
RANK GRADIENT AND THE JSJ DECOMPOSITION

JASON DEBLOIS

By the rank of a manifold M , rkM , we will refer to the rank of its fundamental
group; that is, the minimal cardinality of a generating set. Given a fixed closed
manifold M , the rank gradient of a family of covers {Mn → M}, each with finite
degree, is defined as

rg {Mn}
.= inf

n

rkMn

deg{Mn →M}
.

This was defined by M. Lackenby in [9]. Given a generating set for π1M with
cardinality k and a subgroup Γ of index n, the classical Reidemeister–Schreier
process produces a generating set for Γ with cardinality n(k−1)+1. Thus we have:

Fact. (Reidemeister–Schreier) rg {Mn →M} ≤ rkM − 1.

The rank gradient of {Mn →M} is nonzero precisely when rkMn grows linearly
with the degree of the covering map. The main theorem of my talk described a
family of covers for which this may be characterized.

Theorem 1. Let M be a closed, orientable hyperbolic 3-manifold with a homomor-
phism φ : π1M � Z, and for n ∈ N let Mn → M be the cover corresponding to
φ−1(nZ) < π1M . Then rg {Mn} = 0 if and only if PD(φ) is represented by a fiber
in a fibration M → S1.

Here PD(φ) is the Poincaré dual of the cohomology class of φ, considered as a
1-cocycle on M . Using Stallings’ fibration theorem [15], we may state Theorem 1
in a form perhaps more provocative from the standpoint of geometric group theory.

Theorem 1′. Let M be a closed, orientable hyperbolic 3-manifold with a homo-
morphism φ : π1M � Z, and for n ∈ N let Mn →M be the cover corresponding to
φ−1(nZ) < π1M . Then rg {Mn} = 0 if and only if kerφ is finitely generated.

One direction of these theorems is obvious: if S is a finite generating set for
kerφ, then for each n ∈ N, π1Mn is generated by S and any element mapped by φ
to the generator of nZ. Put another way:

Fact. If PD(φ) is a fiber surface of genus g, then

rkMn ≤ 2g + 1

for each n ∈ N. In particular, rg {Mn} = 0.

In considering Theorem 1 we are motivated by the “rank versus Heegaard genus”
question about 3-manifolds:

Question. Do rank and Heegaard genus of closed hyperbolic 3-manifolds coincide?
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The Heegaard genus of a closed, orientable 3-manifold M , HgM , is the minimum
genus of a separating surface S embedded in M so that if V ⊂ M is a component
of M −S, then V is homeomorphic to a handlebody, obtained from a 3-dimensional
ball by attaching 1-handles. Such an S is called a Heegaard surface for M , and it
is a classical theorem that every closed 3-manifold contains one (this follows from
the existence of Morse functions, for instance).

If M has a Heegaard surface S of genus g, then the inclusion map V →M induces
a surjection at the level of π1, where V is one of the complementary handlebodies
to S. Since V has g 1-handles, we have rkM ≤ g. Therefore:

Fact. rkM ≤ HgM

One may ask a coarser version of the rank versus Heegaard genus question, in
which rank and Heegaard genus are only required to behave similarly “in the large.”
One manifestation of this philosophy is the recent theorem of Agol (cf. [14, §9]),
that all but finitely many closed hyperbolic 3-manifolds with rank 2 and injectivity
radius bounded away from 0 have Heegaard genus 2. Another is the following
conjecture. Below we define the Heegaard gradient Hgr{Mn → M} of a family of
finite-degree covers in analogy with the rank gradient, replacing rank by Heegaard
genus.

Conjecture. Let M be a closed hyperbolic 3-manifold and {Mn → M} a family of
finite-degree covers. Then rg {Mn} > 0 if and only if Hgr {Mn} > 0.

Theorem 1 may be considered evidence for this conjecture by comparing with
the following theorem of Lackenby [10, Theorem 1.11].

Theorem (Lackenby). Let M be a finite-volume hyperbolic 3-manifold with a ho-
momorphism φ : π1M � Z, and for n ∈ N let Mn →M be the cover corresponding
to φ−1(nZ) < π1M . Then Hgr{Mn} = 0 if and only if PD(φ) is represented by a
fiber in a fibration.

Theorem 1 follows by application of two deep but well known principles. The
first, known as “acylindrical accessibility,” bounds the cardinality of generating
sets of groups acting nicely on trees. The second, that “cylinders have bounded
length,” is a property of the JSJ decomposition of a manifold obtained from a
hyperbolic 3-manifold by cutting along an incompressible surface. We will describe
these principles and the action of π1M on a tree associated to φ, in Section 1, then
use them to prove Theorem 1. In Section 2, we will describe the JSJ decomposition
and use an example to illustrate the property that cylinders have bounded length.
We discuss further directions and questions in Section 3.

1. Actions on trees

Given a finitely generated group Γ acting on a tree T , an “accessibility” principle
relates the combinatorics of Γ\T to the structure of Γ. Acylindrical accessibility,
introduced by Z. Sela [13], is distinguished from other notions in that it does not
require prior knowledge of the structure of vertex or edge stabilizers, but only that
their action on T is “nice enough”:

Definition. Γ×T → T is k-acylindrical if no g ∈ Γ−{1} fixes a segment of length
greater than k, and k-cylindrical otherwise.
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Figure 1. The action associated to φ : π1M → Z.

It is a basic consequence of Bass–Serre theory that if a group Γ acts on a tree with
a trivial edge stabilizer, Γ is freely decomposable or cyclic. The groups of interest
here therefore act at best 1-acylindrically on trees. The acylindrical accessibility
theorem that we use here, due to R. Weidmann, has constants that do not depend
on the group Γ, a feature that is critical to our rank gradient computations.

Theorem ([16]). Let Γ be a non-cyclic freely indecomposable finitely generated
group and Γ × T → T a minimal k-acylindrical action. Then Γ\T has at most
1 + 2k(rk Γ− 1) vertices.

We will apply this theorem to an action associated to φ : π1M → Z, where
M is a closed orientable hyperbolic manifold. Such an M is a K(Γ, 1) space for
its fundamental group Γ, since its universal cover H3 is contractible; thus there
is a map f taking M to a graph G with a single vertex v and edge e, so that
f∗ = φ : Γ → π1G = Z. Making this map as nice as possible, we obtain the
following standard lemma.

Lemma 1 ([6], Lemma 6.5). With f : M → G as above, we may arrange so
that f−1(int(e)) = N (Sφ), where Sφ is a nonseparating π1-injective closed surface
embedded in M representing PD(φ) and N (Sφ) is an open regular neighborhood of
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Sφ equipped with a homeomorphism to Sφ × e so that f factors through projection
to e.

Lemma 1 motivates Figure 1 above. Since Sφ is π1-injective, the inclusion Sφ →
M lifts to an embedding of universal covers H2 → H3 specified by choosing the
lift of a point. The preimage of Sφ in H3 is therefore a collection of properly
embedded disjoint planes, each contained in a component of the preimage of N (Sφ)
homeomorphic to H2 × e. The quotient map f : M → G determines a quotient
f̃ : H3 → T , where T is a tree, such that f̃ is equivariant with respect to the action
of Γ = π1M by deck transformations. It follows that there is an action Γ× T → T
such that G = Γ\T .

By construction, each edge stabilizer of Γ × T → T is a subgroup representing
π1S. Let Xφ = M −N (Sφ); this is the preimage of v under f . Since Sφ is π1-
injective in M , so is Xφ and each vertex stabilizer of the action Γ×T → T represents
π1Xφ in Γ. An element of Γ that stabilizes a segment of length greater than 1
therefore lies in more than one conjugate of π1Sφ, and so has a free homotopy
through M that begins and ends on Sφ, passing through Xφ. This implies the
following fact.

Fact. If π1M×T → T is k-cylindrical, k > 1, then there is an immersion (A, ∂A)→
(M,S), where A is an annulus, such that the interior of A has at least k components
of transverse intersection with S.

Given this fact, we will define the length of an annulus (A, ∂A) → (M,S) im-
mersed transverse to S to be the least number of components of transverse intersec-
tion A ∩ S, over all homotopies sending ∂A into S. (Also see [13], Proposition 4.4
and the discussion below it.) The characteristic submanifold theory of hyperbolic
3-manifolds constrains the topology of such immersions, allowing us to prove:

Proposition 1 (Cylinders have bounded length). Suppose M is a closed, orientable
hyperbolic 3-manifold and S ⊂ M is a non-separating, embedded, orientable, π1-
injective surface, such that there is no fibration M → S1 with S as a fiber. There
exists k ∈ N, depending only on the topology of S, such that the length of any
immersed annulus (A, ∂A)→ (M,S) is bounded above by k.

We will not prove Proposition 1 here; however, in the following section we will
describe the characteristic submanifold theory and consider an example. Given the
Proposition, we now prove Theorem 1.

Proof of Theorem 1. Let M be a hyperbolic manifold and φ : π1M � Z. Let Sφ be
a π1-injective surface representing PD(φ) supplied by Lemma 1, and suppose that
Sφ is not a fiber in a fibration. Then taking Γ = π1M , Proposition 1 implies that
there is some k ∈ N such that the action Γ×T → T associated to φ is k-acylindrical.

For n ∈ N, let Γn = φ−1(nZ) < Γ with index n. Γn inherits a k-acylindrical
action on T from that of Γ, with quotient a graph with n vertices that is homeomor-
phic to a circle. (This follows from the fact that Sφ has n distinct homeomorphic
lifts to the cover Mn →M corresponding to Γn, cyclically permuted by deck trans-
formations.) Weidmann’s acylindrical accessibility theorem therefore implies

rkMn ≥
n− 1

2k
+ 1.

We thus find that rg {Mn} ≥ 1/2k. �
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2. Cylinders have bounded length

It is easy to see that the manifold X obtained by removing a regular neigh-
borhood of an embedded, π1-injective surface in a closed, orientable hyperbolic 3-
manifold M is compact, irreducible, and atoroidal, with incompressible boundary.
We will call such manifolds simple. The JSJ decomposition of a simple 3-manifold
describes a “best” way to cut it apart along essential annuli; that is, along annuli
that are properly embedded, π1-injective, and not boundary-parallel [7], [8].

Theorem (Jaco–Shalen, Johansson). Let X be a simple 3-manifold with nonempty
boundary. Up to ambient isotopy, its characteristic submanifold Σ is the unique
compact submanifold of X with the following properties.

(1) Every component of Σ is either an I-bundle P over a surface such that
P ∩ ∂X = ∂hP , or a Seifert fibered space S such that S ∩ ∂X is a saturated
2-manifold in ∂S.

(2) Every component of the frontier of Σ is an essential annulus or torus in X.
(3) No component of Σ is ambiently isotopic in X to a submanifold of another

component of Σ.
(4) If Σ1 is a compact submanifold of X such that (1) and (2) hold with Σ1 in

place of Σ, then Σ1 is ambiently isotopic in X to a submanifold of Σ.

The characteristic submanifold of X also has the enclosing property, that every
proper, π1-injective immersion of an annulus is properly homotopic into Σ, unless
it is homotopic into the boundary. Σ may be empty, in which case X is said to be
acylindrical, or it may be all of X, in which case X is homeomorphic to S × I for
some surface S. The most interesting cases from our perspective fall between these
extremes.

Example 1. Let T1 and T2 be punctured tori, and let V be a solid torus. For
i = 1, 2, let Ai = (∂Ti)× [0, 1]. Orient V and the Ti, and for each i give Ti × [0, 1]
the product orientation. Let ι1 : A1 → ∂V and ι2 : A2 → ∂V be homeomorphic
embeddings with disjoint images such that for each i, ιi reverses the boundary
orientation on Ai and ιi(∂Ti×{1/2}) is a simple closed curve on ∂V that intersects
the boundary of a meridian disk twice. We further require that a single component
of ∂V − ιi(Ai) contain the images of ∂T1 × {1} and ∂T2 × {1}.

Figure 2. The components of Σ in Example 1.

The subjects of the paragraph above are pictured in Figure 2. The annuli A1

and A2 are shaded on the left and right, and the solid torus V is pictured in
the middle with a meridian disk shaded and a simple closed curve on ∂V parallel
to the images of ιj , j = 1, 2, pictured. We let X be the identification space of
V t T1 × [0, 1] t T2 × [0, 1] by x ∼ ιj(x) for x ∈ Aj , j = 1, 2. Then X is a simple
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3-manifold with two boundary components, and the characteristic submanifold Σ
of X is homeomorphic to the disjoint union of V and the Tj × [0, 1].
X has the property that X − Σ is the disjoint union of regular neighborhoods of

A1 and A2 in X. Such manifolds are known as “books of I-bundles” (see [4]).

Given a surface S embedded in a hyperbolic 3-manifold M as in the statement of
Proposition 1, we may regard M as obtained from X

.= M −N (S) by identifying
boundary components ∂+X → ∂−X by a homeomorphism φ. Here we fix an
identification of N (S) with S × [−1, 1], take ∂±X = S ×{±1}, and let φ : ∂+M →
∂−M be the map (x, 1) 7→ (x,−1).

If S is not a fiber in a fibration M → S1, then the characteristic submanifold Σ
is not all of X. The proof of Proposition 1 is based on the observation that in this
case, we have

φ(Σ ∩ ∂+X) 6= Σ ∩ ∂−X.

If this were not so, then the annular components of the frontier of Σ in X would
join together yielding a disjoint union of π1-injective tori in M . But this would
contradict the hyperbolicity of M .

A strengthened version of this observation, which Marc Culler has called a “veg-
ematic argument,” describes a properly shrinking sequence of subsurfaces Sk of S
that carry its intersections with any annulus of length k. We will not prove Propo-
sition 1 here, but refer the reader to antecedents in [2, §4] and [3] for applications
of this general principle under somewhat different circumstances. We illustrate it
below using the manifold from Example 1.

Example 2. Let X be the manifold of Example 1, and take ∂±X to be the com-
ponent of ∂X containing Tj ×{±1}, for i = 1 and 2. Let α, β, and γ be the curves
on ∂+X in Figure 3, and define φ : ∂+M → ∂−M to be the composition of right-
handed Dehn twists τγτβτα, followed by a homeomorphism that takes Tj × {1} to
Tj × {−1} for each of j = 1, 2. Defining M = X/φ by gluing ∂+X to ∂−X by φ,
we claim that the action of π1M on the tree T associated to PD(S) is 3-cylindrical
but 4-acylindrical, where S is the image of ∂X under the quotient map.

We have pictured ∂+M at the top of Figure 3, with Σ ∩ ∂+X unshaded. The
essential intersection of φ(Σ∩∂+X) with Σ∩∂−X is the disjoint union of the annuli
B1 and B2 pictured at the bottom of the figure. This is the union of components of
φ(Σ ∩ ∂+X) ∩Σ ∩ ∂−X that contain an essential simple closed curve. For j = 1, 2,
there is a submanifold of Σ homeomorphic to Bj×[−1, 1] such that Bj = Bj×{−1}.

For each j, the essential intersection of φ(Bj ×{1}) with Σ∩∂−M is empty. We
thus obtain the following classification of “cylindrical” elements of π1M × T → T :

(1) Each essential curve on S determines an element of an edge stabilizer.
(2) Each essential curve in Σ bounds an immersed annulus (A, ∂A) → (M,S)

with length 2.
(3) For j = 1 or 2, there is a simple closed curve in Σ ∩ ∂+X, unique up to

homotopy, that maps under τγτβτα to the core of Bj . Each such curve
determines an annulus (Aj , ∂Aj) in (M,S) with length 3.

Given an annulus with length greater than 3, its intersection with X would deter-
mine a sequence of at least 3 annuli in Σ joining components of ∂X, with boundary
components exchanged by φ. The discussion above shows this is impossible.
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Figure 3. Σ ∩ ∂+X, and the essential intersection of its image
with Σ ∩ ∂−X.

3. Questions and further directions

Two directions immediately suggest themselves as avenues for further exploration
of rank gradient questions. The most direct generalization seeks to expand the class
of groups under consideration.

Question. Which classes of groups satisfy the conclusion of Theorem 1′?

One could further ask whether our proof applies in a more general context.
The most natural candidate for this question seems to be the class of hyperbolic
groups, since these are also “atoroidal,” in the sense that they do not contain free
abelian groups of rank 2 or higher. Furthermore, a JSJ-type decomposition theorem
that applies to these groups and has the enclosing property has been proved by
Scott–Swarup [12]. Extending our proof strategy to these groups thus only requires
proving a version of “cylinders have bounded length” for the class of all hyperbolic
groups. A different context in which I believe Theorem 1 applies is below.

Conjecture. Theorem 1 holds for all closed 3-manifolds.

Using the prior work of Lackenby [9] and Weidmann [16], establishing this con-
jecture reduces to the problem of extending Theorem 1 to finite-volume (not nec-
essarily compact) hyperbolic 3-manifolds and Seifert fibered spaces. I believe these
cases can be done using ad hoc arguments.

A second direction for generalizing Theorem 1 lies in considering other families
of covers. This direction would require different techniques than are used here. I
am particularly interested in the following question.

Question. Under which circumstances does a co-final family of finite covers — that
is, {Mn →M} such that

⋂
π1Mn = {1} ⊂ π1M — have positive rank gradient?

This is motivated by work of Abert–Nikolov [1]. Lackenby showed that families
of covers with property τ have positive Heegaard gradient [10, Theorem 1.5]. On the
other hand, Abert–Nikolov described co-final towers of covers with rank gradient
0, of any hyperbolic 3-manifold that is virtually fibered [1]. In many cases, these
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manifolds also have co-final towers with property τ (see eg. [11]), for which the
rank gradient is unknown. If the rank gradient were positive, this would give a
negative answer to a question of Gaboriau [5] (see [1]); otherwise, it would provide
infinitely many examples with rank unequal to Heegaard genus. Attacking this
question would require new techniques.
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