (Ksp__. (X),%)
= 11n%k0™ (X) — Hom ( KSp_(X),2) = 0

The last map is given by the pairing
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ko™ (X) & KSp, (¥) = KSp,(pt).

Theoren 2,5. IT KUl(X) =0, KUO(X) is free, and
KOO(X)'ﬂ'KUG(X) is an isomorphism, then KOO(X) ~>Kﬂb(X)'

55 an isomorphism, and XO,(X) = KO (X) @ KO, (pt).

Proof, Notice that the kernel of KOO(X) —*KEO(X) consists
of 2-torsion, since the composition with KUO(X) — KOO(X)

is multiplication by 2, ILet T be this kernel. Since the
cokernel of T — KO,(X) is free, Ext(T,Z) = Ext (K0, (X),2).

However, since KOO(X) = KUO(X) = Hom(KﬁG(X),Z) is torsion.

i
o
»

free, KSpl(X) = KSpt(pt) @ K0¥(X) = 0. Thus Ext(K0y(X),Z)

i

so Ext(T,2Z) = 0. Since Hom(T,2) =0, T =0, =0 -KOO(X) -

KUO(X) is a monomorphism.

Now KUO(pt) ~>KSpO(p£) is an isomorphism, so that
KUO(X)-A-KSPO(X) is an isomorphism. Thus Hom(KEO(X),Z)-*
Hom(KOO(X),Z) is surjective, Notice that KU“l(X) = 0, 50
that KOwl(X), and thus Ext(KO#l(X),Z) consists entirely
of 2-torsion., Thus lileSpO(X) consists of 2-torsion.
Since KSpO(X) = KUO(X) is torsion free, 1ileSp0(X) = 0,
and KSpO(X)-ﬂ-Hom(KOO(X),Z) is an isomorphism. Thus, by

simple algebra, KOO(X) w*KﬁO(X) is an isomorphism,

Corollary 2.6, If G = SO(2n+l), spin{&n T 1), Spin(&n),
KO, (BG) is the free KO, {pt) module on KOO(BG). Also,
K0, (BSO) 1is free on K0, (B50) over K0, (pt).

Theorem 2.7. If X is a finite complex and if XO*(X) is

a free graded KO*(pt)-module, then K0, (X) is a free graded
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KO, (pt)-module.

Proof, ILet x, e KO*¥(X) be homogeneous elements which form
a free basis for KO*(X) as a KO0*{pt)-module., In the case .
of a finite complex, 2.4, together with Spanier duality, |
imply that for all n, KO_(X) — Hom(kSp™(X),Z) is onto.
;®4q e KSp*(X), where g is the generator of
KSpO(X), Then KSp*(X)/thsion is the free group on the

et y; =X

ys and the x5 together with their transiates under the
periodicity  (we identify X, in KSp™(X) by the isomorphism
ksp (x) = kO™ (%)),

Choose =z, ¢ K0,(X) so that <Z3is¥35> = 8y <z5,%:> = 0O,

j’
Then KO, (X) will be the free KO, (pt)-module generated by

the if KUg(X) is the free KU, (pt)-module generated

23
by the c(zi), where c: KO_(X) **KU&(X) is complexification,
Since the c(xi) are a free basis for KU*(X), we need %o

know that <c(zi),c(xj)> =53 However, if s: KUh(X) — KSp_ (X)

j-
is "symplectification", for any z,x, <c(z),x> = <z, (x)>.

However, sc(xi)_m X; ®Q =¥5.

Corollary 2.8. If G is a simply connected Lie group for
which 21l of the fundamental representations are either réal

of symplectic, then XO0,(G) is a free KO,(pt)-module. As

an algebra, it is generated by elements T, € Ko_l(G),

o5 € KO'S(G), one for each real (resp. symplectic) fundamental
representation of G. If <t ¢ KO"l(G), ot e KO'S(G) are

the classes assoclated to Ty Oy respectively, the Tys O3
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can be chosen with <Ti;Tj> e 513 in KOO(Pt):

<ogs09> = hoys in KO, (pt).

Proof, The first part has been proven already. The second
part follows from the observations that KSpO(pt) **Kﬁo(pt)
is Z = Z by multiplication by 2, and that if <z,gx> = a
in KSpO(pt), then <z,%x =a in KOO(pt), since

@

xq
KOO(Pt)'———9KSpO(p%) is an isomorphisn.

We end this section with the observation that 2.3
and 2.7 can be sharpened. If KO*(G) is the free exterior
algebra on representations of G, those representations
are necessarily primitive, Since 2.7 says that in this

case, KO, (G) = Hom  (KO*(G),  KO*(pt)); we see that

KO* (pt
K0,{(G) 1is also a primitively generated exterior algebra

as a Hopf algebra.

If G is a compact Lie group, the groups KO¥(BG)
can be described in terms of R(G),R0(G), and RSp(G) (see
[1], [61], [14]). If we follow the reasoning leading up

to Corollary 1.6, we obtain the following result.
Theorem 2.9, If G is a compact Lie group

KOO(BG) = Cont Hom(RSp(G),Z)

K04(BG) = Cont Hom(RO(G),Z)
KQT(BG) = Cont Ext(RSp(G),Z)
KO3(BG) = Cont Ext(RO(G),Z)
KO (BG) = Cont Ext (R(G)/RO(G),Z)

i

Ko, (BG) = Cont Ext(R(G)/RSp(G),Z)



and there are short exact seguences

0 — Cont Ext(RSp{G)/R(G),Z) — KOg (BG)
— Cont Hom(R(G)/RO(G),2) = O

0 - Cont Ext(RO(G)/R(G),Z) - KO

o (BG)

~ Cont Hom(R(G)/RO(G),Z) =0

Proof, The only observation needed is that RO(G)/R(G)
and RSp(G)/R(G) consist of 2-torsion, so

Cont Hom(RO(G)/R(G),Z) = 0, etc,
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3. Universal Coelficlent Theorems for K-iheory

There are several theorems in ordinary cohomology theorj
vhich are sometimes given the name "universal ccefficient
theorem”. These theorems are all speclal cases of the sanme
theorem in homological algebra, which relatves the homoldgy
of T(X,Y) to the homology of X and Y, where T is a
functor, and X and Y are projective chain complexes, in
K-theory, we do not have chain complexes to work with, but

we still can prove the same theorems,

In [21], G. Whitehead showed +hat for every representable
cohomology theory, there exists a corresponding homolegy

+1,

theory. Specifically, if L = {L7,7": st - 17 is a

spectrum, the representable cohomology theory with co-

efricients in L is defined by H (X;L) = lim air[s™x,

-.+
L"l r]’
and the homology theory by H.(XL) = lin air[s™TT, xALR]

(all maps and homotoples respect base-points). Xf L is an

Q-gpectrum (that is, if the maps i ortL

determined
by the maps 7 are homotopy equivalences), then we can drop
the direct 1imit, and we have HY(X;L) = [X,I7]. 1In this
case, the cohomology theory with coefficients in I can
clearly be extended to the category of all pairs of spaces
with the homotopy extension property. We then can define
canonical elements 1, ¢ ﬁn(LP;;) to be the equivalence

class of the identity map. In order to define a multiplica-

tion in the cohomology theory with coefficients in the



spectrum L, it suffices to define_eiements

p(;r®ts) e %?+S(LrALS;§) such that G(”(tr®*s)).z
(AL # (1 ®r ) = (-1)7 (1Ar%)* (u(v, @1 1)) for all
r, S. + ig easy to see that specifylng such a set of
elements is equivalent to defining a pairing of the
spectrum I with i%self into itself in the sense of
Whitehead (p. 254, [21]).

It may happen that for some spectrum L, a mulii-
plication has been defined on the cohomology theory with
coefficients in L restricted to the category of finite
CW-complexes, If each 1? 4is a countable CW-complex,

one might hope to define the elements (it ®1S) by some

r
sort of inverse limit process., The homotopy extension

property for CW-pairs immediately shows that if X 1is a

1

CW-complex, and if XO c¥X ... cX are a sequence of

subcomplexes, such that X = {J X7, the map H*(X;L) —
1im inv(H*(X";L)) is onto. Uﬁder certain conditions, it
will also be an injection.

gince we shall have occasion to use the derived

functors of the inverse and direct limits, we shall denote

1im inv by 1im0 and 1lim dir by lim,. From [16] we

0

see that 1im ie a left exact functor, and IL:'t.:m.O is a

right exact functor., The right derived functors of 1im0
will be denoted by limp, and the left derived functors of
1im, by 1imp. Let 3§ be a partially ordered set, and
let (G, ace g} be a system of groups ordered by }9

with homomorphisms gg: Gy ™ GB for all o > B, These

/17



a

homonorphisms are assumed o satisfly the relation gg g = gY
whenever a > B >y, We take note of two results of [16]:
1) if 4 is a directed set (that is, for a, B e i there
exists vy e Y with o>y and B 2 v), then lim, 1is
exact, and limp = 9 for all p > 0; ii) ir U is
countable, 1imP = 0 for p > 1. Since we shall always
be working with directed sets;,; we shall not have to worry
about the functors limp.

Grothendieck has intrcduced a condition for countable
inverse systems of groups which insures the vanishing of
1im"; he calls this condition the Mittag-Leffler condition

[10]:

(ML) ¥or all o ¢ U there exists B > a such that for
all v > B,

g(e,) = eg(Cp).

By the usual sort of homological algebra, Grothendieck's
proposition 13.2.1 implies that 1l an inverse directed
countable systém {Ga} of groups satisfies the Mittag-
Leffler condition, then lim™(G,) = O.

Nobeling has proven a duality theorem which is of great
help in proving that the functors 1lim® vanish for p # O.
His duality theorem (Satz 9 of [16]) states that if M, is
an inverse system of modules over a ring R, and if I 1is
an injective R-module, then limp(HomR(Md,I) =

HomR(limp(Ma),I). One example of the usefulness of this is
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+he case when ecach b has the structure of a compact

a gy

[

(Hausdorff) topological group, and the homomorphisms

ie the group of continuous

honmomorphisms of Ma into the circle Sl, then by Pontrjagin

a - =]
&g are all continuous, If Ma

dualit we know that there is a natural igomorphisnm
2

1 . A
).

~ A
M, = Hem(Ma,S Since ST is injective, we see that 1T

the Ma form a directed systen, imp(Ma) =0 for p#0,
and 1imo(£a) = Hom(limo(ﬁa),sl), One sirmple subcase of

this is the case when each M@ is a finite group in the
discrete topology.

Tf we are given an arbitrary cohomology theory, il is
nard to relate the cchowology of & CW-complex to the co-
honology of eilther its skeletons or its finite subcomplexes.
Miinor has introduced axioms for homology and cohomology
theories which give a precise relationship between the
homology or cohomology of & CW-complex and that of its
ckeletons - or any other countable collection of subcomplexes
whose union is the whole complex, Tnese condltions are
catisfied by representable cohomology theories, and by
ordinary singular cohomology, but not by ordinary Cech

cohomology. Milnor's axioms for additive theories are as

follows [15]:

(Ag) It {X%*] @ ¢ I} is an admissible family of spaces
for a homology theory K, then their topological
sun X is admissible; further, if i%: X% -X

ie the natural inclusion map for each «, then



the direct sum 1

isomorphisnm:

1yt 20K (x%)

(%) I (X% o e 1)

*

fnd

of the (1%),

induces an

K.(X) for all r.

is an admisgsible family of

spaces for a cohomeclogy theory K¥, then their

topological sun X

i% x% > x

is admissible

; further, if

is the natural inclusion map for

each «a, then the direct product 1*¥ of the

o A . .
(17)* induces an isomorphism:

i*: 7] B (x®) =2 kK°(X) for 211 r.

Suppose that

X

is

a

CW-complex,

and that there
1

. . . )
is an increasing sequence of subcomplexes X ¢ X < .,.

whose union is X.

following theorems:

In this case,

Milnor has proven the

c X

/20



01,

(%)

IT K, is an additive homology theory, there is & natural

isomorphism -,
U n -
e Kr(}{) = 11;1101{1_(3{ ) for all r.

If K¥ 1is an additive cohomology theory, there is a
natural exact sequence O m*liml(K?—l(Xn)) - K (X) —~
13m0 (&5 (X)) » 0 for all T,

In proposition 4.2, we show that Milnor's first theoren
easily implies a corresponding theoren for addiiive homology
+theories for a CW-complex and all of its finite subcomplexes,
In lemma 4.3, we prove a correspohéing theorem for additive
cohomology under slight restrictions.

It is clear that if ‘L is an Q—spectrﬁm,the cohomology
theory with coefficients'in I, ig additive on the category
of all CVW-complexes, The complex K-theory KU* can be

defined as the cohomology theory with coefficients in the

/21

unitary spectrum U, where U2r+l = U, the infinite unitary

group, and U2r = Z XBpe
: e
Let U{n) Dbe the n-dimensional unitary group, and let
Gon = U(mn)/U{m) x U(n) be the Grassman manifold of
complex m-planes in complex min-dimensional affine space,

Then Um@iU(n), and BUmlr_l}Gn,n. Let G, c 2 x By be

thogse components o Z ¥ Gn n whose Z component has
2 -
absolute value less than or equal to n. Then

Z x By =) Gn‘ Let T and s be fixed integers, and let
n

{Xn} be the following seguences of CW-complexes:



i) if r is odd and s 1is odd, X, = U(n) A U(n)
ii) if r is odd and s 1is even, X = U(n) A G,
iii) if r 45 evenand s is odd, X = G, A U{n)

FiY
n
iv) if r is even and s is even, Xn = Gn A Gh'

Then, for all r and 2all s, H*(XQ;Z) is torsion free,

and the restriction maps H*(X 73 M%H%(Xn;z) are onto.,

n+1”?
By the usual sort of spectral sequence argunent, we see
that KU*(XH) is torsion free, and that the restriction

maps KU*(X ~>KH%(XD) are all onto, Thus for all t

n+l)
we see that lim (XU®(X_)) = O. Thus, by Milnor's theorem,

we see that for all t, KU°(U" A U%) = 1in®(xU¥(x))). Tnus,

: Uln) = T ang 1 @ = U are the

irod n,2r° n

n,2r+l
usual inclusion maps, the elements u(iﬂ’r*(ir) @ ;njs*(ts))
define an inverse system of elements of the groups %ﬁr+s(xn),
and thus define uniguely an elemnent u(trﬁts) of
%br+s(UrAUs). It is clear that these elements, thought of

as maps of Ut A U® dnto Ur+s’ have éhe correct

properties to define on U the structure of a ring spectrum
in the sense of G. Whitehead [21]. Since for every integer
ps, the theory Ku¥( ;Zp) is the representable cohomology
theery with coefficients in an O-spectrum, and since that
spectrum can be chosen so that every element of it is a
Cll-complex, our earlier construction of “p defines on this
spectrum the structure of a ring spectrum. Further, the

reduction med p cleafly can be defined by a transformation

of ring spectra.

/o2



As a direct consequence of Proposition 1.1, we have the

following:

Froposition 3.1. If X is a CW-complex, and if Y is a
finite CW-complex, +then for every prime p, there is an
isonorphisn:

u,2 KU%(X;ZP) @APKU%(Y;ZP) e KU*(XXY;ZP),
‘where A_ = KU*(point;Z ).

P D
Proof. For each r, KUT(X;ZP) is a vector space over Zp.

. . _ , 6] . . )

Since KU*(X;Z) = A e (ku0(x;2)) @ ﬁUl(X,ZP)), KU* (%;2,))

is free over Ap.

In [3], Atiyah showed that if A = KU*(point), then for
any two finite CW-complexes X and Y, there wsgs a short

exact sequence of the form:

0 — KUX(X) ®,KU*(Y) = KU* (Xx¥) — Torl(KU* (X), KU* (1)) ~ 0

Corollary 3.1. The exact sequence of Atiyah's Kinneth
theorem always splits (unnaturally), so that for every pair

of finite CW-complexes,
KU* (XxY) & (KU*(X)@,KU*(Y) & Tor’ (KU*(X),KU*(Y))

Proof. We have a commutative diagram

KU*(X) ©,KUu*(Y) 5 KU* (XxY)

lDPQPP lgp

. * . . -y - .
KU (X,Zp) RAPKU*(Y,ZP)“.§Uﬁ(XxY,ZP)
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Since by is an iscmorphism, u © 1: (KU*(X)2,KU*(Y)) » Zp -

KU*(XxY) ® Zp is an injection, as the universal coefficient

theoren says that Pp @ op @ 1: (KU*(X)0,K0*(Y)) @ Zp - .
K‘U*(X;Zp) 2 » E’CU“’“(Y;ZP is an injection. Since u @ 1 is

P .
an injection for all primes p, u nmust embed KU*(X) ®AKU*(Y)

as a direct summand of KU*(XxY).

Since U is a ring spectrum, following Vhitehead, we can

define slant product palrings

KUT (xx¥) ® KU (¥) — KU °(X)  and

| KU (XxY) & KU® (Y) — KU, . (X)

-5

whehéver X and Y are finite. CW-complexes, If X =Y =
point, these are the usual multiplication in KU¥ {point)

under the natural i_dentification KU (point) = KU™®(point).

In particular, this says that the map KU (point) 2 KUr(point) ~
'K"UO(point) is an isomorphism when r is even. |

The slant product pairing defines maps
KU (XxY) — Homy (KU, (¥), KU¥(X)) and KUy (Xx¥) — Hom, (KU (¥), KUy (X))

which are isomorphisms when X =Y = point., If we take X = point,
we have homomorphisms: KU*(Y) -+ Hom (XU,(Y¥),A) and

KUy (Y) = Hom, (KU*(Y)}, ). Similarly, we obtain maps
KU*(Y;ZP) - HomAp(KU*(Y;ZP),J\p) and

KU*(Y;ZP) — HomAP(KU%(Y;Zp),Ap for all p.



Preposition 3.2, If » is a prime, the maps

3 . . o
KU‘“(Y;ZP) —> Hom(i{Ur(Y}ZP),Zp) and
Kur(f{;zp) - Hom(KUr(Y;Zp),Zp)

are igomorphisms for all r and all finite CW-complexes Y.

Proof. KUT(Y;ZP) is a vector space over 2. for all primes

p
p, 50 that Hom(KUr(Y;Zp),Zp) defines a homology theory.
Since the map KU (¥;Z,) = Hom (KUT (¥; Z,),%,) is a natural
transformation of homology theories, and since it induces an
isomorphism when Y = point, it induces an isomorphism for

all Y. The other statement follows similarly.

Proposition 3.3, If Y is a finite complex, XKU*(Y) 1is
torsion free if and only if XKU,(Y) 4is torsion free. If

KU*(Y) 1is torsion free, the maps

KU* (¥) = Hom(KU_(¥),Z) and
KU (¥) — Hom (XU (Y), Z)

are isomorphisms for all r.

Proof. Suppose that XU*{(Y) is torsion free. Then, for
each prime D, KU*(Y;ZP) = KU*{Y) % Zp. Thus KU&(Y;ZP)
has the same rank for every prime p. Since KQr(Y) is
finitely generated, for all r, the universal coefficlent
theorem implies that KUI(Y) must be torsion free for all

r, The converse can be shown in the sanme manner.



The commuting diagram KU (Y¥)———— Hom (XU _(¥), %)

2 'DP
KUr(Y;Zp) - Hom(KUr(Y;Zp), zp)

Y
Hcm(KUr(Y),Z) D) Zp "is an isomorphism for all r and all

primes Pp. Thus, the map KUT(Y)-w-Hom(ﬁur(Y),Z) igs an

isomorphism for 211 r. The other statement is similar.

Remark: One might be tempted vo try to prbve the above
theorem by using the Chern character and compariﬁg with
rational homology and cohomology. However, there is a
danger here - it is guite possible that KU*(Y) dis
torsion free, while H*(Y;Z) is not. One simple example

is given by the symmetric square of the three-sphere [13].

We are now in a position to prove a universal coefficient
theorem relating XKU* and XU,. In [3], Atiyah showed how
to produce, topologically, a free resolution of KU*(X)
for any finite complex X. He showed that for any finite
complex X, there was ancther finite complex Y such
that KU*(Y) was torsion free, and a map f: X =Y such
that £¥: KU¥(Y) -~ KU*(X) was onto, If T, 1is the mapping
cone of f, we then have a free resolution

¥

0 - KU (T,) = KU*(¥) — KU(X) = 0,

/26
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shows that if KU*(Y) is torsion free, the map XU (Y) ® 2_ -



Theoren 3.3. If X dis a finite CW-cemplex, there are

short exact seguencesg:
0 = Bxt (U, _, (X),2) = KU™ (X) - Hom(KU,.(X),2) — O
0 = Ext (k07T (x),2) = KU_(X) - Hom(KU'(X),2) — O

Proof. Let f: X—+7Y Dbe as described above, and let Tf
be the mapping cone of f. By our last proposition, KU*(Y)

]

and %U*(Tf) are torsion free, and the maps

KU, (Y) ~ Hom (KUY (¥),2) and KU ~(T2) ~ Hom(KU* (T.),2) are
isoworphigmo. From the exact seguence ...-*-KUT+1(Tf) -
KU, (X) % KU (Y - KU (T ) = ..., we obtain the second
exact sequence. The first one follows from it by simple

homological algebra.

Whitehead has also defined pairings KUT(X) ® KUS(Y)-+
KU, (Xx¥). It is natural to expect that there would be a

Kinneth theorem for KU,.

Theorem 3.%. If p 1is a prime, then the pairing

KTU*(X;ZP) @APKU*(Y;ZP) - KU*(XXY;ZP)

is an isomorphism for all finite CW-complexes X and Y.

Proof, KU*(X;ZD) is a free module over Ap. Since the
theorem holds when Y 1s a sphere, by induction it holds

for any finite complex Y.

/2
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Theorem 3.5. For any two finite ClW-complexes X and Y,
there is a natural short exact sequence, which splits

unnaturally:
0 = KU (X) KU, (Y) = KU, (Xx¥) - TorM(xU, (), KU, (¥)) - O,
(The right hang map'is understood to decrease degrees by one, )

Proof. If KUy(X) is torsion free, it is a free A module.
By the usual induction argument, the theorem holds if KU{X)
is torsion free, If X is arbitrary, let f: X -+ X' be as
constructed by Atiyéh so that KU*(X') is torsion free and
such that f* is onto., ILet T. Dbe the cofiber of r,

By our earlier theorem, KU,(X') and Eﬁ*(Tf) are torsion
free. Thus, KU.(X'xY) = KU, (X') @KUy (¥) and

KU (ToxY) = KUy (T,) 2 KU*(Y); Ey the obvious exact sequence
argument, we see that KU*(foY,Y) = %U%(Tf) @y KU,{Y). The
cofibration X' A Y = (x1)* A ¥ = T. A Y gives us an
exact sequence: ... **KUr+l(foY,Y)~é-KUr(XxY) ~ KU (X' xY) =
KU (TpxY, Y) 2 -»+ Since the theorem holds for X' and Tes
it holds for X. Naturality is proved in the same way as

in [3]. The existence of an unnatural splitting is proved

in the same way as in corollary 3.1,

&4  Extensions to Infinite Complexes

The theorems of the last section were all proved under
the resitriction that all of the complexes involved were

finite., If we extend KU, to infinite complexes, the same
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theorems can at least be formulated., It is not hard to show
that, in general, Atiyah's Kunneth theorem for KU¥ does not
hold for arbitrary complexes. However, the Rumneth theorem
for KU, holds without any restriction. The universai co-
efficient theorem relating KU* and KU, can be generalized,
but it looks slightly different from the form encountered for
finite complexes, due to the fact that the functor 1iml
occurs, Also, the fact that we are using KU* is.not
entirely relevant - we shall show that if K* 1is a cohomology
theory such that K¥(point) is of finite type, then there

is & dual theory DK* such that K* and DK, are related
by & universal coefficient theorem., The coperation D has

the property that DEK* = K¥, and is an exac¢t contravariant
functor from the category of cohomology theories to itself.

D seeems to behave on cohomology theories in nuch the same
way that Spanier's S-duality behaves on finite complexes.

It is not clear that D 1is of any particular interest in

its own right, but it does simplify some of our proofs,

We now gilve a method for extending a homolegy theory to
the category‘of all CW-complexes., If X 1s a CW-complex,
let g(x) be the set of all Tinite subcomplexes of X,
ordered under inclusion. Then H(X) is closed under finite
union and arbitrary intersection. Since it is closed under
finite union, ggx) is a direct set, We shall consider
y(x) abstractly as an indexing set, and denote by x* the
finite complex indexed by the element a of ¥(X). If

f+ X—Y is a continuocus map of CW-complexes, since the’
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compact subsets of C(W-complexes are the closed subsets of
¥
the finite subcomplexes, if X~ is a finite subcomplex of
X, there exists a finite subcomplex Y5 of Y such that
%Cif Y‘S K4 r 2 - 'V 2
£(X7) < Y7, Since #(Y) is closed under arbitrary inter-
Fal

. , . R 5 .
section, there is a minimal such Y . Thus £ dinduces a

homomorphism £yt #%(X) — %4(Y) of partially ordered sets.

Definition 4.1, If (X,A) is a CW-pair, K, 3is a homology
theory defined on the category of finite CW-complexes, the
direct limit extension of K, to all CW-complexes is

defined bhy:
X a O
K. (X,4) = 1im033( )Kr(}{ ,x%na).

We notice that the direct limit extensicn of K, is
& homolozy theory:
If (X,A) is a CW-pair, we have an exact seguence (since

. O, I' Kr r ? e

The inclusion map gives us a homomorphism K&(A) —
1im0§(X)Kr(XaﬁA). Since every finite subcomplex of A is
of the form X" n A, we see that this map is an isomorphismn.
Thus the exact sequence for a pair holds. A strong form of
the excision axiom holds - since W-complexes are closure
finite, every finite subcomplex of X/A is of the form
Xa/(XaﬂA) for some finite subcomplex X© of X. Thus,-

we have an isomorphisnm g}(X/A) = Kr(X,A). Finally, if

fy and f) are two maps of X into ¥, and F: X x [0,1] =¥



is a homobony such that F|X x [1] = £, for i =0,1,.
then for each finite subcomplex X% of X, there is sone
finite subcomplex v® of Y such that F(x%x[0,1]) < Y2,
Thus, (fo)* = (fl)%’ and the honmotopy axiom is satisfied.

Before we begin to extend Kinneth theorems to infinite
complexes, wWe shoulé pay some attention to the topology
that we put on the product of two CW-complexes. 1In general,
the product of two CW-complexes is not a CW-complex in the
product topology. However, it does have the homotopy type
of a CW-complex ~ in fact, if the product of two CW-
complexes is given the weak topology, the identity map
gives a homotopy e@uivalence between this complex and the
product in the product topology (see lemma 2.1 of [21]).°
In order that we should not leave the category, we shall
give all cartesian products and all smash producis of
CW-complexes the weak topology. _ |

We see from theorem V, 9.4*'0f [8] that ® and Tor
are both functors of type L1LT*; that is, they both commute
with direct limits, when we are working'over directed sets.

Thus, we obtaln the following theorem:

Theorenr 4.1, If X and Y are C(Ci-complexes, then there

is a natural exact sequence:
0 = KUy (X)), KU, (¥) = KUy (Xx¥) - Tor’ (XU, (X), KUy (¥)) = O.

(The right bhand map is understood to decrease dimension by |

one,) If p is a prime, then we have an isomorphism:

/31



KU, (X2 ) =, K'U,K.(Y;Zp

Proof, These statements follow immediately from the

corresponding statements about finite complexes, together
. . OB " ;

with the observation that (X x¥7| a e %), B ¢ HU(Y)]

is a cofinal subset of H(XxY).

Since the inverse limit functor is noit exact and does
not commute with tensor products, we might expect that the
Kinneth theoren would not generalize to infinite complexes
for KU*, However, if we work mod p for a prime ©p, it
is guite possible that KU*(X;Z_.) i1is of finite type even

D
though KU*(X) 1s not, Since examples of such spaces are
fairly plentiful, a theorem to cover this situation would
be useful, TFirst we nust prove a general theorem -about

additive cohomology theories.

Proposition 4.2. Let H* and K* be additive cohomology

theories which are defined on the category of CW-complexes,

and let o Dbe a natural transformation of cohomelogy

) o KU (0¥52,) 50

theories from X¥ to K¥, Then, if ®: H*(point) — K*(point)

is an isomorphism, ®: H¥(X) — K*(X) 4is an isomoxrphism for

all CW-complexes X.

Proof. It is clear that © induces an isomorphisnm whenever
X is elither a digjoint union of gpheres or a digjoint union

of points. Thus, @ induces an isomorphism vhenever X is

a one-point union of spheres. If X 1is an arbitrary complex,



. . ; n,n-1 . .
and X7 is the n-skeleton of X, XQ/A is & one-point
» 0] . A n e n
union of spheres, Thus, by induction, ®: H¥(X")} — x*(x")
is an isomorphism for all n, From Mllnor's theoren, we

see that ©: H*(X) — K¥(X) is an isomorphism.

There is an analogous result for additive homology
theories. One result of thisg is that the extension of a
homology theory from the category of finite complexes to

the category of all complexes is the only additive extension.

Proposition 4.3, ILet H, and K, be additive homology
theories, and let o: H (X) — K, (X) be a natural trans-
formation of homology theories. If © induces an isomor-
phism when X is a point, then © dinduces an isomorphism
when X ié any CW-complex, Thus, if X 1is a CW-complex,
there is a natural isomorphism for any additive homology

theory K,:

i

K, (X) 1im0§(x)xr(xa) .

Proof. The proof proceeds just as in the last proposition,
The last statement follows from the fact that the right
hand side defines an additive homology theory, since direct

1imit and direct sum commute,
We now can make two extensions of earlier theorens.

Theorem 4.4, If X and Y are CW-complexes, and if P is

& prime, then if KU*(X;ZP) is of finite type, we have an

/33 -
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isomorphlsm:

KU*(X;ZP) ) KU%(Y;ZP) = KU%(XxY;zp)

p
Proof. Since KU*(X;ZP) 15 a Tinitely generated free
module over Ap’ both sides of the isomorphism are additive
cohomology theories‘in +the variable Y. Since they are
{somorphic when Y 1is & point, by proposition 1,1, they

are isomorphic for all Y.

Theorem #.,5. If X 1is a CW-complex, there is a natural

isomorphisms:
r + V o - V .
XU (x,zp} e Hom (KU, (X;2 ),zp).

Proof, Since KU%Chgzp) 1g an additive homology theory,
Hom(KUrﬁw;Zp),Zp) is an additive cchomology theory. The

theorem therefore follows from proposition L.a.

Iin oréer to prove a universal coefficlent theorem of
this type for KU*(X) and KU, (X), we must separate the
free and the torsion parts of KU, (X). We do this by means
' of using the coefficient groups Q (the rational numbers )
and Q/Z, both of which are injective groups. Since most
of what we will be doing can be done more generally with
no more effort, we shall not restrict ourselves to KU*.
From now on, K¥ will be a cohomology theory such that
K*(point) is of finite type.

According to E. Brouwn [7], if K* 1is a cohomology

theory defined on the category of finite Cw-compiexes
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such that K*(point) is countable, there is an {l-spectrum A = {An} such
that K*(X) = H¥(X;A). We shall simply call H* countable if H*(point) is.
Proposition 4.6. If H*, K*¥ are two countable cchomology theories,
defined for finite complexes, and if &:H*¥(X) —> K¥(X) is a stable
cohomology operation defined for X a finite complex, then there exist
(-spectra A,B, together Qith maps AT S Bn, such that H¥ is
naturally isomerphic to H¥(-3A), K* is naturally isomorphic to H*(-;B)},
the @" induce &, and for each n, o is homotopic to Q$n+1.

Proof. Since H* znd K* are representable, one can choose spactra

C and B respectively which represent them, such that each c" and each
Bn is countable., In view of Milnor's theorem, there are maps -irn:Cn ——3 pP

1 on all £inite subcomplexes

such that for each n, gn is hemotopic to Qe-n+
of C®. Because each C" is countable, we can choose finite subcomplexes
D" of each C" which form a subspectrum, and such that the infinite

1 ; QEanZ

mapping cylindersassociated to the sesquences DY —— (D
—_—3> ,.. are homotopy eguivalent to the ¢". ret A" be the infinite mapping
cylinder of the sequence of maps above. Then A = {An} is an O-spectrum
which represents H*., Once wa have chosen, for m » n, hemotopies between

i

the restriction of $m to D™ and the restriction of f)#gﬁ', we have defined

the desired maps mn:An — B2,

If we have a map @w:A ~——3> B of spectra as above, we can define a
new spectrum C by letting ¢" be the mapping fiber of ®n+1. This
defines a long mMzu& sequence of maps of spaces, in which the composition

of any two successive maps is homotopy equivalent to a Hurewicz

fibration (see [12]):



n jot n
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n-]
-ooMBn—lg“-’“‘?C A : \".".’)

In general, the cohomology theory % (~3;C) depends upon the choice of
A3, and », and not just upon the associated cohomology theories and the
associated cohomology operation. The following result will allow us to
overcome this difficulty in one important case. No douﬁt st ronger

results can be proven, but we shall not need them.

Proposition 4.7. Suppose that K* is a countable cohomelogy theoxy,
that ¢4 ——> B is 2 map of Q-spectra, and that $:K¥(-) ——3 H*(-;é)
is a stable cohomology operation defined for finite complexes. Then,

1f € is the mapping Eiber of ¥, & can be factored through a cohomology
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operation K¥(-) ——3 H*(a;g), defined for all complexes, if the following

conditions hold:
a) The composition of & with the cohomology operation defined
by ¢ is zero for all finite complexes.
b) There exists a homology theory L,, together with natural
isomorphisms of functors.fer all finite complexes H*¥(X3A) =
Hom(L, (X),Q), H¢(X;B) = Hom(L,(X),Q/2), compatible with ¢,

vhere each Ln(point) is finitely generated.

Proof. Let D = {Dn} represent K¥, and let @:D —3 A represent &
Because of Ngbeling's duality theorem [167 relating direct and inverse
timits, and because of Milnor's theorem {4%), for each n, the image of

¢n in H"(D";8) is zero. Thus, each ® can be lifted to & map of p*

Cn.l. To show that there is a compatible collection of liftings,

we must show that the sequence limoﬂnﬂl(nn;g} oS3 limoﬁn(Dn;é) A

to

limonn(Dn;ﬁ}is exact. A little algebra will convince the reader that
this will be true 1f lim'H™(0%;4) = 0 =1im't"(0%;B). This follows from

Nobeling's duality theorem directly.
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additive homolory and cohomology theories with coefficlents /37
other than the integers. Our presentation here follous

¥, Peterson. We recall that a lMoore space for a group, G

was a space Y(G,n) such that ﬁ;(Y(G,n);Z) = O for

r # n, ﬁg(Y(G,n);Z) = ¢ (sincular homology). These exist

and have unigue homotopy type for all abelian groups G

and all n > 2. A co-Moore space ¥*(G,n) has the

property that gr(Y;(G,n);Z) =0 for r # 0, and

(v (G,n);2) = G. If F is a free grouwp, Y(Fn) =
Y‘(HOm(F,Z),n) can e taken to be a one point union of

n-spheres, one for each generator of F.

Definition %4.8. If K, is & homology theory, and G 1is
a group;, KP(X;G) = Kr+n(Y(G,n) A (X+)). If G dis a group
such that there exists a space Y'(G,n) Tfor some n, then

for a cohomology theory K¥, KT(X;G) = Er+n(Y’(G,n) A (X+)).

Proposition 4.9. Iet Ky be an additive homology theory,
and let G be an abelian group. Then, there is a natural

short exact sequence:
0 — Kr(X) @ G — K. (X;6) — Tar(Kr_l(X),G} - 0,

Let K* Dbe an additive cohomology theory, and let G be
a group such that Hom(G,Z) = 0. 'Then Y(G,n) = ¥' (Ext(G,7Z),ntl).

We have a natural exact sequence:

0 — Ext (G, 1 (X)) — K¥ (X;Ext(G,2)) — Hom(G, K 1 (X)) = O.

If K*(X) is of finite type, there are natural isomorphisms

Bt (G, K7 (X)) & Ext(C,2)ek” (X),  Hom(G,K (X)) & Tor (Ext (G, 2), KT (X)
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?roaf. Iet F be a free group. By additivity, it is-clear
that there are natural isomorphisms KT(X;F) 2 X.(X) ©F, |
and K5 (X, Hou(F,Zz)) € Hom(F, K (X)). If K*(X) is finitely
generated, there is a natural isomorphism Hom(F, K" (X)) #
Hom(F,2) @ k' (X). If G is any group, there exists a free
resolution of G of the form O = F'—>F' — G— 0. To this
exact sequence, there corresponds a cofibration seguence
Y(F",n) - Y(F',n) - ¥(Gn). If Hom(G,Z) = 0, this is also
a cofibration sequence Y'({Ext(G,Z),n) - ¥' (Hom(F",2),n) —

Yt (Hom(F',2),n). This gives us exact seguences:
R Kr(X;F‘f) - Kr(}{;F‘) ~+ KI_(X;G) - Kr_l(X;F") —, .
and, in the case when Hom(G,Z) = 0,
= N (x, Ext (0, 2)) = B (X Hon(F", 2)) - KT (X, Hom(F1,2)) = ...

The proposition now follows from knowing *the corresponding
statements for the coefficient groups F!, F", Hom{F',Z),

and Hom(F",Z).

We new'have prepared all of the machinery which we need
for generalizing the universal coefficient theorem. Suppose
that K¥ 1is a cohomology theory such that K*(point) dis of
finite type. Then K¥(X) is of finite type for all finite
CW-complexes. Let Q = rationals. Then Ext(Q,2)  is a
rationai vector space, and so is torsion free. The exact
sequence O — Hom(Z,2) — Ext (Q/2,2) = Ext(Q,2) — O shows

us that Ext(Q/Z,Z) is also torsion free. Thus, if X 1is
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a finite complex, we see that Kr(X;Ext(Q/Z,Z)) =
KT (X) ® Ext(9/Z,2) and K (¥X;Ext(Q,2)) = kT (X) © Ext(Q,2).

?h%%—gévegwus—&hﬁesei&xi@§-whiﬂh separates.the free and torsion

Iemmna 4.1, Iet K* be an additive cohomology theory such
that K*{point} is of finite type. Then, if X is a finite
CW-complex, the exact coefficient sequence for X corres-

ponding to the exact seduence
0 = 7 ~ Ext(q/2,2) — Ext(Q,2) = 0
breaks up into short exact sequences:
0 = K5 (x) = K& (X3 Ext(Q/2,2)) — K* (¥;Ext(Q,2)) = O.

Proof. This follows immediately from the discussion above,
since Tor(Kr(X),Ext(Q,Z)) = 0, because Ext(Q,Z) is torsion

free,

Definition 4.lt, Tet K¥ bde a cohomology theory such that
K*(point) ié of finite type. Define homology theories

n, (%) = Hom (K (X),Q), k,(X) = Hom(K* (X),Q/2) for X a
finite complex, and extend them to all wacomplexes by the
usual direct limit construction. ILet ©: hr(X)*ﬁ-kr(X) be
the homology operation induced by the natural map Q — Q/Z.
Since both h,(point) and k,(point) are countable, they
are the homology theories associated to representable co-’
homology theories h* and k%, and © is a representable

cohomology operation. We define the dual cohomology theory
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DIK* of K¥ to be the cohomology theory derived from fhe

cochomology operation @,

TLemma 4z, IT K¥ is as above, then there are, for all

finite CW-complexes X natural isomorphisms:
13 3

2

Kr(X;Ext(Q/Z,Z)).
K (X;Ext(Q,2)) & Ext(h,(X),2)

Hom(kr(X),Q/Z) =4 Ext(kr(X),Z)

Proof. If A, B, C are groups, there is a natural homo-
morphism A & Hom(B, C) — Hom(Hom(A,B),C) which is an iso-
morvhism when A 1is finitely generated and C i1is injective.
Thus, K (X;Ext(Q/Z,2)) = K (X) ® Ext(Q/2,2) = |

KT (X) e Hom(Q/Z,0/Z) = Hom(Hom(K"(X),/2),0/2) = Hom{k, (X),Q/2).
Since kr(X) is a torsion group, Hom(kr(X),Q) = 0, 80O

Hom kr(X),Q/Z) = Ext(kr(x),z). From the exact sequences
O-H-Hom(hr(X},Q)*ﬂ-Hom(hr(X),Q/Z)-w'Ext(hr(X),Z) -~ 0
0 — KT (X) ® Hom(q,Q) — K* (X)aHom(Q,Q/2) = XK' (X)@Ext(Q,2) — O,

we see that Ext(n.(X),2) = K (X) @ Ext(Q,2) = K¥(X;Ext(Q,2)).

From this last lemma, we obtain a generalization of

Milnor!'s theoren on inverse limits for additive theories.

Terma 443. Tet K¥ be an additive cahﬁmology theory, and let
X be a CW-complex, If K*(point) has finite type, then

there is a natural exact sequence:

1 -1 o



Purthermore,

24P X0y g .
1lim ?ﬂx>k (X"} = 0 for p >2.

v e s a -
+oof. For each finite subcomplex X of X, we have an

exact seguence

o — & (X% %KT(X Ext (Q/Z,7)) = K (X% Ext(Q,2) ) — 0.

Since Kr(XOL

:Ext (Q/2,2)) = Hom(kr(}{a),Q/Z), we see thatb

.1impu(X)K?(Xa,EXt( /2,2)) =0 for p # 0. From the

exact sequenc

es

0 -~ Hom(h,, (x%),2) — Hom(h,, (x9),0/7) = K (x%Ext (Q,2)) — 0,

we see that

]Jflgﬂx)h (X sExt(Q,2)) = for » # 0. From

the exact sequences above, we obtain an exact sequence

s 7470 s e SN T 0, —
0 - 1im ?{(X)K (X7 ;:x.,m %(X)K (X7 Ext(Q/2,2)) =

.0 o4 py - T
1im g_(x)Kr(X sExt{Q,2)) — lim %{(X)K (x* =0

Also, we obtain the fact that limpu(X)Kr (x* = 0 for p > 2.

. .. P
Since 1lin ﬂ{
1im ﬁ(X)K (Y

0~

X)Kr(Xa'Ext(Q/Z;Z)) = 0 and

sExt(Q,2)) = 0 for D £ 0, we see that

Hi

S = .0 N a,
*,2xt(Q/Z,2)) and lim %(X)K (X3 Ext(Q,2))

- s . . .0 s
gerine additive cohomologH theorles {(since 1lim commutes with

direct product, they are clearly additive - since limf = O

for p # 0,

they satisfy the exactness axiom, which was the

only one about which there would be concern). Thus, by

proposition 4,

x* (X; Ext (Q/2,

1, we see that there are natural isomorphisms

7Z}) £ 1linm ,H(X)K (x%;Ext(Q/Z,2)) -and

KT (X) ¥ 1lim u(X)Vr(X Ext(Q,Z))). These isomorphisms give



Jhe

us exact sequences
0 - 1imog!(5{)z{r(}:“) ~ ¥ (X; Ext (@/2,2)) ~
K (%3 Ext (Q, 2)) — 1imlu(X)Kr(x“) - 0.,
The lemma now follows from the coefficient exacl sequence

oo K (%)~ K (5B (Q/2, 7)) — KB (0,2)) = KT () -

We are now in a position to state a form of the universal

coefficient theorem which related K#¥(X) and DKy(X).

Theorem 444, Iet K*¥ be an additive cohomology theory
such that K¥*(poinf has finite type. Then, if X 1is any

CW-complex, there 1s a natural exact sequence:

1 Tl e "
0 — 1linm %(X)K (X7) — Ext (Dhr_l(}{),z) -

.. 0 T .0 . o
1im g(X)K (X7) ~>ﬂom(DKr(X),Z) -0
Ir DKr"l(X) is torsion free, then the homomorphism in the

. - .1 I P N
center is zero, giving us 1im g(X)Kr (X7) = Ext(DKr_l(X),Z)

and 15~mog(x)1{r x% = Hom (DI (1), 2).

Proof. First, suppose that X is a finite complex., Then
hr(X) is a finitely generated vector space over Q, and
kr(x) is a torsion group. Applying direct limits, we see
that for all X, hr(X) is a vector spacé'over Q, and
kr(X) is = torsion group. If we take the exact sequence
cee ™ DKI,(X) - hr(X) — kr(X) ~ DKr-—l(X) ~ ..., and apply

the functor ©Q, we see that there is a natural isomorphlsm



/43

DKI(X) e Q = hr(X). Thus, we sée that h?(X) = DK}(X;Q).
Since k, 1is the theory associated to the homology operation
DKT(X) m*hr(X), we see that kr(X) o DKT(X;Q/Z), 80 Ve

nave an exact sequence for all r and all

¥: 0= DKr(x) “ Q/Z‘w 1-:r(><:) — kr(X) —~> Tor(DKr__l(X);Q/Z) — 0
(this also follows from applying £Q/7 to the earlier exact
sequence), Combining Lemma 4,3 with the result in the

proof of lemma 4,4, we obtain exact seguences:
.0 a
0 ~ lim E(X)Kr(x ) = Bxt (k,(X),2) =
.1 s o o 4
Exﬁ(hr(X),Z) ~ 1in g(x)r{ (X7) - 0.

Now, if we apply Ext( ,2) to the exact sequence relating
DK, (X), hue(X), and ku(X), by elementary honmological

algebra we obtain exact sequences:
0 = 1int, o KT (x%) — Ext (DK (X),2) ~ Ext(Tor(DK,.(X),0/2),2) — 0
U(X) T r
.~ 0 a
0 ~ Ext (Tor (DK, _, (¥),0/2),2Z) — lim y(x)f(x ) = Hom(DK,.(X),2) — 0.

The theorem follows immediately.

We now are almost finished - except that we still have
to show that DKU, = KU,. Again, there is nothing special
about KU¥, so we shall look at a nore general situation.
Suppose that we have three spectra ,@,.g, and ¢ all with
homotcpy groups. of finité type, and suppose that there is

a pairing A AB-—C, in the sense of Whitehead. Let X



and Y be ardbiirary W-complexes, Then, in the usual way,

we have slant product pairings:
H (X A Y34) ® 1A (%;B) “*Hhmq(ﬁ}g)

(we assume that E 1s an O-spectrum). In particular, if
we take Y to be a Moore space for a group G, we obtain

a pairing for all Tt
Hn(Xgﬁ,G) o HL(X;B) m*Hn_q(pointggsG)

(here, the double coefficients mean the homology theory
with coefficients in the first named spectrum given co-
efficients in the second named group). This gives us a

natural homomorphism
B_(X:4,0) — Hom(i1(%:2),H,_, (point;C,6))

Tf we take the two cases G =Q and G = Q/Z, then if
Hr(point;Q,G) has as a direct summand a copy of G, Dy

projecting into that summand, we obtain homomorphisms
oo n . - .
i (X;2,G) = Hom(H™ (XB),G) = DH,,, (X3B, G)

We now can apply &.7. to obtain a suitable cohomology operation

H, (X;4) = D, (%:B).

Theorem 435. There is a natural isomorphism feoxr all

CW-complexes

KU, (X) & DKU_ (X)

/ig,i,;
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Proof. We have the usual pairing of the unitary spectrum
sitn itself into itself. Since KU(point) = Z, we can

take - 0 above. Since the map KUQ(point) —

r
HOm(KUn(point),Z) ig an isomorphism, by the naturality of
the constructions involved, we see that the maps
KUn(pOint;G) “’Hom(KUn(point),GJ are isomorphisms when

G =0 or G =0Q/2, Thus, the maps KUn(K;G) - DKUH(X;(})

are isomorphisms for all CW-complexes X when G =Q or

G = /7. Thus they are isomorphisms when G = Z.

This gives us a new proof of the first half of theorem 3.1,
and gives us an extension of this theorem tc arbitrary CW-
complexes. This new proof does not require the existence of
the resolutiocns as coésﬁructed by Atlyah.

For the real and symplectic K-theories we obtain the

following curious result:

Theorem 435. There is a natural isomorphism for all CW-

complexes X:

n

Ko, (X) DKSp,, (X)

Proof. There is a well known pairing between the orthogonal
spectrum and the symplectic spectrum into the symplectie
spectrum, Since KSpO(point) = 7, there is a well defined
map KOn(X;G) ~>DKSpn(X;G) for all groups G. By looking
at the multiplication in KO*(point), we see easily that

the map KOn(poinﬁ) ~>DKSpn(point) is an isomorphism



o v, d - - a5 - - id S . N Aol Rt
whonaver n # 1, 2 ned{8), oo the map hOn(h}Q} — Dhqgn(A,Q)
is an isomorphism for all n and all ¥. The symplectifica-

-~

tion of complerx bundles 7Jives us @ rodurel tronclorantion of
KO* (X)-modules KU¥(X) — KSp* (). Since the decomplexification
KU* (X) — KO*(X) 1is also a map OF KO* (X)-modules, we see that

we have a commutative dlagran:

K{In(){) MDKHn(X)

l

Kon(x) «—-m—aDE{Spn(X).

Taking X to be a point, we see that when n = 2, we obtain
an isomorphism Koz(point) **DKSyQ(point), since the two
maps KU"C(point)-*-KO”g(point) and KUg(pcint) — KSpg(pcint)

are both surjections of Z onto Z Thus, we arxe left only

o

with the case when n % 1 moa(&).
Clet t e KO"l(point) be the non-zero element, Then

+2  4ia the non-zero element of 'KO“E(poigt). Define

©: KO*(X) — KO*{X} and ©: KSp*(X)\ — KSp*(¥X) by 9{x) = xt.

Then © is clearly a map of KO*(X)-modules in both cases.

It is well known that ©: KO“l(point)~% KO"E(point) and

0 KSpS(point) “*KSpg(point) are isomorphisms. It is then

ciear that the induced maps ®: Koz(point)-* KOl(poinﬁ) and

O DKSpE(point) ~*DKSpl(goint) are both isomorphisms. Since

© is a map of KO¥-modules, these isomorphisms cormmute with

the maps KOn(point) ~>BKSpn(point), so we see that we obtain

jsomorphisms KO, (point) & DKSpy (point). Thus the result

follows for all spaces.
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Sinee the usual forms of K-theory are one another's gual.
theories, we might expect that the dual of a familiar theory
would be a familiar theory. Certainly, ordinary cohomology
ig self-dual, Jjust by looking at the universal coefficient theo-
rem for a point. However, the dual theories of the various -
cobordism theories éeem rather mysterious - one need only
1ook at the groups of a point to be convinced of this.
Perhaps this duality could be used to study guestions about
cohomology theories in general.

We finish with a comment as to why D2 is the identity.
When K¥* 1is a cohomology theory such that K*(point) is of
finite type, and G 1is a countable group, one can define
K*(X;G) by taking the dual theory to X,.(¥3G) d4in the sense
of Whitehead. T™his can be done even if there are no co-
Moore spaces ¥' (G,n). We would then obtain natural isomor-
phisms for all finite CW-complexes X (using Whitehead's
generalized Alexander duality){ DKY (X;Q) = Hom(Kr(X),Q).
Clearly, kY (¥;Q/Z) 1is a torsion group, sO Dgi{r(X;Q) =
Hom(Hom(Ki(X),Q),Q). However, this is clearly isomorphic
to Kr(XgQ). Iikewise, if n is an integer, it is not
hard to see from the universal coefficient theorem that
there is a natural isomorphism DKr(X;Zn) & Ext(Kr(X;Zn),Z).
Similarly, there is a natural isomorphism EgKr(X;Zn) &
Ext(DKr(X;Zn),Z). This gives us a natural isomoxrphism
D°K_(X32,) = pxt (Ext (K (%;2,),2),2). Since K (¥;Z)) isa
finite group, we obtain DeKr(X;Zn) = Kr(X5Zn) for all n.

Tt is easy to see that these isomorphisms are natural with



respect Lo the coefficient groups 2Z_. Since K_{(X:0/2) =
P oy n iy >

1imOKf(X;an), we obtain isomorphism D7

K, (¥;Q/2) =
K}(X;Q/Z) for all finite CW-cbmplexes X. Ve leave to
the reader the task of checking that these iLgsomorphisms
are compatible with the coefficient homomorphisms

assoclated to the map @ — Q/Z, Thus, by proposition 4.7

we obtain isomorphisms DEKf(X) = K_(X).
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