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Preface

The workshop. The Nineteenth Annual Workshop in Geometric
Topology was held at Calvin College, in Grand Rapids, Michigan, on
June 13–15, 2002. A list of the participants may be found elsewhere in
these proceedings.

The principal speaker for the workshop was Professor Alexander
Dranishnikov of the University of Florida. Professor Dranishnikov pre-
sented a series of three one-hour lectures titled “Dimension Theory:
local and global.” A written transcript of those talks is included in
these proceedings. In addition, Professor Jerzy Dydak of the Univer-
sity of Tennessee gave an invited one-hour talk on a related topic. His
title was “The algebra of dimension theory.”

As always, the workshop included a number of shorter contributed
talks by participants and concluded with a problem session. Summaries
of several of the contributed talks are included in these proceedings as
is a summary of the problems discussed at the problem session.

The special session. Robert J. Daverman has been closely associ-
ated with the Workshops in Geometric Topology since their inception.
He has also played an important role in the mathematical development
of the individual organizers of the series. In recognition of Daverman’s
many contributions, and on the occasion of his 60th birthday, the or-
ganizers planned a special session in his honor. The special session was
held after the conclusion of the regular workshop and took place on
Saturday, June 15. The following mathematicians gave one-hour talks
at the special session; John Bryant, James Cannon, Craig Guilbault,
and William Jaco. There was a dinner in Bob’s honor on Saturday
evening. The dinner was held in the Hauenstein and Pfeiffer Rooms at
the Frederik Meijer Gardens.

Support. The workshop received its primary financial support from
the National Science Foundation under grant number DMS-0104325.
In addition, Calvin College provided support for the workshop and the
University of Tennessee supported the special session on Saturday.
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vi PREFACE

Organizers. The workshops are organized by Fredric Ancel, Uni-
versity of Wisconsin-Milwaukee; Dennis Garity, Oregon State Univer-
sity; Craig Guilbault, University of Wisconsin-Milwaukee; Frederick
Tinsley, Colorado College; Gerard Venema, Calvin College; and David
Wright, Brigham Young University. The organizers serve as editors of
these proceedings.

History of the Workshops in Geometric Topology

Year Workshop Location Principal Speaker
2003 Park City, Utah (BYU) Martin Bridson
2002 Calvin College Alexander Dranishnikov
2001 Oregon State University Abigail Thompson
2000 Colorado College Robert Gompf
1999 University of Wisconsin-Milwaukee Robert Edwards
1998 Park City Utah (BYU) Steve Ferry
1997 Oregon State University James Cannon
1996 Colorado College Michael Freedman
1995 University of Wisconsin-Milwaukee Shmuel Weinberger
1994 Brigham Young University Michael Davis
1993 Newport, Oregon (OSU) John Bryant
1992 Colorado College Mladen Bestvina
1991 University of Wisconsin-Milwaukee Andrew Casson
1990 Oregon State University Robert Daverman
1989 Brigham Young University John Luecke
1988 Colorado College John Hempel
1987 Oregon State University Robert Edwards
1986 Colorado College John Walsh
1985 Colorado College Robert Daverman
1984 Brigham Young University none
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ROBERT J. DAVERMAN:
A SHORT MATHEMATICAL TRIBUTE

Robert Jay Daverman was born on September 28, 1941 in Grand
Rapids, Michigan. He earned a B.A. from Calvin College in 1963, after
which he entered graduate school at the University of Wisconsin. In
1967 he was awarded a Ph.D. for his thesis Locally Fenced 2-spheres in
S3, written under the direction of R. H. Bing. Shortly thereafter he
moved, with wife Lana and their children Kurt and Lara, to Knoxville
to join the faculty at the University of Tennessee. There he quickly rose
to the rank of Full Professor—a position he continues to hold today.

A world renowned expert in the topology of manifolds, Daverman
has authored or co-authored more than a hundred original research
articles. He co-edited The Collected Papers of R. H. Bing, and more
recently the Handbook of Geometric Topology. Best known for his work
in embedding and decomposition theory, Davermans book Decomposi-
tions of Manifolds has become “the bible” of that subject and may
be found in research libraries and in offices of geometric topologists
worldwide.

To his many friends in the field of geometric topology, “Bob” is
best known for his energy, enthusiasm and generosity. Students at the
University of Tennessee have benefited greatly from his willingness to
offer courses and seminars on a remarkable range of topics. Among
these students, eleven have earned Ph.D.s under his direction. Many
other young topologists have adopted him as an unofficial mentor. The
lively and collegial atmosphere fostered by Bob has attracted long- and
short-term visitors from across the globe to Knoxville. His outgoing
style of doing mathematics is illustrated by his publication list which
contains nearly fifty collaborative papers written with no fewer than
twenty-five different co-authors.

In recent years, Bob has expanded the reach of his work through
his involvement in the American Mathematical Society. He served as
Secretary of the Southeast Region from 1993 through 1999, after which
he became the ninth Secretary of the AMS in the 114-year history of the
organization. Here his broad view and unselfish attitude have served
the greater mathematical community well. Through all of this, his own
research has continued to thrive.
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2 ROBERT J. DAVERMAN: A SHORT MATHEMATICAL TRIBUTE

The past and present organizers of the summer Workshops in Geo-
metric Topology wish to make a special acknowledgement of Bobs con-
tributions to this series of conferences. It is very appropriate that an
event commemorating Bob’s 60th birthday is associated with the 19th
Annual Workshop in Geometric Topology. Twice Bob has served as
the principal speaker at a summer workshop. More importantly, his
regular involvement with the workshop series has benefited all partici-
pants. His warmth, friendship and unfailing eagerness to do some real
mathematics are to many of us the highlight of these annual gatherings.

Craig Guilbault
Milwaukee, May 2002



DIMENSION THEORY LOCAL AND GLOBAL

A. N. DRANISHNIKOV

Dedicated to Bob Daverman on the occasion of his 60th birthday.

These survey lectures are devoted to a new subject of the large scale
dimension theory which was initiated by Gromov as a part of asymp-
totic geometry. We are going to enter the large scale world and consider
some new concepts, results and examples which are parallel in many
cases to the corresponding elements of the standard (local) dimension
theory. We start our presentation with the motivations.

Lecture 1. MOTIVATONS and CONCEPTS

1.1. Big picture of the Novikov Conjecture. The Novikov Conjec-
ture (NC) states that the higher signatures of a manifold are homotopy
invariant. The higher signatures are the rational numbers of the type
〈L(M)∪ρ∗M(x), [M ]〉, where [M ] is the fundamental class of a manifold
M , L is the Hirzebruch class, Γ = π1(M), ρM : M → BΓ = K(Γ, 1)
is a map classifying the universal cover of M and x ∈ H∗(BΓ; Q) is a
rational cohomology class. The name ‘higher signature’ is due to the
Hirzebruch signature formula σ(M) = 〈L(M), [M ]〉. It is known that
the higher signatures are the only possible homotopy invariant char-
acteristic numbers. It is convenient to formulate the NC for groups
Γ instead of manifolds. We say that the Novikov Conjecture holds for
a discrete group Γ if it holds for all manifolds M (closed, orientable)
with the fundamental group π1(M) = Γ. One of the reason for this is
that the conjecture is verified for many large classes of groups. The
other reason is that the Novikov Conjecture for the group can be re-
formulated in terms of the surgery exact sequence: The rational Wall
assembly map

lΓ∗ : H∗(BΓ; Q) → L∗(π)⊗Q
is a monomorphism [Wa], [FRR],[KM].

1991 Mathematics Subject Classification. Primary 53C23, 57R22, 57S30, 20F65,
05C10.

Key words and phrases. hypereuclidean manifold, expander, aspherical manifold,
Novikov conjecture.

The author was partially supported by NSF grant DMS-9971709.
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4 A. N. DRANISHNIKOV

The case when BΓ is a finite complex is of a particular interest
here. In this case the group Γ taken as a metric space in the word
metric is coarsely equivalent to the universal cover EΓ. This makes
the methods of asymptotic geometry more natural. According to Davis’
trick every finite aspherical complex K is a retract of a closed aspherical
orientable manifold M [D]. Then the diagram formed by the surgery
exact sequence and this retraction implies that if the NC holds for
π1(M), then it holds for π1(K). Having that in mind from this moment
we will stick to the case when BΓ = M is a closed orientable manifold.
Since M is aspherical, without loss of generality we may assume that
the universal cover X of M is homeomorphic to a euclidean space.

There are several famous conjectures about aspherical manifolds. We
arrange them in the following picture.

GC WC cNC cBCC aNC

BC

equi equi

NC

BCC

GLC

Here we assume that Γ is fixed and BΓ = M is a closed manifold of
dimension n. We note that almost all these conjectures are stated in
more general form. With the above restriction they form this picture
where every arrow is a theorem.

Below we give a brief description of the conjectures.

Borel Conjecture (BC). Every homotopy equivalence between closed
aspherical manifolds is homotopic to a homeomorphism.

The arrow BC → NC follows from the surgery exact sequence [FRR].

Gromov-Lawson Conjecture (GLC). A closed aspherical manifold
cannot carry a metric of positive scalar curvature.

The scalar curvature of an n-dimensional Riemannian manifold M
at a point x can be defined up to a constant multiple as

lim
r→0

V ol Br(Rn, 0)− V ol Br(M, x)

rn+2
,

where Br(X, x) denotes the r-ball in a metric space X centered at x.
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Analytic Novikov Conjecture (aNC). The analytic assembly map
µ : K∗(BΓ) → K∗(C

∗
r (Γ)) is a monomorphism.

Here C∗
r (Γ) is the reduced C∗-algebra of a group Γ, i.e. the comple-

tion of the group ring CΓ in the space of bounded linear operators on
the Hilbert space l2(Γ) of complex square summable functions on Γ.
Proofs of arrows from aNC can be found in [Ros],[FRR],[Con],[Ro2].
We note that the original version of aNC (due to Mischenko and Kas-
parov) was slightly weaker and it used the maximal C∗-algebra C∗

m(Γ)
of the group Γ.

Baum-Connes Conjecture (BCC). The analytic assembly map µ
is an isomorphism.

Coarse Baum-Connes Conjecture (cBCC). The coarse index map
µ : K lf

∗ (X) → K∗(C
∗(X)) is an isomorphism, where X = EΓ and

C∗(X) is the Roe algebra [Ro2].

The connection of cBCC with BCC is based on the facts that the
K-theory homology group K∗(BΓ) is a Γ-equivariant K-homology of
X and the reduced C∗-algebra of Γ is Morita equivalent to the algebra
C∗(X)Γ of fixed elements of C∗(X) under the action of Γ. The arrow
cBCC → cNC is trivial. The arrow cBCC → aNC can be found in
[Ro2].

Coarse Novikov Conjecture (cNC). The coarse index map µ is a
monomorphism.

The arrow cNC → GLC is proven in [Ro1]. Here we consider a coarse
analog of the analytic Novikov conjecture. For the L-theoretic coarse
Novikov conjecture we refer to [DFW1] and [J].

Equivariant cNC. The coarse index map µ is a Γ-equivariant split
monomorphism.

A proof of the arrow equi-cNC → NC is contained in [Ro2]. We give
more attention to the following two conjectures.

Weinberger Conjecture (WC). Let X̄ = X∪νX be the Higson com-
pactification of X. Then the boundary homomorphism δ : Ȟn−1(νX) →
Hn

c (X) = Z in the exact sequence of the pair (X̄, νX) is an epimor-
phism.

We recall that for a smooth manifold X the Higson compactification
X can be defined as the closure of the image of X under the diagonal
embedding Φ : X → ICh(X) into the Tychonov cube defined by means
of all smooth functions φ : X → I = [0, 1] whose gradient tends to 0



6 A. N. DRANISHNIKOV

as x goes to infinity. The set of all such φ is denoted by Ch(X). the
remainder νX = X r X of the Higson compactification is called the
Higson corona. The arrow WC → cNC was established in [Ro1]. The
Weinberger Conjecture has the rational version (when coefficients are
rational). The rational WC implies the Gromov Conjecture (actually
after a stabilization when n is odd) [Ro1], [DF] and hence the Gromov-
Lawson conjecture. There is an equivariant version of WC which states
that δ is Γ-equivariant split epimorphism for cohomology L-theory.
Weinberger noted that the rational equivariant WC implies NC [DF].

Gromov Conjecture (GC). The manifold X = EΓ is hypereuclidean.

Gromov called this a ‘problem’ rather than a ‘conjecture’. We use
here GC instead of GP to make the picture more homogeneous. We
recall that an n-dimensional manifold X is called hypereuclidean if it
admits a proper 1-Lipschitz map p : X → Rn of degree one. A manifold
X is called rationally hypereuclidean if there exists a map p as above
with deg(p) 6= 0. The arrow rational GC → GLC was proved in [GL],
[G3]. The arrow GC → WC was proved by Roe [Ro1].

We note that the stable version of GC implies the Gromov-Lawson
Conjecture as well. Also in [G3] there was an announcement of the im-
plication (stable) GC → NC. Previously it was known that the equivari-
ant version of GC implies the Novikov Conjecture [CGM]. The equivari-
ant version of GC states that X = EΓ is equivariantly hypereuclidean.
the latter means that there is a equivariant map p : X ×X → Rn ×X
which is 1-Lipschitz and essential on every fiber. The main example
here is the universal cover of a closed manifold of nonpositive curva-
ture. Then the map p is defined by the formula p(x, y) = lny(x) where
lnx : X → Tx is the inverse of the exponential map at x ∈ X.

Example. All conjectures hold true when Γ = Zn. Then BΓ is the
n-dimensional torus and X = Rn. Even in this toy case some of the
above conjectures are not obvious.

We conclude the motivation part by a theorem of G. Yu [Yu1] (see
also [Yu2], [HR2], [H], and [STY]).

Theorem 1.1. If the asymptotic dimension asdim Γ of a finitely pre-
sented group Γ taken as a metric space with the word metric is finite,
then the cBCC, and hence the NC, holds for Γ.

This theorem was extended to cover the integral versions of the L-
and K-theoretic Novikov conjectures in [CG], [CFY], [Ba], [DFW2].

1.2. Coarse category and coarse structures. The coarse category
was defined by Roe in [Ro1]. He starts with the category whose objects
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are proper metric spaces. The morphisms are coarsely uniform, metric
proper maps. Here are the definitions. A metric space X is called
proper if every closed ball Br(x) in X is compact. We recall that a
map f : X → Y is called proper if the preimage f−1(C) is compact
for every compact set C. Then a metric space X is proper if and
only if the distance to any fixed point is a proper function on X. A
map f : X → Y is called metric proper if the preimage f−1(C) is
bounded for every bounded set C ⊂ Y . A map f : X → Y is coarsely
uniform if there is a tending to infinity function ρ : R+ → R+ such
that dY (f(x), f(x′)) ≤ ρ(dX(x, x′)) for all x, x′ ∈ X. We consider the
following equivalence relation on morphisms. Two maps f, g : X → Y
are coarsely equivalent (bornotopic in terminology of [Ro1]) if there
is a constant D such that dY (f(x), g(x)) < D for all x. The coarse
category is the quotient of the above category under this equivalence
relation on the morphisms. Two metric spaces X and Y are coarsely
equivalent if there are two morphisms f : X → Y and g : Y → X such
that g ◦ f is coarsely equivalent to 1X and f ◦ g is coarsely equivalent
to 1Y .

Example. Z is coarsely equivalent to R with the metric d(x, y) =
|x− y|.

More generally, if BΓ is a finite complex, then Γ is coarsely equivalent
to EΓ. Here the metric on EΓ is lifted from one on BΓ and the
group Γ is equipped with the word metric with respect to a finite
set of generators. We recall that if S = S−1 is a finite symmetric
set of generators of a group Γ then the word metric dS is defined as
dS(x, y) = ‖x−1y‖S, where the S-norm ‖a‖S of an element a ∈ Γ is the
shortest length of presentation of a in the alphabet S. We note that
if S ′ is another finite symmetric generating set of Γ, then the metric
spaces (Γ, dS) and (Γ, dS′) are coarsely equivalent.

We call a metric space X ε-discrete if dX(x, x′) ≥ ε for all x, x′ ∈ X,
x 6= x′. We call it discrete if it is ε-discrete for some ε.

Proposition 1.2. Every metric space X is coarsely equivalent to a
discrete metric space.

Proof. By transfinite induction one can construct a 1-discrete subset
S ⊂ X with the property dX(x, S) ≤ 1 for all x ∈ X. The inclusion
S ⊂ X is a coarse equivalence whose inverse is any map g : X → S
with the property d(x, g(x)) ≤ d(x, S) + 1. �

We are going to study a coarse invariant dimension on metric spaces.
Before giving the definitions we will sketch an approach to an extension
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of the coarse category beyond the metric spaces which is due to Higson
and Roe [HR].

A set X is given a coarse structure if for every set S there is a
fixed equivalence relation on the set of maps XS called being close and
satisfying the following axioms:

(1) If p1, p2 : S → X are close, then p1 ◦ q and p2 ◦ q are close for
every q : S ′ → S;

(2) If p1, p2 : S → X are close and q1, q2 : S ′ → X are close, then
p1

∐
q1 and p2

∐
q2 are close maps of S

∐
S ′ to X;

(3) any two constant maps are close.

A subset C ⊂ X is called bounded (with respect to the coarse struc-
ture on X) if the inclusion map i : C → X is close to a constant map.
A map f : X → Y between two coarse spaces is called coarse proper
if the preimage of every bounded set is bounded. Then morphisms be-
tween coarse spaces are coarse proper maps f : X → Y satisfying the
condition:

p1, p2 : S → X are close ⇒ f ◦ p1, f ◦ p2 : S → Y are close.

Examples. (1) When X is a metric space one sets for being close the
property to be in a finite distance.

(2) If a locally compact topological space X is embedded in its
compactification X̄, one can define two maps p1, p2 : S → X to be
close if for every subset S ′ ⊂ S the corresponding limit sets coincide:
p1(S ′) r X = p2(S ′) r X.

We denote by Rn
r the coarse structure on Rn defined by the radial

compactification.
In parallel with the bounded and continuous control in controlled

topology [FP], the coarse structure on X defined in (1) is called bounded
and the coarse structure defined in (2) is called continuous.

Proposition 1.3. The bounded coarse structure on a proper metric
space X coincides with the continuous coarse structure generated by
the Higson compactification.

The proof can be easily derived from the following description of
the Higson compactification. According to Smirnov’s theorem every
compactification on X is defined by some proximity (and vice versa).
The Higson corona of X is defined by the proximity δX given by the
condition Aδ̄XB if and only if limr→∞ dX(ArBr(x0), BrBr(x0)) = ∞.
It means that the closures of diverging sets in X (and only them) do
not intersect in the Higson corona.
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Lecture 2. THEOREMS

2.1. Definitions. There are several equivalent definitions of dimension
of compact metric spaces. The equivalence of corresponding coarse
analogs for proper metric spaces in some cases is still an open question.

We recall the terminology. Let U denote an open cover of a met-
ric space X. Then ord(U) is the order of the cover, i.e. the max-
imal number of elements of U having nonempty intersection. The
mesh of a cover U , mesh(U), is the maximal diameter of the ele-
ments of U . The Lebesgue number of a cover U is defined as L(U) =
infy∈Y supU∈U d(y, Y r U). A family U of subsets of X is called uni-
formly bounded if there is an upper bound on the diameter of its ele-
ments.

We consider the following comparison table:

Dimension dim X ≤ n Asymptotic dimension asdim X ≤ n

(1) ∀ V, open cover of X, ∃ U , an
open cover of X, with ord(U) ≤
n + 1 and U ≺ V .

(1) ∀ V , uniformly bounded cover of X,
∃ U , a uniformly bounded cover of X,
with ord(U) ≤ n + 1 and V ≺ U .

(2) ∀ ε > 0 ∃ U0, . . . ,Un, dis-
joint families of sets in X with
mesh(U i) < ε such that ∪iU i is
a cover of X.

(2) ∀ λ ∃ uniformly bounded λ-disjoint
families U0, . . . ,Un such that ∪iU i is a
cover of X.

(3) ∀ ε > 0 ∃ an ε-map f : X →
K to an n-dimensional polyhe-
dron K.

(3) ∀ λ ∃ uniformly cobounded 1-
Lipschitz map f : X → K to a uni-
form polyhedron K with dim K = n and
mesh(K) = λ.

(4) X admits a Čech approxima-
tion by n-dimensional polyhedra.

(4) X admits an anti-Čech approxima-
tion by n-dimensional polyhedra.

(5) ∀ f : A → Sn, A ⊂Cl X, ∃ an
extension f̄ : X → Sn.

(5) ∀ f : A → Rn+1
r , A ⊂Cl X, ∃ an

extension f̄ : X → Rn+1
r .

(6) Ind X ≤ n (6) asInd X ≤ n.

In the column on the left we have equivalent definitions of dimension
for compact metric spaces. In the right column there are asymptotic
counterparts. It is likely that they all are equivalent for metric spaces
with bounded geometry.
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We still owe some definitions for the asymptotic part of this ta-
ble. A map f : X → Y between metric spaces is called uniformly
cobounded if for every R > 0 the diameter of the preimage f−1(BR(y))
is uniformly bounded from above. A Čech approximation of a compact
metric space X is a sequence of finite covers {Un} such that, Un+1 is
a refinement of Un for all n, and limn→∞mesh(Un) = 0. An anti-Čech
approximation [Ro1] of a metric space X is a sequence of uniformly
bounded locally finite covers Un such that Un is a refinement of Un+1,
and limn→∞ L(Un) = ∞. In both cases the approximation of metric
space X is given by polyhedra which are nerves of corresponding cov-
ers. We say that a simplicial complex K is given a uniform metric
of mesh(K) = λ, if it is realized as a subcomplex in the standard
λ-simplex ∆λ in the Hilbert space l2

∆λ = {(xi) |
∑

xi = λ, xi ≥ 0}

and it’s metric is induced from l2.
In condition (5), Rn+1

r stands for the continuous coarse structure
on Rn+1 defined by the radial compactification. Since every coarse
morphism f : A → Rn+1

r defines a continuous map between coronas
f : νA → Sn and vice versa, the asymptotic condition (5) (in view of
the classical condition (5)) can be reformulated as follows:

(5′) dim νX ≤ n.

We note that the dimension dim of a nonmetrizible compact space
can be defined by the condition (5).

Finally we recall the definition of inductive dimensions. A closed
subset C of a topological space X is called a separator between disjoint
subsets A, B ⊂ X if X r C = U ∪ V , where U, V are open subsets in
X, U ∩ V = ∅, A ⊂ U , V ⊂ B. We set Ind ∅ = −1. Then Ind X ≤ n if
for every two disjoint closed sets A, B ⊂ X there is a separator C with
Ind C ≤ n− 1 [En].

It is known that the Higson corona is a functor from the category
of proper metric spaces and coarse maps into the category of compact
Hausdorff spaces and continuous maps. In particular, if X ⊂ Y , then
νX ⊂ νY . For any subset A of X we denote by A′ its trace on νX, i. e.
the intersection of the closure of A in X̄ with νX. Obviously, the set A′

coincides with the Higson corona νA. Let X be a proper metric space.
Two sets A, B in a metric space are called asymptotically disjoint if
the traces A′, B′ on νX are disjoint. A subset C of a metric space
X is an asymptotic separator between asymptotically disjoint subsets
A, B ⊂ X if the trace C ′ is a separator in νX between A′ and B′. By
the definition, asInd X = −1 if and only if X is bounded. Suppose
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we have defined the class of all proper metric spaces Y with asInd Y ≤
n−1. Then asInd X ≤ n if and only if for every asymptotically disjoint
subsets A, B ⊂ X there exists an asymptotic separator C between A
and B with Ind C ≤ n−1. The dimension functions asInd is called the
asymptotic inductive dimension .

As it was mentioned, all conditions (1)–(6) in the left column are
equivalent for compact metric spaces [HW],[En]. The condition (1)
is Lebesgue’s definition of dimension. The equivalence (1) ⇔ (2) is
a theorem of Ostrand. The equivalence of the conditions (3) and (5)
to the inequality dim X ≤ n is due to Alexandroff. The equivalence
dim X ≤ n ⇔ (4) is called the Froudenthal theorem.

In the column on the right Gromov proved the equivalence of con-
ditions (1),(2),(3) and (4) [Gr1] (see [BD2] for details). These condi-
tions give a definition of the asymptotic dimension asdim. In [Dr1]
it was shown that the condition (5′) is equivalent to the inequality
asdim X ≤ n provided asdim X < ∞. Under the same condition the
equality asInd X = asdim X was proven in [Dr7], [DZ]. Here we exclude
the case of bounded X. We note that there are implications (1) ⇒ (5′)
[DKU], (1) ⇒ (6) [DZ]. The status of the remaining implications is
unknown.

Examples.
(1) asdim Z = 1;
(2) asdim Rn = n [DKU];
(3) asdim T = 1 where T is a tree (with the natural metric).

We note that all asymptotic conditions (1)–(6) are coarse invariant.
All of them can be stated in the setting of general coarse structures.
To do that one needs a notion of a uniformly bounded family of sets
in a general coarse space. A family U in a coarse space X is uniformly
bounded if the maps p1, p2 : S → X are close, where S = ∪U∈UU ×U ⊂
X ×X and p1, p2 : X ×X → X are the projections onto the first and
the second factors respectively.

2.2. Embedding Theorems and Applications. A coarse morphism
f : X → Y is a coarse embedding if there the inverse morphism defined
for f : X → f(X), i.e. a morphism g : f(X) → X such that g ◦ f and
1X are close in X and f ◦ g and 1f(X) are close in f(X) with respect
to the induced coarse structure. If a coarse morphism f is injective in
the set theoretic sense, then it is a coarse embedding if and only f−1 is
a coarse morphism. In our metric setting a map f : X → Y is a coarse
embedding if there are tending to infinity functions ρ1, ρ2 : R+ → R+
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such that

ρ1(dX(x, x′)) ≤ dY (f(x), f(x′)) ≤ ρ2(dX(x, x′)).

We recall that a metric space (X, dX) is called geodesic if for every
pair of its points x and y there is an isometric embedding of the in-
terval [0, d(x, y)] into X with the end points x and y. Clearly for a
geodesic metric space X the function ρ2 can be taken linear. Thus,
up to a rescaling, a coarse embedding of a geodesic metric space is an
1-Lipschitz map.

The question about embeddings into nicer spaces in the coarse cat-
egory is very important for applications. In [Yu2] Goulang Yu proved
the Novikov Conjecture for groups Γ that admit a coarse imbedding in
the Hilbert space (see aloso [H] and [STY]). It was noticed in [HR2] that
a metric space with finite asymptotic dimension is coarsely imbeddable
in l2. Thus this theorem of Yu implies his Theorem 1.1.

In a geometric approach to Theorem 1.1 the need for a coarse analog
of the classical Nobeling-Pontryagin embedding theorem arose. We re-
call that the classical Nobeling-Pontryagin embedding theorem states
that every compactum X of dimension dim X ≤ n can be embedded
in R2n+1. It is easy to see that this statement does not have a di-
rect asymptotic analog. Indeed, a binary tree being asymptotically
1-dimensional cannot be coarsely embedded in RN for any N because
the tree has an exponential volume growth function and a euclidean
space has only the polynomial volume growth. Moreover, we show
in [DZ] that there is no metric space of bounded geometry that con-
tains in a coarse sense all asymptotically n-dimensional metric spaces
of bounded geometry. Here the bounded geometry condition serves as
an asymptotic analog of compactness.

We recall that the ε-capacity cε(W ) of a subset W ⊂ X of a metric
space X is the maximal cardinality of ε-discrete set in W . A metric
space X has bounded geometry if there are ε > 0 and a function c :
R+ → R+ such that cε(Br(x)) ≤ c(r) for all x ∈ X. Finitely generated
groups give us one of the main sources of examples of metric spaces of
bounded geometry.

Neveretheless in asymptotic topology there is an embedding theorem
which turnes out to be sufficient for the purpose of Theorem 1.1.

Theorem 2.1 ([Dr4]). Every metric space of bounded geometry X with
asdim X ≤ n can be coarsely embedded in a 2n+2-dimensional manifold
of nonpositive curvature.

The proof is based on the following embedding theorem.
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Theorem 2.2 ([Dr4]). Every metric space of bounded geometry X with
asdim X ≤ n can be coarsely embedded in the product of n + 1 locally
finite trees.

In the classical dimension theory there is a theorem [Bow] analogous
to Theorem 2.2 which states that an n-dimensional compact metric
space can be imbedded in the product of n+1 dendrits (= 1-dimensional
AR).

We recall that in the classical dimension theory for every n there
is the universal Menger compactum µn which is n-dimensional and
contains a copy of every n-dimensional compactum. As we mentioned,
there is no similar object in the coarse category for n > 0 [DZ]. Using
an embedding X →

∏
Ti into the product of trees as in Theorem 2.2 we

built a coarse analog of the Menger space M({Ti}), asdim M({Ti}) = n,
out of this product and get an embedding of X into M({Ti}). This
construction leads to the universal space for asdim ≤ n but we lose the
bounded geometry condition.

For n = 0 a universal object with bounded geometry does exist. It is
a literal generalization of the Cantor set: M0 is the subset of all reals
that do not use 2 in their ternary expansion. The classical Cantor set
is M0 ∩ [0, 1].

We proved a stable version of the Gromov Conjecture (see §1) for a
group Γ with asdim Γ < ∞.

Theorem 2.3 ([Dr2]). Let M be a closed aspherical manifold with
asdim π1(M) < ∞ and let X be its universal cover. Then the manifold
X × Rm is hypereuclidean for some m.

A weaker theorem states that X × Rm is integrally hyperspherical
[Dr4]. This theorem enables us to prove the GLC. There is a relatively
short proof of this which is based on the Theorem 2.1. We recall that
an n-dimensional manifold Y is integrally hyperspherical [GL] if for
arbitrary large r there is an n-submanifold with boundary Vr ⊂ Y
and an 1-Lipschitz degree one map pr : (Vr, ∂Vr) → (Br(0), ∂Br(0)) to
the euclidean ball of radius r. If X is embedded in a k-dimensional
nonpositively curved manifold W k, the R-sphere SR(x0) in X for large
enough R is linked with a manifold M which has a sufficiently large
tubular neighborhood N in W k also linked with SR(x0) and with an 1-
Lipschitz trivialization π : N → Br(0). Then we take a general position
intersection X∩N as Vr and the restriction π|Vr as pr. Crossing with Rm

helps to achieve the above properties of the tubular neighborhood N .

When Gromov defined the asymptotic dimension [G1] he already sug-
gested to consider the asymptotic behavior of some natural functions
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that appeared in the definition as legitimate asymptotic invariants of
dimension type. Here we consider one of such functions defined as

asdX(λ) = min{ord(U)| L(U) ≥ λ} − 1,

where U is a uniformly bounded cover of X. We note that taking the
limit gives the equality:

lim
λ→∞

asdX(λ) = asdim X.

So we will refer to the function asdX(λ) as to the asymptotic dimension
of X in the case when asdim X = ∞. Clearly, for a space of bounded
geometry the function asdX(λ) is at most exponential. The following
is a generalization of the theorem of Yu (Theorem 1.1).

Theorem 2.4 ([Dr5], [Dr8]). If asdΓ(λ) has the polynomial growth,
then the Novikov Conjecture holds for Γ.

This theorem holds for all finitely presented groups Γ. In contrast
with Theorem 2.3, the proof here relies heavily on the results of [Yu2],
[STY], and [H].

2.3. Finite dimensionality theorems. Finite dimensionality results
for groups are important for the application to the Novikov Conjecture.
The first finite dimensionality result in the asymptotic dimension the-
ory is due to Gromov who proved that asdim Γ < ∞ for hyperbolic
groups [Gr1], [Ro3]. Then we proved in [DJ] that asdim Γ < ∞ for all
Coxeter groups. In [BD1] we proved that the asymptotic finite dimen-
sionality is preserved by the amalgamated product and by the HNN
extension. We gave a general estimate.

Theorem 2.5 ([BD2]). Suppose that Γ is the fundamental group of a
finite graph of groups with all vertex groups Gv having asdim Gv ≤ n.
Then asdim Γ ≤ n + 1.

A graph of groups is a graph in which every vertex v and every
edge e have assigned group Gv and Ge such that for the endpoints e±

of e there are fixed monomorphisms φe± : Ge → Ge± . The fundamental
group of a graph of groups can be viewed as the fundamental group
of a complex built out of the mapping cylinders of the maps between
Eilenberg-Maclane complexes fe± : K(Ge, 1) → K(Ge± , 1) defined by
the homomorphisms φe± . Clearly, this is a generalization of the amalga-
mated product and the HNN extension which correspond to the graphs
with one edge.

By Bass-Serre theory the fundamental groups of graphs of groups
are exactly the groups acting on trees (without inversion). We used
this action to obtain our estimate. We proved the following theorem.
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Theorem 2.6 ([BD2]). Suppose that a group Γ acts by isometries on
a metric space X with asdim X ≤ k in such a way that for every r,
the r-stabilizer Wr(x0) of a fixed point x0 ∈ X has asdim Wr(x0) ≤ n.
Then asdim Γ ≤ n + k.

We define the r-stabilizer Wr(x0) as the set

{g ∈ Γ| dX(g(x0), x0) ≤ r}.
Thus, to prove Theorem 2.5 it suffices to show that asdim Wr(x0) ≤ n

for the Serre action of the group Γ on a tree. It is not an easy task by
any means even in the simplest case of the free product of groups. the
difficulties were overcome by further development of the asymptotic
dimension theory. We proved the following union theorem.

Theorem 2.7 ([BD1]).

(1) Suppose X = A ∪ B is a metric space. Then asdim X ≤
max{asdim A, asdim B};

(2) Suppose X = ∪iAi is a metric space and let asdim Ai ≤ n for
all i. Then asdim X ≤ n provided the following condition is
satisfied: ∀r ∃ Yr ⊂ X with asdim Yr ≤ n such that the family
of sets {Ai r Yr} is r-disjoint.

We note that these union theorems differ from their classical analogs.
Using the asymptotic inductive dimension asInd we managed to get

an exact formula in the case of the nondegenerate amalgamated prod-
uct.

Theorem 2.8 ([BDK]). There is a formula

asdimA ∗B = max{asdimA, asdimB, 1}
for finitely generated groups A and B.

For the amalgamated product, the best what we have is the inequal-
ity [BD3]

asdimA ∗C B ≤ max{asdimA/C, asdimB/C, asdimC + 1}.

Lecture 3. COUNTEREXAMPLES

3.1. Coarse Alexandroff Problem. We recall that the classical Alexan-
droff problem was about coincidence of the integral cohomological di-
mension of a compact metric space with its dimension. Since the 1930s
the problem was reduced to the question whether there is an infinite
dimensional compactum with a finite cohomological dimension. The
problem was solved negatively [Dr6]. We recall that the cohomolog-
ical dimension of X is defined in terms of Čech cohomology as the
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maximal number n such that the relative cohomology group is non-
trivial, Ȟ(X, A; Z) 6= 0, for some closed subset A ⊂ X. The Čech
cohomology is defined by means of a Čech approximation of a com-
pactum X (or of a pair (X, A)) and the ordinary (simplicial) cohomol-
ogy. Similarly one can define the anti-Čech homology called coarse
homology of a metric space (or pair) [Ro2], [Dr1] by means of an
anti-vCech approximation of a metric space X (or of a pair (X,A))
and the simplicial homology with infinite chains. Roe denoted the
coarse homology as HX∗ [Ro1]. Then using the coarse homology one
can define an asymptotic homological dimension in a similar fashion:
asdimZ X = max{n|HXn(X, A) 6= 0, A ⊂Cl X}. The homology is
more preferable here than the cohomology since the latter involves the
lim1 term. By analogy we can pose the coarse version of Alexandroff
problem:

Coarse Alexandroff Problem. Does there exist an asymptotically
infinite dimensional metric space with a finite asymptotic homological
dimension?

In view of Yu’s theorem (Theorem 1.1), it is not difficult to show (see
[Dr1]) that the negative answer to this problem implies the Novikov
Conjecture for the groups Γ with BΓ a finite complex.

The following was the first counterexample to the coarse Alexandroff
Problem, though it appeared as a counterexample to a general version
of the Gromov Conjecture (GC) as well as to a preliminary version of
the coarse Baum-Connes conjecture [Ro1].

Counterexample 3.1 ([DFW1]). There exists a uniformly contractible
Riemannian metric on R8 which gives a metric space X with asdim X =
∞ and with the asymptotic homological dimension equal to 8.

In our paper we proved that X is not stably hypereuclidean. This
already implies that asdim X = ∞. Higson and Roe proved [HR1] that
for uniformly contractible spaces the coarse homology coincides with
the locally finite homology. This gives us the required estimate for
asymptotic homological dimension.

We recall that a metric space X is uniformly contractible if there
is a function ρ : R+ → R+ such that every r-ball Br(x) in X can be
contracted to a point in Bρ(r)(x). We note that the universal cover
of a closed aspherical manifold is always uniformly contractible. This
let Gromov to pose his conjecture GC for all uniformly contractible
manifolds [G2]. The counterexample 3.1 disproves GC in the general
setting but not the rational GC. The construction of it is based on a
(dimension raising) cell-like map of a 7-dimensional sphere which has



DIMENSION THEORY LOCAL AND GLOBAL 17

non-zero kernel in the homology K-theory. Since rationally a cell-like
map is always an isomorphism, our approach did not touch the rational
GC.

The drawback of this counterexample is that X is not a EΓ and
moreover X does not have bounded geometry.

Recently Gromov came with a better example.

Counterexample 3.2 ([G5]). There is a closed aspherical manifold
M with asdim π1(M) = ∞.

We note that the universal cover X of M , as well as the fundamen-
tal group π1(M), has the asymptotic homological dimension asdimZ X
equal to the dimension of M (=4 in the most recent version). Gromov’s
construction is based on use of expander. He constructed his manifold
M with π1(M) containing an expander in a coarse sense. Then the
equality asdim π1(M) = ∞ follow (see the next section).

3.2. Expanders. Let (V, E) be a finite graph with the vertex set V
and the edge set E. We denote the cardinalities |V | and ‖E‖ by n and
m. Let l2(V ) and l2(E) denote complex vector spaces generated by V
and E. We view an element of l2(V ) as a function f : V → C. We
fix an orientation on E and define the differential d : l2(V ) → l2(E)
as (df)(e) = f(e+) − f(e−). The operator d is represented by m × n
matrix D. We define the Laplace operator ∆ = D∗D where D∗ is the
transpose of D. It is an easy exercise to show that ∆ does not depend
on orientation on E. By the definition the operator ∆ is self-adjoint.
Also it is positive: 〈∆f, f〉 = 〈Df, Df〉 ≥ 0. Therefore ∆ has real
nonnegative eigenvalues. We denote by λ1(V ) the minimal positive
eigenvalue of the laplacian on the graph V .

Definition. A sequence of graphs (Vn, En) of a fixed valency d and with
|Vn| → ∞ is called an expander (or expanding sequence of graphs) if
there a positive constant c such that λ1(Vn) ≥ c for all n.

The last condition on the graphs is equivalent to the following [Lu]:
there is a constant c0 > 0 such that |∂A| ≥ c0|A| for all subsets A ⊂ Vn

with |A| ≤ |Vn|/2.
Here the boundary of A in a graph V is defined as

∂A = {x ∈ V | dist(x, A) = 1}.

It is easy to prove that the solutions of the Laplace equation ∆f = 0
are exactly constant functions. The orthogonal space to the constants
we denote by l02(V ) = {f |

∑
v∈V f(v) = 0}. We consider the restriction
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∆ to l02(V ). Let {vi} be a orthonormal basis of eigenvectors in l02(V )
and let f =

∑
αivi. Then

〈∆f, f〉
〈f, f〉

=
〈
∑

λiαivi,
∑

αivi〉
〈
∑

αivi,
∑

αivi〉
=

∑
λiα

2
i∑

α2
i

≥
∑

λ1α
2
i∑

α2
i

= λ1.

We apply the above inequality to a real-valued function f : V → R,
f ∈ l02(V ) to obtain the following inequality:

λ1 ≤
〈∆f, f〉
〈f, f〉

=
〈df, df〉
〈f, f〉

=

∑
E |f(e+)− f(e−)|2∑

V |f(x)|2
.

We rearrange this inequality into the inequality λ1

∑
V |f(x)|2 ≤

∑
E |f(e+)−

f(e−)|2. Clearly this inequality holds for any function f : V → l2 to a
Hilbert space such that

∑
V f(v) = 0:

λ1

∑
V

‖f(x)‖2 ≤
∑

E

‖f(x)− f(y)‖2.

Since m = |E| = dn/2, we can change the above inequality into the
following

λ1
1

|V |
∑
V

‖f(x)‖2 ≤ d

2|E|
∑
E

‖f(x)− f(y)‖2.

On the right we have d/2 times average of squares of lengths of the
images under f of edges in the graph. Applying this inequality to an
1-Lipschitz map and using the estimate λ≥c we obtain the following.

Proposition 3.3. Let fn : Vn → l2 be a sequence of 1-Lipschitz maps
of an expander to a Hilbert space. Then

1

|V |
∑
V

‖fn(x)‖2 ≤ d

2c

for all n.

Corollary 3.4. If K >
√

d/c, then for maps fn : Vn → l2 as above
there is the inequality |{x ∈ Vn | ‖fn(x)‖ ≤ K}| > |Vn|/2 for all n.

Proof. Assume the contrary. Then we have a contradiction

d

2c
≥ 1

|V |
∑
V

‖fn(x)‖2 ≥ 1

|V |
K2 |V |

2
>

d

2c
.

�

Nice groups cannot contain (in the coarse sense) an expander. We
proved the following
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Theorem 3.5 ([Dr3]). Suppose that the universal cover X of a closed
aspherical manifold is equivarinatly hypereuclidean, then X does not
contain an expander.

Corollary 3.6. Gromov’s example (Counterexample 3.2) is a coun-
terexample to the equivariant Gromov Conjecture (equi-GC) and to the
equivariant Weinberger Conjecture (equi-WC).

Here we give a proof of a weaker statement which is due to Gromov
and Higson. Namely we show that

A contractible Riemannian manifold with a nonpositive sectional cur-
vature does not contain an expander.

We note that in view of this result Theorem 2.1 implies that every
space containing an expander has infinite asymptotic dimension.

We present Higson’s argument here.

Proof. Let dim X = m and let {Vn} be an expander that lies in X. By
Hadamard theorem the exponent expx : Tx → X is a diffeomorphism
for every x ∈ X. We note that the inverse map logx : X → Tx = Rm is
1-Lipschitz.

First we show that for every n there is a point yn such that∑
x∈Vn

logyn
(x) = 0.

Assume the contrary wy =
∑

x∈Vn
logy(x) 6= 0 for all y ∈ X. Then

the vector −wy defines a point sy ∈ S(∞) in the visual sphere at
infinity S(∞) of a manifold X. It is not difficult to check that the
correspondence y → sy defines a continuous map f : X → S(∞) which
is a retraction of the topological m-ball X ∪ S(∞) to its boundary.
This is a contradiction.

We take K as in Corollary 3.4. Then

|(logyn
)−1(BK(0)) ∩ Vn| >

|Vn|
2

.

Since (logyn
)−1(BK(0)) = expyn

(BK(0)) = BX
K (yn), where the latter is

the K-ball in X, we have an estimate

2d2K ≥ 1+d+· · ·+d2K ≥ |BVn
2K(v)| = |BX

2K(v)∩Vn| ≥ |BX
K (yn)∩Vn| >

|Vn|
2

for any v ∈ BX
K (yn)∩Vn. This gives a contradiction with |Vn| → ∞. �

In conclusion we note that the Novikov Conjecture holds true for
this Gromov’s group.

Another remark is that the Higson corona of an expander, considered
metrically as a garland of finite graphs attached to a half-line, might
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produce by means of factorization dimensionally exotic metric com-
pacta. It could give a clue to some long standing problems in infinite
dimensional dimension theory.
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TOPOLOGICAL SINGULARITIES IN COSMOLOGY

LAWRENCE BRENTON

Introduction. By definition a space-time is a smooth four-dimensional
manifold X admitting a Lorentzian metric g whose curvature tensors
satisfy the Einstein field equations for some “reasonable” distribution
of matter and energy.

On the other hand, the singularity theorems of Penrose and Hawk-
ing [8] assert that any such space-time must contain singular points.
In other words, it can’t be a smooth manifold with metric g defined at
every point.

I suppose that the logical conclusion is that the universe cannot exist.
Yet somehow God was able to overcome this difficulty [5]. Can we?

The best-publicized attempt is due to Hawking and Hartle [7]. The
Hawking-Hartle “no boundary” theory has been popularized as a the-
ory of “imaginary time.” A better description of the geometry of the
model is given by saying that in a small neighborhood of the “big bang”
the metric changes signature, becoming positive definite locally. The
physical interpretation is that at the moment of creation none of the
four directions in space-time had yet been distinguished as “time.”

The original model for this construction was the closed positively
curved model characterized physically by the condition that the total
mass-energy content of the cosmos is greater than the “critical value”
(Ω > 1). Although the no boundary concept has been extended to
the flat and negatively curved standard models now favored by extra-
galactic observations [9], the positively curved model remains the most
successful in revealing the geometry of space-time near the big bang
singularity.

The reason for this is clear. In the standard closed model the space-
like cross sections (all of space at a particular moment in time) are
three-spheres. The entirety of space-time up to the present is viewed
as an expanding family of such spheres originating in a “sphere of radius
zero” at the moment of creation. Topologically, that is to say, the his-
tory of the cosmos so far is the cone on S3. Since the cone on S3 is just
the ordinary four-disc, topologically there is nothing to distinguish the
moment of the big bang from any other point of space-time. Thus the
singularity at the beginning of time, whose existence is guaranteed by

23
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the Penrose-Hawking theorems, is “merely” geometrical and physical,
not topological. Curvature tensors associated with the metric diverge
to infinity, as does the mass-energy density. But the background struc-
ture of space-time maintains its integrity as a topological manifold even
at the singular point.

Alas, the real world intrudes into our theorizing. Beginning in 1998
data from deep space studies using space-based telescopes and large ar-
ray imaging techniques have effectively ruled out the positively curved
model in favor of negatively curved models and (most popular cur-
rently) flat models with substantial cosmological constant (dark en-
ergy) [15]. At the same time there has been an explosion of interest
in cosmological models whose space-like cross sections are not simply
connected [11]. Indeed, physicists have not presented any reasons for
preferring simply connected models except a vague feeling that such
models are “simpler” than multiply connected ones.

In this note we present a family of topological spaces in which the
requirement of simple connectivity is weakened to the condition that
the “space-like” submanifolds are homology 3-spheres. These spaces
have the feature that their geometric properties are underlain by exotic
topological structure at the singular point.

The construction. Let S1, . . . , Sk be a collection of 2-spheres, let Γ
be an acyclic graph on vertices v1, . . . , vk, and let w1, . . . , wk be integer
“weights” assigned to the vertices. Denote by Ei, i = 1, . . . , k, the total
space of the 2-plane bundle on Si with Euler number −wi. Plumb these
spaces together according to the prescription of the graph Γ. That is,
locally identify the zero section of Ei with a fiber of Ej, and vice versa,
whenever vi meets vj in Γ. Let M denote the compact three-manifold
obtained by taking the union of the plumbed unit circle bundles of the
Ei’s, and smoothing the corners. Finally, let X be the space obtained
by collapsing the zero sections to a point P . The resulting space X is
homeomorphic to the cone on M , and is a smooth four-manifold except
at the singular point P .

Theorem ([2]). For Γ, w1, . . . , wk as above, denote by A(Γ) the “dual
intersection matrix” diag(w1, . . . , wk) — adjacency matrix of Γ. Then
the 3-fold M of the construction is a homology 3-sphere if and only if
the determinant of A(Γ) = ±1.

Moreover, if A(Γ) is positive definite, then X admits the structure of
a two-(complex)-dimensional complex algebraic variety, with a unique
singular point at the origin [6]. Since the germ of the variety at the
singular point determines the topology of the entire space, such singular
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complex surfaces provide an interesting setting in which to study the
relations between the topology and the geometry, hence the physics, of
big bang models in cosmology, with the compact homology 3-spheres
M playing the role of the space-like submanifolds in space-time. The
central question motivating this inquiry is this:

Guiding question: To what extent are the geometrical and physical
properties of big bang space-time models determined by the topology
of the singular point?

Egyptian fractions. One way to obtain particular examples of such
spaces is as follows.

Theorem ([3]). Let n1, . . . , nk be a solution in positive integers to one
of the two unit fraction Diophantine equations

(∗) Σ1/ni = 1± 1/Πni.

In the “minus” case, let Γ be the star graph with a central vertex of
weight w0 = 1, and with k arms of length 1, with weight wi = ni on
the single vertex of the ith arm. In the “plus” case, we take Γ to be the
star-shaped graph whose central vertex has weight w0 = k−1 and whose
ith arm consists of k − 1 vertices, each of weight 2. Then the 3-fold
M = M(Γ, n1, . . . , nk) of the construction outlined above is a homology
3-sphere.

This raises a question in number theory, which is interesting in its
own right and which enjoys a distinguished history dating back 4000
years to dynastic Egypt [4, 16, 17]: For fixed k, find all solutions in pos-
itive integers n1, . . . , nk to the equations (∗). Not only is this a fun and
instructive problem, but also it is one that undergraduate students can
understand and tackle. With motivation from the geometry of complex
surfaces and the possible relevance of this topic to cosmological mod-
els, the Wayne State Undergraduate Research Group (“Surge” – the
W in the acronym is silent) has attacked this problem with great vigor.
After several semesters of work by of a total of 33 students involved
in the program, the students, much to my pride and joy, succeeded
in producing the complete list of all solutions through k = 8. There
are 160 solutions to the minus equation and 598 solutions to the plus
equation in this range [10, 12].

Examples. The most intensively studied example is the equation

1/2 + 1/3 + 1/5 = 1 + 1/30.

The corresponding weighted graph Γ is the Dynkin diagram (Coxeter
graph) E8 of the root system of the simple complex Lie algebra e8.
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The associated complex surface singularity is the rational double point
given in complex co-ordinates x, y, z on C3 as the zero set

(a) {x2 + y3 + z5 = 0} ⊂ C3

The compact 3-fold M of the construction of this paper for this
weighted graph is homeomorphic to the Poincaré 120-cell [14]. The
first homotopy group is the group of rigid motions of the dodecahedron.
This is a well-known finite perfect group of order 120; its Abelianization
is trivial, hence M is a homology 3-sphere as required.

The simply connected covering space in this example is S3. In fact,
M is obtained by a tiling of S3 by 120 “twisted” dodecahedra. Thus M
inherits a homogeneous, isotropic line element dσ of constant positive
curvature from S3. As above, let X denote the cone on M , and de-
fine a metric on X by ds2 = −t4/3dt2 + dσ2. The resultant space-time
model, via the Einstein field equations, satisfies the physical require-
ments of spatially homogeneous distribution of matter, decreasing in
density proportionally to t−2 from an infinitely dense big bang singular-
ity. This model is indistinguishable locally from the matter-dominated
“dust” model in standard cohomology. In principle its validity could
be verified by the discovery of “ghosts”—multiple sightings of the same
galaxy cluster in different directions—or by analyses of distinctive pat-
terns of inhomogeneities in the cosmic microwave background radiation.
Serious experiments are underway by astronomers seeking to detect just
such heavenly anomalies (mostly working in the context of the 3-torus
model), but so far without success [20].

In [1] I gave the details of a similar treatment of the complex hyper-
surface

(b) {x2 + y3 + z6 = 0} ⊂ C3.

Since 1, 2, and 6, do not satisfy either of the relations (∗) we do not
obtain a homology 3-sphere by the construction of this paper. How-
ever, if we intersect this complex variety X with a 5-sphere in C3, the
intersection is a smooth compact 3-fold M and X is locally the cone
on M [13]. Thus the topological space X is a candidate for a big bang
space-time model.

This 3-fold M turns out to be homeomorpic to a non-trivial S1-
bundle on the 2-torus, with H1(M, Z) = Z⊕Z. Furthermore, M admits
naturally a metric that extends to a Robertson-Walker metric on the
cone X and which is homogeneous on the space-like cross sections [18].
The metric is not, however, fully isotropic; the physical result is a tiny
amount of universal pressure in the direction of the fiber of M , regarded
as a circle bundle on T 2. See [1] for the details of the geometry and
physical interpretation of this model.) This space-time begins in a
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singular point of infinite density and pressure, expands to a maximum
size, and then contracts symmetrically to a “big crunch.” Indeed, the
“size” R(t) of the universe at time t is given by the inverse relation

(∗∗) t/(2C) = arcsin
√

R/C −
√

(R/C)(1−R/C)

where C is a constant of integration representing the maximum size of
the universe at the end of the expansion phase.

Open question: Are these physical properties of the model deter-
mined by the topology at the singular point, or do they vary with
choice of metric?

To complete this cycle of ideas, consider the complex variety

(c) {x2 + y3 + z7 = 0} ⊂ C3.

Since 1/2 + 1/3 + 1/7 = 1 − 1/(2 ∗ 3 ∗ 7) (the “minus” version of
equation (∗)), we obtain a very inviting topological space X, the cone
on a homology 3-sphere M , whose singularity at the origin is very
well understood by algebraic geometers [20]. The fundamental group
is presented by generators α, β, γ, ω, with relations α2 = β3 = γ7 =
αβγ = ω. This group is an infinite perfect group that is a non-trivial
central extension by Z of the group of symmetries of the tiling of the
Poincaré disc by triangles with angles π/2, π/3, and π/7.

Open question: Does there exist a homogeneous Lorentzian metric
on this singular space-time candidate, which exhibits realistic physical
properties?
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REFLECTIONS ON THE
BING-BORSUK CONJECTURE

J. L. BRYANT

The question as to whether a homogeneous euclidean neighborhood
retract (ENR) is a topological manifold goes back, at least, to the pa-
per by Bing and Borsuk [2] in which they show that an n-dimensional
homogeneous ENR is a topological manifold when n < 3. In this pa-
per they discuss the question as to whether the result holds in higher
dimensions and suggest that, at the least, homogeneous ENR’s should
be generalized manifolds (i.e., ENR homology manifolds). One of the
main conjectures in [6] is that a generalized n-manifold, n ≥ 5, satisfy-
ing the disjoint disks property is homogeneous. Thus, the spaces con-
structed in [6] may provide examples of homogeneous ENR’s that are
not topological manifolds. Another possible example was constructed
by Jakobsche in [11] in dimension 3, assuming the Poincaré conjecture
is false. Our first attempt to show that a homogeneous ENR is a ho-
mology manifold [5] succeeded at the expense of imposing the condition
that the local homology groups of the space are finitely generated in all
dimensions. This result was, in fact, already to be found in [4]. More
specifically, the following theorem is known:

Theorem 1 ([4, 5]). If X is an n-dimensional, homogeneous ENR,
and Hk(X, X − x; Z) is finitely generated for some (and, hence, all) x,
then X is a homology manifold.

In this talk we discuss attempts to prove the conjecture of Bing and
Borsuk:

Conjecture 1. If X is an n-dimensional, homogeneous ENR, then X
is a homology n-manifold.

Related to this conjecture is an older conjecture of Borsuk [3].

Conjecture 2. There is no finite dimensional, compact, absolute re-
tract.

Definitions. A homology n-manifold is a space X having the prop-
erty that for each x ∈ X,

Key words and phrases. generalized manifolds, homogeneity.
29
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Hk(X, X − x; Z) ∼=

{
Z k = n

0 k 6= n.

A euclidean neighborhood retract (ENR) is a space homeomorphic
to a closed subset of euclidean space that is a retract of some neigh-
borhood of itself. A topological space X is homogeneous if, for any
two points x and y in X, there is a homeomorphism of X onto itself
taking x to y.

We will assume from now on that X is a n-dimensional homogeneous
ENR and R is a PID. It’s easy to get started:

Lemma 1. For all x ∈ X, H0(X, X − x; R) = 0, if n > 0 and
H1(X, X − x; R) = 0, if n > 1.

One of the main problems that arises is the possibility that for some
(and hence, all) x ∈ X, Hk(X, X−x; Z) is infinitely generated for some
k ≥ 2. This difficulty could be overcome for k < n, if k-dimensional
homology classes are carried by k-dimensional subsets of X. There are
counterexamples for k-dimensional homotopy classes when k ≥ 2 [7, 10],
but I know of no counterexamples for carriers of homology classes.

Via Alexander duality, mapping cylinder neighborhoods provide an
alternative way to view the local homology groups of X. Assume X is
nicely embedded in Rn+m, for some m ≥ 3, so that X has a mapping
cylinder neighborhood N = Cφ of a map φ : ∂N → X, with mapping
cylinder projection π : N → X [12, 13]. Given a subset A ⊆ X, let
A∗ = π−1(A) and Ȧ = φ−1(A).

By a result of Daverman-Husch [8], the Bing-Borsuk Conjecture is
equivalent to

Conjecture 3. π : N → X is an approximate fibration.

Duality shows that the local homology of X is captured in the coho-
mology of the fibers of this map (in the dual dimensions).

Lemma 2. If A is a closed subset of X, then Hk(X, X − A; R) ∼=
Ȟn+m−k

c (A∗, Ȧ; R).

Proof. Suppose A is closed in X. Since π : N → X is a proper homo-
topy equivalence,

Hk(X, X − A; R) ∼= Hk(N, N − A∗; R).

Since ∂N is collared in N ,

Hk(N, N − A∗; R) ∼= Hk(intN, intN − A∗; R),
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and by Alexander duality,

Hk(intN, intN − A∗; R) ∼= Ȟn+m−k
c (A∗ − Ȧ; R)

∼= Ȟn+m−k
c (A∗, Ȧ; R)

(since Ȧ is also collared in A∗). �

Lemma 3. Hk(X, X −x; R) = lim
→

H`f
k (U ; R), where the limit is taken

over open neighborhoods U of x.

Proof. Again, using Lemma 2 and the fact that π is proper, we have,
for each neighborhood U of x in X,

H`f
k (U ; R) ∼= H`f

k (U∗; R) ∼=

Hn+m−k(U∗, U̇ ; R) → Ȟn+m−k(x∗, ẋ; R) ∼= Hk(X, X − x; R).

�

As the next lemma shows, homogeniety, specifically microhomogene-
ity, implies that any finitely generated submodule of the local homology
module Hk(X,X − x; R) propagates naturally to all points near x.

Lemma 4. Suppose F is a finitely generated submodule of Hk(X, X −
x; R), k ≥ 0. Then there is a neighborhood U of x and a submodule
F0 ⊆ Hk(X, X − U ; R) such that

(i) F0 = im F under inclusion,
(ii) for all y ∈ U , the inclusion Hk(X, X−U ; R) → Hk(X, X−y; R)

is one-to-one on F0.

Proof. Given finitely generated F ⊆ Hk(X, X − x; R).
Let a1, . . . , ar be generators of F , represented by singular chains

c1, . . . , cr, respectively, and let B1, . . . , Br be the carriers of ∂c1, . . . , ∂cr,
respectively. B1 ∪ . . . ∪ Br is a compact set in X − x, and there is a
neighborhood U1 of x such that for every smaller neighborhood V of x,

F ⊆ im(Hk(X, X − V ; R) → Hk(X, X − x; R).

By Effros Theorem [9, 1], homogeneity implies micro-homogeneity:
Given ε > 0 there is a δ > 0, such that if d(x, y) < δ, then there is
a homeomorphism hy : X → X such that hy(x) = y and hy moves no
point of (B1 ∪ . . . ∪Br) more than ε.

For ε small, hy is homotopic to the identity on X by a homotopy
whose restriction to (B1 ∪ . . . ∪ Br) has image in X − x, hence, in
X − U for some neighborhood U of x. �
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The Leray spectral sequence of the Leray sheaf Hq(π) of π : N → X,
with stalk Hq(π)x = Ȟq(x∗, ẋ; R), has E2-term

Ep,q
2 = Hp

c (X;Hq(f)),

and converges to
Ep,q
∞ = Hp+q

c (N, ∂N ; R).

In [5] it is proved that the Bing-Borsuk Conjecture is equivalent to

Conjecture 4. For all q, Hq(π) is locally constant.

Theorem 2. If R is a PID, then Hn(X, X − x; R) 6= 0. Moreover,
if U is a sufficiently small neighborhood of x, Hn

c (U ; R) 6= 0, and
H`f

n (U ; R) 6= 0 and free.

Proof. Since U is an ENR of dimension n, the locally finite homology of
U can be computed from a chain complex (using nerves of sufficiently
fine covers of U of order n + 1) that is 0 in dimension n + 1; hence,
H`f

n (U ; R) is free. Thus, Hn
c (U ; R) = 0 implies H`f

n (U ; R) = 0. If
H`f

n (U ; R) = 0 for every neighborhood U of x, then Ȟm(x∗, ẋ; R) ∼=
Hn(X, X − x; R) = lim

→
H`f

n (U ; R) = 0, so that Hm is the 0 sheaf.

Restrict the map π to (U∗, U̇), where U is an open neighborhood of
x. By definition,

En,q
3 = ker(d2 : En,q

2 → En+2,q−1
2 )/im(d2 : En−2,q+1

2 → En,q
2 ).

Since dim U = n implies En+2,q−1
2 = 0, so that En,m

2 maps onto En,m
3 .

Similarly, En,m
r maps onto En,m

r+1 , for r ≥ 2, so that En,m
2 maps onto

En,m
∞ . However, if U is connected, En,m

∞ = Hn+m
c (U∗, U̇ ; R) ∼= R 6=

0. Hence, Hm is not 0, which, in turn, implies H`f
n (U ; R) 6= 0 and

Hn
c (U ; R) 6= 0, for some neighborhood U of x. �

Remark. The argument in this proof can be used to see that Hn
c (X;Hm) 6=

0; but, if Hn(X, X − x; R) is not finitely generated, we cannot neces-
sarily conclude that the ordinary cohomology of X is nonzero. If so,
we would have a proof of Conjecture 2.

Suppose that F is a finitely generated submodule of Hk(X, X−x; R).
By Lemma 4 there is a neighborhood U of x and a constant sheaf F on
U such that F ⊆ Hq|U , q = n + m− k, and Fx = F . Since dim U = n,
the short exact sequence of sheaves

0 → F → Hq|U → coker ι → 0

induces a long exact sequence on Borel-Moore homology

0 → Hn(U ;F) → Hn(U ;Hq)

→ Hn(U ; coker ι) → · · · ,
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which implies Hn(U ;F) → Hn(U ;Hq) is one-to-one.
We would like for the same to be true for inclusion in cohomology,

im(Hn(U ;F) → Hn(U ;Hq)),

since this would allow us to get a good relationship between sheaf
cohomology of U and ordinary cohomology of (U∗, U̇).

Unfortunately, there is nothing that seems to preclude the Bockstein

Hn−1(U ; coker ι) → Hn(U ;F)

from being onto. Indeed, it is possible to construct a rather “homoge-
neous” looking sheaf over the interval (0, 1), having infinitely generated
stalks, for which this Bockstein (with n = 1) is onto.
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ON CERTAIN I-D COMPACTA

TADEUSZ DOBROWOLSKI

Abstract. Three examples of nontypical i-d compacta are pre-
sented. An application to absorbers follows.

1. Nontypical compacta

The typical property, for an i-d compactum K, is that K is homeo-
morphic to its square, that is,

K ∼= K ×K.

Here are the properties that are stronger than the negation of the above:

(1) No open subset of K × K can be embedded into K × Iq for
any q (I stands for [−1, 1]).

(2) K×K cannot be embedded into K×σ; σ =
⋃∞

q=1 Iq ⊂ Q = I∞.

(3) K ×K cannot be embedded into K × Iq for any q.
(4) K ×K cannot be embedded into K.

Definition. A map K × K ⊃ A → Z is fiberwise injective (f-i) if
restricted to every fiber {k} ×K or K × {k} it is injective.

Fact 1. If K is carries either a group structure or a convex structure
then K ×K admits a f-i map into K. The maps

(x, y) → xy

or

(x, y) → 1

2
(x + y)

are easily seen to be f-i.

Here are counterparts of properties (1)-(4):

(1′) No open set U of K ×K admits a f-i map into Z = K × Iq for
any q.

(2′) There is no f-i map K ×K → Z = K × σ.
(3′) There is no f-i map K ×K → Z = K × Iq for any q.
(4′) There is no f-i map K ×K → K.
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For a compactum K, we have the following implications

1′ ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4

and
1′ ⇒ 2′ ⇒ 3′ → 4′

The implications 1 ⇒ 2 and 1′ ⇒ 2′ follow from the Baire category
theorem applied to K×K (having in mind that K×σ =

⋃∞
q=1 K×Iq).

Furthermore, we have

Remark 1. Assume K ⊂ Z and Z is a countable union of compacta
embeddable in K×σ. If K satisfies property (1) (resp., property (1′)),
then Z satisfies (2) (resp., (2′)); consequently, Z×Z is not embeddable
in Z (resp., there is no f-i map Z × Z → Z).

In what follows we will discuss examples that were presented in [D]
(see also [BC]).

Example 1. Let C be Cook’s continuum, that is, C is hereditarily
indecomposable continuum and, for every continuum A ⊂ C, every
map A → C is either constant or an inclusion. Every compactum of
the form

P =
∞∏
i=1

Ai,

where Ai ⊂ C are pairwise disjoint subcontinua, satisfies property
(1). Moreover, P (and every open subset of P ) is strongly infinite-
dimensional and contains subsets of all finite dimensions.

Example 2. Let us recall that the Smirnov Cubes Sα, α < ω1, are
compacta defined as follows S0 = {0}, Sβ+1 = Sβ × I; and, for a limit
ordinal α, Sα = ω(⊕β<αSβ), the one-point compactification of Sβ. For,
for α0 = ωω, the space

S = Sα0

satisfies (3).

Proof. This follows from the fact that trind(Sα0 ×Sα0) = α0(+)α0 and
trind(Sα × Iq) ≤ α(+)q, where trind stands for the small transfinite
inductive dimension. �

The next example is due to J. Kulesza.

Example 3. The space

T = ω((⊕n≥1I
n)⊕H),

where H is a hereditary i-d continuum, has property (3′).
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Proof. Let f : T × T → T × Iq be f-i. Then f(H × Ik) ⊂ H × Iq for
k > q. In particular, Ik embeds into H × Iq. Since k > q and the
projection is closed, there exists a fiber H × {x} ⊂ H × Iq containing
a closed set with dim > 0, a contradiction. �

Congesting singularities. Write L for either S or T . Pick a null-
sequence {Cn} of pairwise disjoint Cantor sets in the Cantor set C so
that every open nonempty subset of C contains some Cn. Let fn :
Cn → L, be a surjection. Define S̃ (resp., T̃ ) to be the adjoint space
with S (resp., T ) attached in place of each Cn via the map fn.

Fact 2. The compactum S̃ satisfies property (1); moreover, it is countable-
dimensional and trind(S̃) ≤ trind(S) + 1. The compactum T̃ is not
countable dimensional and satisfies property (1′).

Proof. This is a consequence of the facts that S̃ (resp., T̃ ) is a union of
pairwise disjoint copies of S (resp., T ) and a subset of irrationals, and
that each open subset of S̃ (resp., T̃ ) contains a copy of S (resp., T ). �

2. An application to absorbers

For a compactum K, let C = C(K) be the class of compacta embed-
dable in K × σ (notice that the class C is [0, 1]-multiplicative, i.e., for
L ∈ C, L × [0, 1] ∈ C). There exists an absorber Ω(K) for the class C
(see [BRZ] for the definition). We will describe Ω(K), as done in [D].
Let

E = {(xi) ∈ `2|
∞∑
1

i2x2
i ≤ 1}

be the i-d convex ellipsoid in `2, a topological copy of Q, and

B = {(xi) ∈ `2|
∞∑
i

i2x2
i = 1} ⊂ E

be its pseudoboundary. Embed K into B such that K ⊂ B is linearly
independent and there exists a countable, linearly independent D ⊂
B \K dense in B. Notice that span(D) ∩ E is a topological copy of σ
(which is also denoted by σ). Define

Ω(K) = {tk + (1− t)x|k ∈ K, x ∈ σ, t ∈ [0, 1]}.
Most absorbers enjoy a regular structure, but absorbers of the form
Ω(K) for nontypical K are themselves nontypical. Since Ω(K) is a
countable union of elements of C, applying Remark 1, we obtain:

Theorem. For the absorber Ω(K), we have:

(a) if K satisfies property (1), then Ω(K)× Ω(K) 6∼= Ω(K);
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(b) if K satisfies property (1′), then there is no f-i of Ω(K)×Ω(K)
into Ω(K); in particular, there is no group or convex structure
on Ω(K).

Corollary. None of the absorbers Ω(P ), Ω(S̃), and Ω(T̃ ) is homeo-
morphic to its square. They are pairwise nonhomeomorphic. Moreover,
Ω(P ) and Ω(T̃ ) do not carry a group structure or a convex structure.

Proof. It is enough to show that

ω(P ) 6∼= ω(T ′).

To see this use the facts that: (1) every open subset of P contains a
copy of P , (2) P is connected, (3) P contains closed subsets of all finite
dimensions. As a consequence, no open subset of P can be embedded
into T̃ × Iq. �

With an extra work (see [D]), we obtain:

Remark 2. For n < m,
a) Ω(S̃)m 6∼= Ω(S̃)n;
b) Ω(P )m does not admit a f-i map into Ω(P )n.
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ON HOMOTOPY PROPERTIES OF CERTAIN
COXETER GROUP BOUNDARIES

HANSPETER FISCHER AND CRAIG R. GUILBAULT

Abstract. There is a canonical homomorphism ψ : π1(bdyX)→
π∞1 (X) from the fundamental group of the visual boundary, here
denoted by bdy X, of any non-positively curved geodesic space X
into its fundamental group at infinity. In this setting, the latter
group coincides with the first shape homotopy group of the visual
boundary: π∞1 (X) ≡ π̌1(bdy X). The induced homomorphism ϕ :
π1(bdy X)→ π̌1(bdy X) provides a way to study the relationship
between these groups.

We present a class Z of compacta, so-called trees of manifolds,
for which we can show that the homomorphisms ϕ : π1(Z)→ π̌1(Z)
(Z ∈ Z) are injective. This class Z includes the visual boundaries
Z = bdy X which arise from right-angled Coxeter groups whose
nerves are closed PL-manifolds. In particular, it includes the visual
boundaries of those Coxeter groups which act on Davis’ exotic open
contractible manifolds [2].

1. The first shape homotopy group of a metric compactum
We recall the definition of the first shape homotopy group of a pointed
compact metric space (Z, z0). Choose an inverse sequence

(Z1, z1)
f2,1←− (Z2, z2)

f3,2←− (Z3, z3)
f4,3←− · · ·

of pointed compact polyhedra such that

(Z, z0) = lim
←−

((Zi, zi), fi+1,i).

The first shape homotopy group of Z based at z0 is then given by

π̌1(Z, z0) = lim
←−

(
π1(Z1, z1)

f2,1#←− π1(Z2, z2)
f3,2#←− π1(Z3, z3)

f4,3#←− · · ·
)
.

This definition of π̌1(Z, z0) does not depend on the choice of the se-
quence
((Zi, zi), fi+1,i) [8]. Let pi : (Z, z0) → (Zi, zi) be the projections of
the limit (Z, z0) into its inverse sequence ((Zi, zi), fi+1,i) such that
pi = fi+1,i ◦ pi+1 for all i. Since the maps pi induce homomorphisms
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pi# : π1(Z, z0)→ π1(Zi, zi) such that pi# = fi+1,i# ◦ pi+1# for all i, we
obtain an induced homomorphism ϕ : π1(Z, z0) → π̌1(Z, z0) given by
ϕ([α]) = ([α1], [α2], [α3], · · · ), where αi = pi ◦ α.

The following examples illustrate that ϕ : π1(Z, z0)→ π̌1(Z, z0) need
not be injective and is typically not surjective.

Example 1. Let

Y = {(x, y, z) ∈ R3 | z = 0, 0 < x ≤ 1, y = sin 1/x}∪({0}×[−1, 1]×{0})
be the “topologist’s sine curve”. Define Yi = Y ∪([0, 1/i]×[−1, 1]×{0}).
Let Z and Zi be the subsets of R3 obtained by revolving Y and Yi about
the y-axis, respectively, and let fi+1,i : Zi+1 ↪→ Zi be inclusion. Then
Z is the limit of the inverse sequence (Zi, fi+1,i). If we take z0 =
(1, sin 1, 0), then π1(Z, z0) is infinite cyclic, while π̌1(Z, z0) is trivial.

Example 2. We can make the space Z of the previous example path
connected, by taking any arc a ⊆ R3, such that a ∩ Z = ∂a =
{z0, (0, 1, 0)}, and then considering Z+ = Z ∪ a. Notice that both
π1(Z

+, z0) and π̌1(Z
+, z0) are infinite cyclic. However, the homomor-

phism ϕ : π1(Z
+, z0)→ π̌1(Z

+, z0) is trivial.

Example 3. Let Z =
⋃∞

k=1Ck be the Hawaiian Earrings, where

Ck = {(x, y) ∈ R2 | x2 + (y − 1/k)2 = (1/k)2}.
Put Zi = C1∪C2∪· · ·∪Ci and let z0 = zi = (0, 0). Define fi+1,i : Zi+1 →
Zi by fi+1,i(p) = (0, 0) for p ∈ Ci+1 and fi+1,i(p) = p for p ∈ Zi+1\Ci+1.
Then (Z, z0) is the limit of the inverse sequence ((Zi, zi), fi+1,i). While
this time ϕ : π1(Z, z0) → π̌1(Z, z0) is injective [4], it is not surjective:
let li : (S1, ∗) → (Ci, z0) be a fixed homeomorphism and consider for
each i the element

gi = [l1][l1][l1]
−1[l1]

−1[l1][l2][l1]
−1[l2]

−1[l1][l3][l1]
−1[l3]

−1 · · · [l1][li][l1]−1[li]
−1

of π1(Zi, zi). Then the sequence (gi)i is an element of the group π̌1(Z, z0)
which is clearly not in the image of ϕ.

2. Trees of manifolds
We shall call a topological space Z a tree of manifolds if there is an
inverse sequence

M1
f2,1←−M2

f3,2←−M3
f4,3←− · · · ,

called a defining sequence for Z, of distinct closed PL-manifolds Mn

with collared disksDn ⊆Mn, and continuous functions fn+1,n : Mn+1 →
Mn that have the following properties:

(P-1) Z = lim
←−

(
M1

f2,1←−M2
f3,2←−M3

f4,3←− · · ·
)

;
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(P-2) For each n, the restriction of fn+1,n to the set f−1
n+1,n(Mn \

int Dn), call it hn+1,n, is a homeomorphism onto Mn \ int Dn,
and h−1

n+1,n(∂Dn) is bicollared in Mn+1;

(P-3) For each n, lim
m→∞

diam [fm,n(Dm)] = 0 ,

where fm,n = fn+1,n ◦ fn+2,n+1 ◦ · · · ◦ fm,m−1 : Mm → Mn &
fn,n = idMn .

(P-4) For each pair n < m, fm,n(Dm) ∩ ∂Dn = ∅.

M1 M2 M3 M4

f
2,1

f
3,2

f
4,3 f

5,4

D
1

D
2

D
3

D
4

Figure 1. A tree of manifolds

It follows that, for m ≥ n+ 2, the set

Em,n = int Dn∪fn+1,n(int Dn+1)∪fn+2,n(int Dn+2)∪· · ·∪fm−1,n(int Dm−1)

can be written as the union of m − n, or fewer, open disks in Mn

and that fm,n restricted to f−1
m,n(Mn \ Em,n) is a homeomorphism onto

Mn \ Em,n, which we will denote by hm,n. Moreover, if for n < m we
define the spheres Sm,n = h−1

m,n(∂Dn) ⊆Mm, we see that the collection
Sn = {Sn,1, Sn,2, · · · , Sn,n−1} decomposes Mn into a connected sum

Mn = [Nn,1#Nn,2# · · ·#Nn,n−1]#Nn,n ≈Mn−1#Nn,n.

Hence, Z can be thought of as the limit of a growing tree of connected
sums of closed manifolds. In particular, in dimensions greater than
two, we have

π1(Mn) = π1(Nn,1) ∗ π1(Nn,2) ∗ · · · ∗ π1(Nn,n−1) ∗ π1(Nn,n);

and in dimension two, we have

π1(Mn) = Fn,1 ∗π1(Sn,1) Fn,2 ∗π1(Sn,2) · · · ∗π1(Sn,n−2) Fn,n−1 ∗π1(Sn,n−1) Fn,n,

where Fn,i denotes the free fundamental group of the appropriately
punctured Nn,i.

Note also that each Sn,i ≈ ∂Di naturally embeds in Z.

Definition. We will call a defining sequence M1
f2,1←− M2

f3,2←− M3
f4,3←−

· · · well-balanced if the set
⋃

m≥3Em,1 either has finitely many compo-

nents or is dense in M1, and if for each n ≥ 2, the set h−1
n,n−1(Mn−1 \
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Dn−1)∪
[ ⋃

m≥n+2Em,n

]
either has finitely many components or is dense

in Mn.

Whether Z has a well-balanced defining sequence or not, will play a
role only in the case when the manifolds Mn are 2-dimensional closed
surfaces. Specifically, our main result is the following

Theorem. Suppose Z is a tree of manifolds, and z0 ∈ Z. In case Z is
2-dimensional, suppose further that Z admits a well-balanced defining
sequence. Then the canonical homomorphism ϕ : π1(Z, z0)→ π̌1(Z, z0)
is injective.

Remark. In case π1(Nn,n) 6= 1 for infinitely many n, an argument
analogous to Example 3 shows that ϕ : π1(Z, z0) → π̌1(Z, z0) is not
surjective.

For a detailed proof of this theorem see [6]. Here, we only give a
brief

SKETCH OF PROOF. Since it is known that the canonical homo-
morphism
π1(Y ) → π̌1(Y ) is injective for all 1-dimensional compacta Y [4], we
will assume that dim Z ≥ 2.

Let α : S1 → Z be a loop such that αn = pn ◦ α : S1 → Mn

is nullhomotopic for each n. We wish to show that α : S1 → Z is
nullhomotopic. We will do this by constructing a map β : D2 → Z
with β|S1 = α. By assumption, we may choose maps βn : D2 → Mn

with βn|S1 = αn. The difficulty of the proof, of course, is that in general
βn 6= fn+1,n ◦βn+1, so that the sequence (βn)n does not even constitute
a function D2 → Z into the inverse limit, let alone a map extending α.

Although we might not be in a position to move the maps αn the
slightest bit, we can place βn in general position with respect to the
spheres of the collection Sn while having βn|S1 approximate αn with
increasing accuracy as n increases. Indeed, we can arrange for each
cancellation pattern β−1

n (
⋃
Sn) to consist of finitely many pairwise dis-

joint straight line segments in D2 which have their endpoints in S1.
Ideally, we would like to paste together our map β from appropriate
pieces belonging to the maps of the sequence (βn)n, namely those pieces
that cancel the elements of π1(Nn,n). However, these cancellation pat-
terns will in general not be compatible. For example, in dimensions
greater than two, the cancellation pattern for an element

[αn+1] = h1∗k1∗h2∗k2∗· · ·∗h5∗k5 = 1 ∈ π1(Mn+1) = π1(Mn)∗π1(Nn+1,n+1)



HOMOTOPY PROPERTIES OF COXETER GROUP BOUNDARIES 43

might be witnessed by βn+1 as

(h1(k1(h2(k2)h3)k3(h4)k4)h5(k5)) = 1.

The induced cancellation pattern for

[αn] = fn+1,n#([αn+1]) = h1∗1∗h2∗1∗· · ·∗1∗h5∗1 = 1 ∈ π1(Mn)∗{1}
as obtained from fn+1,n ◦ βn+1 would then be given by

(h1((h2h3)(h4))h5) = 1.

On the other hand, the map βn might cancel [αn] as

((h1h2)(h3(h4)h5)) = 1.

This is illustrated in Figure 2, which depicts the sets β−1
n (∂Dn), (fn+1,n◦

βn+1)
−1(∂Dn), and β−1

n+1(Sn+1,n) as dashed lines.
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Figure 2.

If k1 is not trivial and if k3 does not cancel k4 in π1(Nn+1,n+1), then
we cannot use any of the pieces of the map βn to construct β.

As a remedy, we repeatedly select subsequences until, at least ap-
proximately, all cancellation patterns are coherent. That is, until the
sets β−1

n (
⋃
Sn) are approximately nested with increasing n. Once this

is achieved, the union of these cancellation patterns produce a limit-
ing pattern P of possibly infinitely many straight line segments in D2

whose interiors are pairwise disjoint and whose endpoints lie in S1.
Each segment of P , at least approximately, maps under some βn into
some Sn,i. Note that we must allow for the possibility that αn meets
some Sn,i in infinitely many points. This effect is accounted for by a
possible increase of segments c ⊆ β−1

m (
⋃
Sm) for which βm(c) ⊆ Sm,i,

as m increases. The map β : D2 → Z can now be defined in two stages.
First, extend α : S1 → Z to a map β : S1 ∪ P → Z. If dim Z = 2,

this can be done so that each segment of P maps to a local geodesic
of that simple closed curve of Z which corresponds to the appropriate
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∂Di. If dim Z ≥ 3, any coherent extension into the spheres of Z
corresponding to ∂Di will do, so long as the extension to a segment
does not deviate too much from the image of its endpoints. If all this
is done with sufficient care, the map β : S1 ∪P → Z will be uniformly
continuous, so that we can extend it to the closure of its domain.

Next, focus on the components of the subset of D2 on which the
map β is not yet defined. Call these components holes. The boundary,
bdy H, of a hole H is a simple closed curve, which either maps to a
singleton under β, in which case we extend β trivially over cl H, or
pn ◦ β(bdy H) ⊆ N∗n for some n, where

N∗1 = M1 \
( ⋃

m≥3

Em,1

)
and

N∗n = Mn \
[
h−1

n,n−1(Mn−1 \Dn−1) ∪
( ⋃

m≥n+2

Em,n

)]
for n ≥ 2.

The map pn ◦ β : bdy H → N∗n ⊆ Mn can be extended to a map
pn ◦β : cl H →Mn so long as the hole H is sufficiently “thin”, because
Mn is an ANR. For the moment, assume that dim Z ≥ 3. The map
pn ◦ β : cl H → Mn can then be cut off at Sn,n−1 = h−1

n,n−1(∂Dn−1)
and pushed off

⋃
m≥n+2Em,n. Hence, we may extend the map pn ◦ β :

bdy H → N∗n to a map pn ◦β : cl H → N∗n. Since N∗n naturally embeds
in Z, we have an extension of β : bdy H → Z to β : cl H → Z. For
each n, there will be finitely many maps pn ◦ β : bdy H → N∗n ⊆ Mn

for which the hole H is not thin enough to make this argument. In
those cases, some fm,n ◦ βm : D2 → Mn, with sufficiently large m, will
be witness to the fact that pn ◦ β : bdy H → Mn is nullhomotopic
after all. This is due to the approximate nestedness of the cancellation
patterns β−1

n (
⋃
Sn). Since for sufficiently large n the subset of Z which

is homeomorphic to N∗n is arbitrarily small, this procedure guarantees
continuity of the resulting map β : D2 → Z.

If dim Z = 2, the above process requires a little bit more care and
is helped by the assumption that the defining tree is well-balanced.
Specifically, the sets N∗n will either be ANRs or 1-dimensional. In the
former case, we can adapt the argument we just made, and in the latter
case, we make use of the result in [4] mentioned at the beginning of
this proof. �

3. An application to Coxeter group boundaries
We now present an application of our theorem to boundaries of certain
non-positively curved geodesic spaces. Recall that a metric space is
proper if all of its closed metric balls are compact. A geodesic space is a
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metric space in which any two points lie in a geodesic, i.e. a subset that
is isometric to an interval of the real line in its usual metric. A proper
geodesic space X is said to be non-positively curved if any two points
on the sides of a geodesic triangle in X are no further apart than their
corresponding points on a reference triangle in Euclidean 2-space. The
visual boundary of a non-positively curved geodesic space X, denoted
by bdy X, is defined to be the set of all geodesic rays emanating from
a fixed point x0 endowed with the compact open topology. Let some
geodesic base-ray ω : [0,∞)→ X with ω(0) = x0 be given. Under the
relatively mild assumption that the pointed concentric metric spheres
(Sx0(i), ω(i)) have the pointed homotopy type of ANRs, it is shown in
[1], that

π̌1(bdy X,ω) = π∞1 (X,ω).

Here, π∞1 (X,ω) is the fundamental group at infinity of X, that is, the
limit of the sequence

π1(X \B(1), ω(2))← π1(X \B(2), ω(3))← π1(X \B(3), ω(4))← · · ·
whose bonds are induced by inclusion followed by a base point slide
along ω.

A class of visual boundaries to which our theorem applies, arises
from non-positively curved simplicial complexes, which are acted upon
by certain Coxeter groups, whose definition we now briefly recall: let
V be a finite set and m : V × V → {∞} ∪ {1, 2, 3, · · · } a function
with the property that m(u, v) = 1 if and only if u = v, and m(u, v) =
m(v, u) for all u, v ∈ V . Then the group Γ =

〈
V | (uv)m(u,v) = 1 for

all u, v ∈ V 〉 defined in terms of generators and relations is called a
Coxeter group. If moreover m(u, v) ∈ {∞, 1, 2} for all u, v ∈ V , then
Γ is called right-angled. The abstract simplicial complex N(Γ, V ) =
{∅ 6= S ⊆ V | S generates a finite subgroup of Γ} is called the nerve of
the group Γ. For a right-angled Coxeter group, the isomorphism type
of the nerve N(Γ, V ) = N(Γ) does not depend on the Coxeter system
(Γ, V ) but only on the group Γ [10].

For the remainder of this discussion, let Γ be a right-angled Coxeter
group whose nerve N(Γ) is a closed PL-manifold. This includes, for
example, the Coxeter groups generated by the reflections of any one
of Davis’ exotic open contractible n-manifolds (n ≥ 4), for which the
nerves are PL-homology spheres [2].

As described, for example, in [3], Γ acts properly discontinuously
on a non-positively curved (and hence contractible) simplicial complex
X(Γ), its so-called Davis-Vinberg complex, by isometry and with com-
pact quotient. In [5] it is shown that the visual boundary of X(Γ) is
a (well-balanced) tree of manifolds. (By virtue of [11], the proof given
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in [5] also applies to the non-orientable case.) The visual boundary
of X(Γ) is usually referred to as the boundary of Γ and is denoted by
bdy Γ. Since Coxeter groups are semi-stable at infinity [9] and Γ is
one-ended, π∞1 (X(Γ), ω) = π∞1 (Γ) is actually an invariant of the group
Γ [7].

In summary, we obtain the following

Corollary. Let Γ be a right-angled Coxeter group whose nerve N(Γ) is
a closed PL-manifold. Then the canonical homomorphism ψ : π1(bdy Γ)→
π∞1 (Γ) is injective.
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RESOLUTIONS FOR METRIZABLE

COMPACTA IN EXTENSION THEORY

Leonard R. Rubin and Philip J. Schapiro

Abstract. This is a summary of research which appears in a preprint

of the same title. We prove a K-resolution theorem for simply con-
nected CW-complexes K in extension theory in the class of metriz-

able compacta X. This means that if dim X ≤ K (in the sense of ex-

tension theory), n is the first element of N such that G = πn(K) 6= 0,
and it is also true that πn+1(K) = 0, then there exists a metrizable

compactum Z and a surjective map π : Z → X such that:

(a) π is G-acyclic,

(b) dim Z ≤ n + 1, and

(c) dim Z ≤ K.

If additionally, πn+2(K) = 0, then we may improve (a) to the state-

ment,

(aa) π is K-acyclic.

To say that a map π is K-acyclic means that each map of each fiber
π−1(x) to K is nullhomotopic.

In case πn+1(K) 6= 0, we obtain a resolution theorem with a

weaker outcome. Nevertheless, it implies the G-resolution theorem
for arbitrary abelian groups G in cohomological dimension dimG X ≤
n when n ≥ 2.

The Edwards-Walsh resolution theorem, the first resolution theo-
rem for cohomological dimension, was proved in [Wa] (see also [Ed]).
It states that if X is a metrizable compactum and dimZ X ≤ n (n ≥ 0),
then there exists a metrizable compactum Z with dim Z ≤ n and a
surjective cell-like map π : Z → X. This result, in conjunction with
Dranishnikov’s work ([Dr1]) showing that in the class of metrizable
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Key words and phrases. G-acyclic resolution, K-acyclic resolution, dimen-

sion, cohomological dimension, cell-like map, shape of a point, inverse sequence,
Edwards-Walsh resolution, simplicial complex, CW-complex, Moore space, Čech

cohomology, Bockstein basis, Bockstein inequalities.
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compacta, dimZ is distinct from dim, was a key ingredient for proving
that cell-like maps could raise dimension (see [Ru1] for background).
For the reader seeking fundamentals on the theory of cohomological
dimension, dimG, the references [Ku], [Dr3], [Dy], and [Sh] could be
helpful.

Now a map is cell-like provided that each of its fibers is cell-like,
or, equivalently, has the shape of a point ([MS1]). Every cell-like
compactum has trivial reduced Čech cohomology with respect to any
abelian group G. This means that for every abelian group G, every
cell-like map is G-acyclic, i.e., all its fibers have trivial reduced Čech
cohomology with respect to the group G. This is equivalent to the
statement that every map of such a fiber to K(G, n) is nullhomotopic.

The latter notion may be generalized as follows. For a given CW-
complex K, a metrizable compactum X is called K-acyclic if every
map of it to K is nullhomotopic. Moreover, one should recall that
when a Hausdorff compactum or metrizable space X has dim X ≤ n,
then also dimZ X ≤ n.

With these ideas in mind, one may ask, what kind of parallel reso-
lution theorems can be obtained under the assumption that dimG X ≤
n, where G is an abelian group different from Z? It turns out that it
is not possible always to have cell-like resolutions as in the Edwards-
Walsh theorem, nor can one even require in such propositions that
dim Z ≤ n be true (see [KY2]). So, what kind of resolution theorems
can we expect? The main results of this paper go as follows.

1.1. Theorem. Let K be a simply-connected CW-complex, n be the
first element of N such that G = πn(K) 6= 0, and X be a metrizable
compactum with dim X ≤ K. Then there exists a metrizable com-
pactum Z and a surjective map π : Z → X such that:

(a) π is G-acyclic,
(b) dim Z ≤ n + 1, and
(c) dimG Z ≤ n.

1.2. Theorem. Let K be a simply-connected CW-complex, n be
the first element of N such that G = πn(K) 6= 0, and assume that
πn+1(K) = 0. Then for each metrizable compactum X with dim X ≤
K, there exists a metrizable compactum Z and a surjective map π :
Z → X such that:

(a) π is G-acyclic,
(b) dim Z ≤ n + 1, and
(c) dimZ ≤ K.
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If in addition, πn+2(K) = 0, then we may also conclude that
(aa) π is K-acyclic.

If K = K(G, n), then dim X ≤ K is equivalent to dimG X ≤ n.
Hence, as a corollary to Theorem 1.1, we get the G-acyclic resolution
theorem in cohomological dimension theory.

1.3. Corollary. Let G be an abelian group and X be a metrizable
compactum with dimG X ≤ n (n ≥ 2). Then there exists a metrizable
compactum Z and a surjective map π : Z → X such that:

(a) π is G-acyclic,
(b) dim Z ≤ n + 1, and
(c) dimG Z ≤ n.

In [Le] one finds another approach to 1.3. We mention that the
Edwards-Walsh theorem has been generalized to the class of arbitrary
metrizable spaces by Rubin and Schapiro ([RS]) and to the class of
arbitrary compact Hausdorff spaces by Mardešić and Rubin ([MR]).
Corollary 1.3 was proved by Dranishnikov ([Dr2]) for the group G =
Z/p, where p is an arbitrary prime number, but with the stronger
outcome that dim Z ≤ n. Later, Koyama and Yokoi ([KY1]) were able
to obtain this Z/p-resolution theorem of Dranishnikov both for the
class of metrizable spaces and for that of compact Hausdorff spaces.

In their work [KY2], Koyama and Yokoi have made a substantial
amount of progress in the resolution theory of metrizable compacta,
that is, towards proving Corollary 1.3. Their method relies heavily on
the existence of Edwards-Walsh resolutions, which had been studied
by Dydak and Walsh in [DW], and which had been applied originally,
in a rudimentary form, in [Wa]. The definition of an Edwards-Walsh
resolution can be found in [KY2], but we shall not use it herein.

To overcome a flaw in the proof of Lemma 4.4 of [DW], Koyama
and Yokoi proved the existence of Edwards-Walsh resolutions for some
groups G, but under a stronger set of assumptions on G than had been
thought necessary in [DW]. It is still not known if these stronger as-
sumptions are needed to insure the existence of the resolutions. Nev-
ertheless, Koyama and Yokoi were able to prove substantial G-acyclic
resolution theorems. Let us state two of the important theorems from
[KY2] (Theorems 4.9 and 4.12, respectively), which greatly influenced
the direction of the work in this paper.

1.4. Theorem. Corollary 1.3 is true for every torsion free abelian
group G.
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1.5. Theorem. Let G be an arbitrary abelian group and X be a
metrizable compactum with dimG X ≤ n, n ≥ 2. Then there exists a
surjective G-acyclic map π : Z → X from a metrizable compactum Z
where dim Z ≤ n + 2 and dimG Z ≤ n + 1.

In case G is a torsion group, they prove (Theorem 4.11) that Corol-
lary 1.3 holds, but without part (c). Of course Theorem 1.5 falls short
of Corollary 1.3. We observed that one of the main reasons for the rel-
ative weakness of this theorem was that Koyama and Yokoi proved it
by an indirect technique, a type of “finesse.” Their approach depends
heavily on the Bockstein basis theorem and the Bockstein inequalities
(see [Ku]), instead of the more direct method, involving Edwards-
Walsh resolutions, used to prove Theorem 1.4.

We want to point out that Theorem 1.4 includes as a corollary, and
therefore redeems, the Q-resolution theorem of Dranishnikov ([Dr5]–
but see also [Dr6] where a different proof is given). The Koyama
and Yokoi proof shows that in the proof of Theorem 3.2 of [Dr5], the
statement that αm ◦ωm is an Edwards-Walsh resolution over τ

(n+1)
m is

not true. This was a subtle point; to fully understand it, the interested
reader may examine the text immediately following the proof of Fact
1 of the proof of Theorem 3.1 in [KY2]. Getting around the barrier
naturally led to a quite complicated construction.

Our proof of Theorems 1.1 and 1.2 will be direct, using extensions
which are different from Edwards-Walsh resolutions. But we will use
a type of pseudo-Bockstein basis denoted σ0(G) (section 9). This will
allow us to deal with the groups Z/p∞ as well as the other groups
involved. We shall employ the technique of inverse sequences both to
represent our given space X and to determine the resolving space Z.
The map π : Z → X will be obtained in a standard, yet complicated
manner similar to that used in [Wa].
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PERFECT SUBGROUPS OF HNN EXTENSIONS

F. C. TINSLEY (JOINT WITH CRAIG R. GUILBAULT)

Introduction

This note includes supporting material for Guilbault’s one-hour talk
summarized elsewhere in these proceedings. We supply the group the-
ory necessary to argue that Guilbault’s tame ends cannot be pseudo-
collared. In particular, we show that certain groups (the interated
Baumslag-Solitar groups) cannot have any non-trivial perfect subgroups.
The absence of non-trivial perfect subgroups, in turn, eliminates the
possibility of non-trivial homotopy equivalences.

In contrast, we include an example of a pseudo-collared end based
on groups (the interated Adam’s groups) that are somewhat similar to
the Baumslag-Solitar groups. We close with a discussion of a homotopy
theoretic approach to this construction.

1. The groups

We use the following standard notation. We let xg = g−1xg or
the conjugation of x by g, and let [s, t] = s−1t−1st or the commuta-
tor of s and t. Let S be a subset of elements of a group N . We
denote by 〈s1, s2, · · · ;N〉 the subgroup of N generated by S where
S = {s1, s2, · · · }. If N is omitted, then 〈s1, s2, · · · 〉 is the free group
generated by the characters s1, s2, · · · . If S and N are as above, then
we denote by ncl{s1, s2, · · · ;N} the normal closure of S in N or the
smallest normal subgroup of N containing S.

A group N is perfect if it is equal to its commutator subgroup. Sym-
bolically, N = [N,N ] = N (1). Equivalently, N is equal to the transfinite
intersection of its derived series.

The construction of the pseudo-collared end is based on the one-
relator group, Adam’s group:

A1 =

〈
a1, a0

∣∣∣∣ a2
1 = a

(a
a0
1 )

1

〉
We can repeat this pattern to obtain the iterated Adam’s groups, Ak,
1 ≤ k <∞:〈

a0, a1, · · · , ak

∣∣ a2
1 = a

(a
a0
1 )

1 , a2
2 = a

(a
a1
2 )

2 , · · · , a2
k = a

(a
ak−1
k )

k

〉
53
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For each i ≥ 1, ai is a commutator ai =
[
ai, a

ai−1

i

]
.

Guilbault constructs the tame end that is not pseudo-collared using
the simplest Baumslag-Solitar group:

B1 =
〈
b1, b0

∣∣ b21 = b−1
0 b1b0

〉
=

〈
b1, b0

∣∣ b21 = bb01
〉

Again, we can iterate to obtain the group, Bk:〈
b0, b1, · · · , bk

∣∣ b21 = bb01 , b
2
2 = bb12 , . . . , b

2
k = b

bk−1

k

〉
For each i ≥ 1, bi is a commutator bi =

[
bi, bi−1

]
.

2. HNN extensions

The iterations above are each of a more general form. Given L < K

and ψ : L
1:1−→ K, we define the HNN extension N〈

gen(K), t
∣∣ rel(K), ψ(l) = t−1lt for l ∈ L

〉
.

The extension is split if there is a retraction r : K → L. The following
are well-known for HNN-extensions.

Facts:

(1) K is a natural subgroup of N .
(2) N naturally retracts onto 〈t〉 ∼= Z, called the free part of N .

The kernel of the retraction is ncl{{K};N}.
We also use the following well-known result about the structure of

subgroups of HNN extensions:

Theorem 1 (see [KS], Theorem 6). Let N be the HNN group above.
If H is a subgroup of N that has trivial intersection with each of the
conjugates of L, then H is the free product of a free group with the
intersections of H with certain conjugates of K.

3. The main theorem

First, we list some basic propositions that easily follow from the
definitions:

Proposition 1. If N and H are any groups, φ : N → H is a homo-
morphism, and P < N is perfect, then φ(P ) is perfect.

First, a similarity between A and B:

Proposition 2. For G = A, G = B, and each k ≥ 1, there is a
surjection

γk : Gk −−−→
gk=1

Gk−1
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Then, two important distinctions between A and B.

Proposition 3. The subgroup, ncl{a1;A1}, of A1 is perfect. Moreover,
the subgroup, ncl{a1, ;Ak} of Ak is perfect.

And, now the crucial negative result for Bj:

Theorem 2. For j ≥ 0, the iterated Baumslag-Solitar group Bj has
no non-trivial perfect subgroups.

Proof. We induct on j. The cases (j = 0) and (j = 1) are handled
separately. For j = 0, B0 is abelian. For j = 1, we observe that B1 is
one of the well-known Baumslag-Solitar groups for which the kernel of
the map ψ1 : B1 → B0 is abelian. Then, we apply the argument used
for the case j = 2.

(j ≥ 2) Let

Bj =
〈
b0, b1, · · · , bj

∣∣ b21 = b−1
0 b1b0, b

2
2 = b−1

1 b2b1, · · · , b2j = b−1
j−1bjbj−1

〉
Now, Bj now can be put in the form of the HNN group. In particular,
Bj =

〈
gen(K), t1

∣∣ rel(K), R1

〉
where

K =
〈
b1, b2, · · · , bj

∣∣ b22 = b−1
1 b2b1, · · · , b2j = b−1

j−1bjbj−1

〉
,

t1 = b0, L1 = {b1;Bj}, φ1 (b1) = b21, and R1 is given by b21 = b−1
0 b1b0.

The base group, K, obviously is isomorphic to Bj−1 with that isomor-
phism taking bi to bi−1 for 1 ≤ i ≤ j − 1. Define ψj : Bj → Bj−1 by
adding the relation bj = 1 to the group Bj. By inspection ψj is a surjec-
tive homomorphism. We assume that Bi contains no non-trivial perfect
subgroups for i ≤ j − 1 and prove that Bj has this same property. To
this end, let P be a perfect subgroup of Bj. Then, ψj (P ) is a perfect
subgroup of Bj−1. By induction, ψj(P ) = 1. Thus, P ⊂ ker (ψj).
By the inductive hypothesis, K has no perfect subgroups. Moreover,
b1 ∈ K still has infinite order in both K (by induction) and Bj (since
K embeds in Bj). Moreover, the HNN group, Bj, has the single as-
sociated cyclic subgroup, L =< b1;Bj >, with conjugation relation
b21 = b−1

0 b1b0. Recall that ψj : Bj → Bj−1 is defined by adding the
relation bj = 1 to Bj. Thus, ker (ψj) = ncl

{
bj;Bj

}
.

Claim. No conjugate of L non-trivially intersects H = ncl
{
bj;Bj

}
Proof of Claim: If the claim is false, then L itself must non-trivially

intersect the normal subgroup, ncl
{
bj;Bj

}
. This means that bm1 ∈

ncl {bj;Bj} = ker (ψj) for some integer m > 0. Since j ≥ 2, then
ψj (bm1 ) = ψj (b1)

m = bm1 = 1 in Bj−1, ie, b1 has finite order in Bj−1.
This contradicts our observations above.
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We continue with the proof of Theorem 2. Recall that P is a per-
fect subgroup of ker (ψj). It must also enjoy the property of trivial
intersection with each conjugate of L. We now apply Theorem 1 to the
subgroup P to conclude that P is a free product where each factor is
either free or equal to P ∩ g−1Kg for some g ∈ Bj. Now, P projects
naturally onto each of these factors so each factor is perfect. However,
non-trivial free groups are not perfect. Moreover, by induction, K (or
equivalently g−1Kg) contains no non-trivial perfect subgroups. Thus,
any subgroup, P ∩ g−1Kg, is trivial. Consequently, P must be trivial.
This completes the proof of Theorem 2. �

4. Geometry and homotopy theory

We begin this section by emphasizing the similarities between A and
B. We let G stand for either A or B, g stand respectively for either a
or b, and w(gj) stand respectively for either g

gj−1

j or gj−1. Then,

Gk =
〈
g0, g1, · · · , gk

∣∣ g2
1 = g

w(g1)
1 , g2

2 = g
w(g2)
2 ,

..., g2
k = g

w(gk)
k

〉
represents either Ak or Bk. For each i ≥ 1, gi is a commutator gi =[
gi, w(gi)

]
. We can summarize the relationship as follows:

SIMILARITES AND DIFFERENCES (G equals A or B)

Properties Adam’s Baum.-
Solitar

1 Relator Group
√ √

G(1) = ncl (g1;G)
√ √

Perfect G(1)
√

×
Abelian G(1) ×

√

Abelianizes to Z
√ √

Z HNN−−−→
split

· · · HNN−−−→
split

G
√ √

Moreover, gk is the commutator of itself with another element, g =
w(gk), of Gk. So, if Gk is the fundamental group of a high-dimensional
manifold, Mk, then gk bounds a disk with one handle in Mk where one
of the handle curves is homotopic (rel basepoint) to gk. We let this be
the meridianal handle curve:

We can attach a two handle to Mk along gk. Then, the disk with
handle and three copies of the core of the two handle form a 2-sphere,
S2

k , along which a three handle can be attached.
Note that this S2

k will algebraically cancel the 2-disk since it will
be attached twice with one sign and once with the opposite sign. As
a result the manifold, Nk, resulting from attaching these two handles
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to Mk, will have the same homology as Mk. In fact, we obtain a
cobordism,

(
Wk,Mk, Nk

)
, where the inclusion Nk → Wk induces an

equivalence of homology groups.
This inclusion also induces an isomorphism on fundamental groups:

π1 (Nk)
∼=−→ π1 (Wk) ∼= Gk−1. One might conclude that Nk → Wk

induces a homotopy equivalence. However, this is the case only for
Adams group.

The Hurewicz Theorem is needed to argue from data about homology
to conclusions about homotopy. It requires simply connected spaces.

Thus, we must pass to the universal covers, W̃k and Ñk, of the mani-

folds, Wk and Nk and the cover, M̂k, of the manifold, Mk, that corre-
sponds to the π1-kernel of the induced map, π1 (Mk) → π1 (Wk).

The key becomes the longitudinal curve, g, on the disk-with-handle
(shown below in bold).

It is quite different for the Ak and Bk. For Adams group, g =
a

ai−1

i = a−1
i−1aiai−1 while for the Baumslag-Solitar group, g = ai−1. In
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the first case, the element, g = a−1
i−1aiai−1, is a conjugate of ai, and, in

particular, lifts as a loop to M̂ . Consequently, the same cancellation
in homology occurs in the universal cover as in the space itself and,
thus, homology equivalences will yield a homotopy equivalence. In the
second case, the conjugating element, bi−1, lifts as an arc to M̂ . Thus,
the two copies of the core of the 2-handle that cancelled as elements

of H2 (W,M) represent distinct generators of H2

(
W̃ , M̂

)
that have

different signs but, in fact, do not cancel.
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PROBLEM SESSION

1. Lawrence Brenton
(a) Let X be the cone on a homology 3-sphere M . Does there

exist a Lorentzian metric g on X that is homogeneous on
cross sections such that (X, g) satisfies the dominant en-
ergy condition?

(b) If “no,” where does the obstruction lie?
(c) Will the spacetimes of part (a) always recollapse in a “big

crunch,” or does this depend on the choice of metric?

2. Robert Daverman
(a) If X is a compact ANR homology 3-manifold, does there

exist a real 3-manifold M such that M is homotopy equiv-
alent to X?

(b) If so, does X embed in M × R?
(c) If so, is X × R ∼= M × R?

3. David Wright
Are there examples of compact 3-manifolds (or n-manifolds) in
which every homeomorphism is isotopic to the identity?

4. Tadek Dobrowolski
Let X be a contractible, locally contractible compact metric
space. Does X have the fixed point property?
The answer is known to be “yes” if there exists a function λ :
X ×X × [0, 1]→ X such that

λ(x, y, 0) = x,

λ(x, y, 1) = y, and

λ(x, x, t) = x for 0 ≤ t ≤ 1.

Every AR has such a function.

5. Steve Ferry
Is there a sequence of Riemannian manifolds, sharing a fixed
contractibility function, that approach (in Gromov-Hausdorff
space) an infinite dimensional space with a bound on volume?
Definitions: A contractibility function on M is a function ρ :
(0,∞)→ (0,∞) such that for every t > 0 and for every x ∈M
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the ball of radius t in M centered at x is contractible in the
ball of radius ρ(t). If X and Y are compact metric spaces, the
Gromov-Hausdorff distance dGH(X, Y ) is defined by

dGH(X, Y ) = inf

{
dZ(X, Y )

∣∣∣∣ Zmetric space ⊃ X, Y

}
,

where dZ is the usual Hausdorff distance between subcompacta
of Z.

6. Craig Guilbault
Given a homomorphism µ : G → π1(M), with G a finitely
generated group and M a closed manifold, such that ker(µ) is
perfect, does there exist a 1-sided h-cobordism that realizes µ?
In other words, does there exist a triple (W, M, M∗) of manifolds
such that ∂W = M tM∗, M ↪→ W is a homotopy equivalence,
and

π1(M
∗) −−−→ π1(W )

≈
x x≈

G
µ−−−→ π1(M)

commutes? [This is the reverse of Quillen’s +-construction.]

7. Sasha Dranishnikov
(a) Is asdim(X) = dim(νX)?
(b) If Γ is a CAT(0) group, is asdim(Γ) <∞?
(c) For n ≥ 2, does there exist a Coxeter group Γ such that

vcdQ Γ = 2 and vcdZ Γ = n?




