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Abstract

By considering T-duality for strings moving in a geometric
background, i.e. in the presence of curvature and H-fluxes, one
arises at situations in which the string is coupled to, what is
known in the literature as, non-geometric fluxes. In this talk we
will consider T-duality in the context of generalized geometry
and unravel the geometry behind these non-geometric fluxes.
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Introduction

Topological T-duality, as developed in Rosenberg’s
lectures, is a mere shadow of the equivalence of certain
string theories under T-duality. The full picture involves
geometry.
What is the ‘geometry’ behind the ‘missing T-duals’?
As we have seen, T-duality exchanges momentum (related
to TE), with winding (related to T ∗E).
A natural geometric framework for T-duality is therefore a
framework which treats TE and T ∗E on equal footing.

⇓

GENERALIZED GEOMETRY
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Generalized geometry

Replace structures on TE by structures on TE ⊕ T ∗E

Bilinear form on sections (X ,Ξ) ∈ Γ(TE ⊕ T ∗E)

〈(X1,Ξ1), (X2,Ξ2)〉 = 1
2(ıX1Ξ2 + ıX2Ξ1)

(twisted) Courant bracket

[[ (X1,Ξ1), (X2,Ξ2) ]]H =

([X1,X2],LX1Ξ2 − LX2Ξ1 − 1
2d
(
ıX1Ξ2 − ıX2Ξ1

)
+ ıX1ıX2H)

where H ∈ Ω3
cl(E)
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Generalized Geometry (cont’d)

Clifford algebra

{γ(X1,Ξ1), γ(X2,Ξ2)} = 2〈(X1,Ξ1), (X2,Ξ2)〉

Clifford module Ω•(E)

γ(X ,Ξ) · Ω = ıX Ω + Ξ ∧ Ω

(twisted) Differential on Ω•(E)

dHΩ = dΩ + H ∧ Ω
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Properties of the Courant bracket

For A,B,C ∈ Γ(TE ⊕ T ∗E), f ∈ C∞(E),
(a)

[[A,B]] = −[[B,A]]

(b)
Jac(A,B,C) = [[[[A,B]],C]] + cycl = dNij(A,B,C)

with
Nij(A,B,C) = 1

3 (〈[[A,B]],C〉+ cycl)

(c)
[[A, fB]] = f [[A,B]] + (ρ(A)f )B − 〈A,B〉df

where ρ : TE ⊕ T ∗E → TE is the projection.
[Note that isotropic, involutive subbundles A ⊂ TE ⊕ T ∗E (Dirac
structures) give rise to Lie algebroids.]
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Properties of the Courant bracket (cont’d)

(d) Symmetries of 〈·, ·〉 are given by orthogonal group
O(TM ⊕ T ∗M) ∼= O(d ,d).
A particular kind of orthogonal transformation is the
so-called B-field transform. For b ∈ Ω2(E)

eb(X ,Ξ) = (X ,Ξ + ıX b)

We have
eb[[A,B]]H = [[ebA,ebB]]H+db
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Courant bracket as a derived bracket

We have the following ‘Cartan formulas’

{γ(X1,Ξ1), γ(X2,Ξ2)} = 2〈(X1,Ξ1), (X2,Ξ2)〉
{dH , γ(X ,Ξ)} = L(X ,Ξ)

[L(X1,Ξ1), γ(X2,Ξ2)] = γ(X1,Ξ1)◦(X2,Ξ2)

[L(X1,Ξ1),L(X2,Ξ2)] = L(X1,Ξ1)◦(X2,Ξ2) = L[[(X1,Ξ1),(X2,Ξ2)]]

where
L(X ,Ξ) · Ω = LX Ω + (dΞ + ıX H) ∧ Ω

and the Dorfmann bracket is defined by

(X1,Ξ1) ◦ (X2,Ξ2) = ([X1,X2],LX1Ξ2 − ıX2dΞ1 + ıX1ıX2H)
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T-duality for principal circle bundles

Given a principal circle bundle E with H-flux H

S1 −−−−→ E

π

y
M

H = H(3) + A ∧ H(2), F = dA

there exists a T-dual principal circle bundle

S1 −−−−→ Ê

bπy
M

Ĥ = H(3) + Â ∧ F , F̂ = H(2) = dÂ
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Theorem [Cavalcanti-Gualtieri]

(a) We have an isomorphism of differential complexes
τ : (Ω•(E)S1 ,dH)→ (Ω•(Ê)S1 ,dbH)

τ(Ω(k) + A ∧ Ω(k−1)) = −Ω(k−1) + Â ∧ Ω(k)

τ ◦ dH = −dbH ◦ τ
Hence, τ induces an isomorphism on twisted cohomology

(b) We can identify (X ,Ξ) ∈ Γ(TE ⊕ T ∗E)S1 with a quadruple
(x , f ; ξ,g)

X = x + f∂A , Ξ = ξ + gA

and define a map φ : Γ(TE ⊕ T ∗E)S1 → Γ(T Ê ⊕ T ∗Ê)S1

φ(x + f∂A + ξ + gA) = x + g∂bA + ξ + f Â

The map φ is orthogonal wrt pairing on TE ⊕ T ∗E , hence
τ induces an isomorphism of Clifford algebras
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Theorem (cont’d)

(c) For (X ,Ξ) ∈ Γ((TE ⊕ T ∗E)S1) we have

τ(γ(X ,Ξ) · Ω) = γφ(X ,Ξ) · τ(Ω)

Hence τ induces an isomorphism of Clifford modules
(d) For (Xi ,Ξi) ∈ Γ((TE ⊕ T ∗E)S1) we have

φ ([[(X1,Ξ1), (X2,Ξ2)]]H) = [[φ(X1,Ξ1), φ(X2,Ξ2)]]bH
Hence φ gives a homomorphism of twisted Courant
brackets
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Theorem (cont’d)

(e) Generalized metric on TE ⊕ T ∗E

G =

(
−g−1b g−1

g − bg−1b bg−1

)
Note that G2 = 1. We have

C+ = Ker(G − 1) = {(X , (g + b)(X )), X ∈ Γ(TE)}
= graph(g + b : TE → T ∗E) ,

The transformed generalized metric Ĝ is given by

Ĉ+ = graph(ĝ + b̂ : TÊ → T ∗Ê)

where (ĝ, b̂) are given by the Buscher rules.
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Proof (sketch)

We have
dH = d̄ + H(3) + F∂A + A ∧ H(2)

which proves
τ ◦ dH = −dbH ◦ τ

The isomorphism of Clifford algebra and modules follows just
as easily, and the statement on the Courant bracket follows
from the Cartan formulas.

Peter Bouwknegt The Geometry behind Nongeometric Fluxes



ANU-logo

Dimensionally reduced Courant bracket

[[(x1, f1;ξ1,g1), (x2, f2; ξ2,g2)]]F ,H =

([x1, x2], x1(f2)− x2(f1) + ıx1ıx2F ;

(Lx1ξ2 − Lx2ξ1)− 1
2d(ıx1ξ2 − ıx2ξ1) + ıx1ıx2H(3)

+ 1
2(df1g2 + f2dg1 − f1dg2 − df2g1)

+ (g2ıx1F − g1ıx2F ) + (f2ıx1H(2) − f1ıx2H(2)),

x1(g2)− x2(g1) + ıx1ıx2H(2))
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Generalization to principal torus bundles

We have

H = H(3) + Ai ∧ H i
(2) + 1

2Ai ∧ Aj ∧ H ij
(1) + 1

6Ai ∧ Aj ∧ Ak ∧ H ijk
(0)

such that

dH =d̄ + H(3) + F(2)i∂Ai + 1
2F(1)ij∂Ai ∧ ∂Aj + 1

6F(0)ijk∂Ai ∧ ∂Aj ∧ ∂Ak

+ Ai ∧ H i
(2) + 1

2Ai ∧ Aj ∧ H ij
(1) + 1

6Ai ∧ Aj ∧ Ak ∧ H ijk
(0)

The F(1)ij and F(0)ijk are known as nongeometric fluxes
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Nongeometric fluxes

Let {ea} be a basis of Γ(TE), such that [ea,eb] = fab
cec , and

{ea} be a dual basis of Γ(T ∗E), then the Courant bracket can
be expressed as

[[ea,eb]] = fab
cec + habcec

[[ea,eb]] = qbc
aec − fac

bec

[[ea,eb]] = 0rabcec + qab
cec

where H = 1
6 habcea ∧ eb ∧ ec .

Together with certain conditions on the structure constants this
defines a Courant algebroid.

Theorem [Bouwknegt-Garretson-Kao]: T-duality provides an
isomorphism of (certain) Courant algebroids.
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THANK YOU FOR LISTENING !!

THANKS BOB AND GREG !!

THANKS JONATHAN !!
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