
Twisted Geometric Cycles

This talk is on some results of my collaborator

Bai-Ling Wang in

arXiv:0710.1625: Geometric cycles, index theory

and twisted K-homology. (Journal of NCG 2008)

It had its origins in:

arXiv:0708.3114: Differential Twisted K-theory and

Applications (Alan L. Carey, Jouko Mickelsson,

Bai-Ling Wang)

and

arXiv:math/0507414: Thom isomorphism and Push-

forward map in twisted K-theory (Alan L. Carey,

Bai-Ling Wang)
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Overview

There are several ingredients that need explain-

ing from the topological and geometric side (the

analytic side is essentially known).

(i) Twisted K theory.

(ii) Twisted Poincaré duality between twisted K-

cohomology and twisted K-homology.

(iii) Generalising Baum-Douglas K-homology to

the twisted situation.
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0. Motivation

Understand Witten’s ideas on D-brane charges as

taking values in twisted K-theory and to get a

twisted version of some of what is in his original

article

hep-th/9810188 ‘D-branes and K-theory’

Other motivating factors are in the work of BMRS,

Adv. Theor. Math. Phys. 13 (2009) 497552,

‘Non-commutative correspondences, duality and

D-branes in bivariant K-theory’ which focuses on

the analytic version.

The upshot of Wang’s approach is that there is a

way to think geometrically of D-branes, at least

insofar as they relate to topological twisted K-

homology, as twisted versions of the Baum-Douglas

geometric cycles.

Finally I mention some additional topics to do with

D-branes.
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1. Twisted K-theory: topological and analytic

definitions

Let X be a paracompact Hausdorff topological

space, and H be an infinite dimensional, complex

and separable Hilbert space.

PU(H) is the projective unitary group with norm

topology. PU(H) can be identified with an Eilenberg-

MacLane space K(Z,2). So the classifying space

BPU(H) is a K(Z,3).

A twisting is a continuous map α : X → K(Z,3).

The associated PU(H) bundle Pα is given by pulling

back the universal PU(H)-bundle over K(Z,3).

The set of isomorphism classes of principal PU(H)-

bundles over X is the homotopy classes of maps

[X,K(Z,3)] ∼= H3(X,Z).
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Let Fred be the space of Fredholm operators with
norm topology.

The ‘conjugation’ action PU(H) × Fred −→ Fred

defines an associated bundle with fiber the Fred-
holm operators

Pα(Fred) = Pα ×PU(H) Fred

Let Ωn
XPα(Fred) = Pα×PU(H)ΩnFred be the fiber-

wise n-iterated loop spaces.

The (topological) twisted K-groups of (X,α) are
defined to be

K−n(X,α) := π0

(
Cc(X,Ω

n
XPα(Fred))

)
,

the set of homotopy classes of compactly sup-
ported sections. Due to Bott periodicity, we only
have two different twisted K-groups, denoted by
K0(X,α) and K1(X,α).

Associated with the PU(H) bundle Pα is a con-
tinuous trace C∗-algebra and one may define the
analytic twisted K-theory of (X,α) as the K-theory
(via Kasparov) of this algebra.
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2. Twisted K-homology: Analytic and topo-

logical definitions

The analytic twisted K-homology of (X,α), de-

noted by Kan
ev/odd(X,α), is defined as the K-homology

(via Kasparov) of the continuous trace C∗-algebra

associated to Pα.

Introduce the space Pα(Fred)/X obtained by iden-

tifying the base points (the identity operator) in

the fibers. Then the topological twisted K-homology

K
top
ev/odd

(X,α) is defined to be

K
top
ev (X,α) = lim−→

k→∞
π2k

(
Pα(Fred)/X

)
and

K
top
odd (X,α) = lim−→

k→∞
π2k+1

(
Pα(Fred)/X

)
.

The proof that the topological and analytic ob-

jects are isomorphic uses twisted Poincare duali-

ties in the topological and analytic settings and

the equivalence between topological and analytic

twisted K-theory.
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3. The Twisted Poincaré duality

The twisted version introduces a shift in the twist

α 7→ α+ (W3 ◦ τ)

where τ : X → BSO is the classifying map of the
stable tangent bundle and W3 is the classifying
map for the bundle BSpinc → BSO, and α+(W3◦τ)
denotes the map X → K(Z,3), representing the
class [α] + W3(X) in H3(X,Z). (There is a tricky
point in this definition where we proceed by fixing
an isomorphism H⊗H ∼= H.)

Theorem Let X be a smooth manifold with a
twisting α : X → K(Z,3).

(i) (Wang) There exists an isomorphism

K
top
ev/odd

(X,α) ∼= K
ev/odd
top (X,α+ (W3 ◦ τ))

with the degree shifted by dimX(mod 2).

(ii) (Tu, Echterhoff-Emerson-Kim) There exists
an isomorphism

Kan
ev/odd(X,α) ∼= K

ev/odd
an (X,α+ (W3 ◦ τ))

with the degree shifted by dimX(mod 2).
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4. Twisted geometric cycles

Let (X,α) be a paracompact Hausdorff space with

a twisting α.

A geometric cycle for (X,α) is a quintuple

(M, ι, ν, η, [E])

where [E] is a K-class in K0(M), M an oriented

smooth closed manifold with a classifying map ν

of its stable normal bundle, ι : M → X is a con-

tinuous map such that there exists a homotopy

commutative diagram:

M
ι

��

ν // BSO
η

s{ p p p p p p p

p p p p p p p

W3��

X α// K(Z,3),

with a homotopy η between W3◦ν and α◦ι. We re-

fer to this diagram of maps as an ‘α-twisted Spinc

structure’.
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Remarks.

1. M admits an α-twisted Spinc structure if and
only if

ι∗([α]) +W3(M) = 0.

If ι is an embedding, this is the anomaly cancel-
lation condition introduced by Freed and Wit-
ten.

2. If the twists are all trivial this reduces to the
Baum-Douglas definition and η corresponds to
a choice of Spinc structure.

Two geometric cycles (M1, ι1, ν1, η1, [E1]) and
(M2, ι,2 ν2, η2, [E2]) are isomorphic if there is an
isomorphism f : (M1, ι1, ν1, η1) → (M2, ι2, ν2, η2),
as α-twisted Spinc manifolds over X, such that
f!([E1]) = [E2].

Let Γ(X,α) be the collection of all geometric cy-
cles for (X,α). We now impose an equivalence
relation ∼ on Γ(X,α), generated by the following
three relations:
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Direct sum - disjoint union

If (M, ι, ν, η, [E1]) and (M, ι, ν, η, [E2]) are two geo-

metric cycles with the same α-twisted Spinc struc-

ture, then

(M, ι, ν, η, [E1]) ∪ (M, ι, ν, η, [E2])

∼ (M, ι, ν, η, [E1] + [E2]).

Bordism

If there exists an α-twisted Spinc manifold (W, ι, ν, η)

and [E] ∈ K0(W ) such that

∂(W, ι, ν, η) = −(M1, ι1, ν1, η1) ∪ (M2, ι2, ν2, η2)

and ∂([E]) = [E1]∪ [E2]. Here −(M1, ι1, ν1, η1) de-

notes the manifold M1 with the opposite α-twisted

Spinc structure, then

(M1, ι1, ν1, η1, [E1]) ∼ (M2, ι2, ν2, η2, [E2]).
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Spinc vector bundle modification

Take a geometric cycle (M, ι, ν, η, [E]) and a Spinc

vector bundle V over M with even dimensional

fibers. Denote by R the trivial rank one real vector

bundle. Choose a Riemannian metric on V ⊕R, let

M̂ = S(V ⊕ R)

be the sphere bundle of V ⊕ R.

Denote by ρ : M̂ → M the projection which is K-

oriented. The vertical tangent bundle T v(M̂) of M̂

admits a natural Spinc structure with an associated

Z2-graded spinor bundle S+
V ⊕ S

−
V . Then

(M, ι, ν, η, [E]) ∼ (M̂, ι ◦ ρ, ν ◦ ρ, η ◦ ρ, [ρ∗E ⊗ S+
V ]).

Definition. The geometric twisted K-homology

K
geo
ev/odd

(X,α) is defined to be Γ(X,α)/ ∼ with the

grading given by even or odd dimension of α-twisted

Spinc manifolds . Addition is given by the disjoint

union - direct sum relation.
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4. Twisted assembly map

There exists a natural homomorphism

µ : Kgeo
ev/odd

(X,α)→ Kan
ev/odd(X,α)

where µ(M, ι, ν, η, [E]) is defined by composition of

a sequence of maps:

[E] ∈ K0(M) PD //Kan
ev/odd(M,W3 ◦ τ)

I∗
��

Kan
ev/odd(M,α ◦ ι)

ι∗∼=
��

Kan
ev/odd(M,W3 ◦ ν)

η∗
∼=oo

Kan
ev/odd(X,α).

Here PD : K0(M) ∼= Kan
ev/odd(M,W3 ◦ τ) is the Kas-

parov’s Poincaré duality with the degree shift by

dimM(mod 2), ι∗ is the natural push-forward map

in twisted K-homology, η∗ is the isomorphism in-

duced by the homotopy η, and I∗ is the isomor-

phism induced by the trivial Spinc structure on the

trivial bundle τ ⊕ ν.
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Theorem (Wang) The twisted assembly map

µ : Kgeo
ev/odd

(X,α)→ Kan
ev/odd(X,α)

is an isomorphism for any smooth closed manifold

X with a twisting α : X → K(Z,3).

The proof of this theorem is via establishing that

there is a map Ψ : Ktop
ev (X,α) → K

geo
0 (X,α) such

that the following diagram

K
top
ev/odd

(X,α)
Ψ

uukkkkkkkkkkkkkk Φ
∼= ))SSSSSSSSSSSSSSS

K
geo
ev/odd

(X,α) µ
//Kan
ev/odd(X,α)

commutes and Ψ is surjective.
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5. The twisted index theorem

One of the applications of geometric cycles is to

express an index pairing between twisted K-theory

and twisted K-homology in terms of an index pair-

ing on geometric cycles.

Theorem Let X be a smooth manifold with a

twisting α : X → K(Z,3). The index pairing

K0(X,α)×K0(X,α) −→ Z

is given by

< (M, ι, ν, η, [E]), ξ >

=
∫
M
chw2(M)

(
η∗(ι∗ξ ⊗ E)

)
Â(M)

where ξ ∈ K0(X,α), and the geometric cycle

(M, ι, ν, η, [E])

defines a twisted K-homology class on (X,α). Here

η∗ : K∗(M, ι∗α) ∼= K∗(M,W3(M))

is an isomorphism, and chw2(M) is the Chern char-

acter on K0(M,W3(M)) which we now explain.
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6. Twisted Chern character

Under the identification between K0(M,W3(M))

and the K-theory of Clifford modules over M ,

chw2(M) : K0(M,W3(M)) −→ Hev(M,R)

is given by the relative Chern character on Clif-

ford modules as described for example in Berline-

Getzler-Vergne.

The general twisted Chern character on K0(X,α)

requires a choice of gerbe connection and curv-

ing. A geometric definition was given in Differ-

ential Twisted K-theory and its Applications, C-

Mickelsson-Wang. An analytical definition using

the Chern-Connes character in noncommutative

geometry was given Mathai-Stevenson. A topo-

logical definition was given by Atiyah-Segal.
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7. Twisted Riemann-Roch

There is a Riemann-Roch theorem in C-Mickelsson-

Wang op cit, which implies that the above index

formula can be written as

< (M, ι, ν, η, [E]), ξ >

=
∫
M
chw2(M)

(
η∗(ι∗ξ ⊗ E)

)
Â(M)

=
∫
X
chw2(X)

(
ι!(E)⊗ ξ

)
Â(X)

where ι! is the push-forward map on twisted K-

theory defined by

K0(M) ∼= K0(M,W3(M))
∼= K0(M,−ι∗α)
∼= K0(X,−α)
∼= K0(X,−α+W3(X))

and chw2(X) is the canonical twisted Chern char-

acter on

K0(X,−α+W3(X))⊗K0(X,α)→ K0(X,W3(X)).

16



8. D-branes

Theorem. (Wang) Given a twisting α : X →
K(Z,3) on a smooth manifold X, every twisted

K-class in

Kev/odd(X,α)

is represented by a geometric cycle supported on

an (α+ (W3 ◦ τ))-twisted closed Spinc-manifold M

and an ordinary K-class [E] ∈ K0(M).

Thus there are three definitions of twisted K-theory

K∗(X,α) for a smooth manifold X:

1. A topological definition in terms of homotopy

equivalence classes of sections of a bundle of K-

theory spectra associated to (X,α).

2. An analytical definition in terms of the contin-

uous trace C∗-algebra associated to (X,α).

3. A geometric definition in terms of a geometric

cycle (M, ι, ν, η, E) with ν the classifying map for

the map ι : M → X.
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We propose that this geometric cycle is the so-
called Type II D-brane for a class in K∗(X,α). The
equivalence of these three definitions gives a can-
didate for the D-brane charge map on the category
of D-branes:

{D-branes over (X,α)} −→ K∗(X,α).

There is a version of Type I D-branes using twisted
Spin-manifolds over (X,α) with α : X → K(Z2,2).

Remark on T -duality

Given a principal Tn-bundle p : Y → X with a twist-

ing α on Y satisfying p!α = 0 ∈ H1(X,Z
n(n−1)

2 ),
there is a classical T -dual (Y #, α#) such that

K∗(Y, δ) ∼= K∗+n(Y #, δ#).

The dependence of twisted Chern character

chα̌ : K∗(Y, α) −→ H∗(Y, curv(α̌))

on α̌ (a gerbe connection and curving) makes the
geometric formulation of classical T-duality, in terms
of geometric cycles with connection

(M, ι, ν, η, E,∇E),

more subtle. More work is needed in this direction.
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9. Remark on String structures

One may think of the obstruction to the existence

of a string structure on the loop space LM as an

analogue of the class W3(M) except that the string

class lies in H4(M,Z).

In Wang’s paper he draws on this analogy with the

view to making a connection with elliptic cohomol-

ogy. This leads to some interesting conjectures

which are under investigation.
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