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Introduction 3

These lectures are centered around the subjects of Hodge theory and representation

theory and their relationship. A unifying theme is the geometry of homogeneous complex

manifolds. One objective is to present, in a general context, some of the recent work of

Carayol [C1], [C2], [C3].

Finite dimensional representation theory interacts with Hodge theory through the use

of Hodge representations to classify the possible realizations of a reductive, Q-algebraic

group as a Mumford-Tate group. The geometry of homogeneous complex manifolds

enters through the study of Mumford-Tate domains and Hodge domains.

Infinite dimensional representation theory and the geometry of homogeneous complex

manifolds interact through the realization of the Harish-Chandra modules associated to

discrete series representations , especially their limits, as cohomology groups associated

to homogeneous line bundles (work of Schmid). It also enters through the work of

Carayol on automorphic cohomology, the most recent of which involves the Hodge theory

associated to boundary components of Mumford-Tate domains.

Throughout these lectures we have kept the “running examples” of SL2, SU(2, 1),

Sp(4) and SO(4, 1). Many of the general results whose proofs are not given in the

lectures are easily verified in the running examples. They also serve to illustrate and

make concrete the general theory.

We have attempted to keep the lecture notes as accessible as possible. Both the

subjects of Hodge theory and representation theory are highly developed and extensive

areas of current mathematics and we are only able to touch on some aspects where they

are related. When more advanced concepts from another area have been used, such

as local cohomology and Grothendieck duality from algebraic geometry at the end of

Lecture 6, we have illustrated them through the running examples in the hope that at

least the flavor of what is being done will come through.

Lectures 1 and 2 are basically elementary, assuming some standard Riemann surface

theory. In this setting we will introduce many of the basic concepts that appear in

these lectures. At the end of Lecture 2 we have given a more extensive summary of the

topics that are covered later in the lectures. Lecture 3 is also essentially self-contatined,

although some terminology from Lie theory and algebraic groups will be used. Lecture

4 will draw on the structure and representation theory of complex Lie algebras and their

real forms. Lecture 5 will use some of the basic material about infinite dimensional

representation theory and the theory of homogeneous complex manifolds. In Lectures

6 and 7 we will draw from complex function theory and, in the last part of Lecture 6,

some topics from algebraic geometry. Lectures 8 and 9 will utilize the material that has

gone before; they are mainly devoted to specific computations in the framework that



4 Phillip Griffiths

has been established. The final Lecture 10 is devoted to issues and questions that arise

from the earlier lectures.

After a number of the lectures we have given an appendix whose purposes are to

present proofs of results that because of time could not be given in the lecture and

to discuss related topics that although perhaps not logically necessary for the lectures

present related material that is of interest in its own right.

At the end of the lecture notes we have given a few additional references. These

include several expository papers or books where a more complete set of references to

the material in these lectures can be found. Lectures 3, 4, 8 and 9 are based on the

joint works [GGK1] and [GGK2] with Mark Green and Matt Kerr. A main reference for

Lecture 5 is [Sch2] and for Lecture 6 is [FHW]. Lecture 7 is in part drawn from [GG].

It is a pleasure to thank Sarah Warren for doing a marvelous job of typing these

lecture notes.
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Lecture 1

The classical theory: Part I

The first two lectures will be largely elementary and expository. They will deal with

the upper-half-plane H and Riemann sphere P1 from the points of view of Hodge theory,

representation theory and complex geometry. The topics to be covered will be

(i) compact Riemann surfaces of genus one (= 1-dimensional complex tori) and

polarized Hodge structures (PHS) of weight one;

(ii) the space H of PHS’s of weight one and its compact dual P1 as homogeneous

complex manifolds;

(iii) the geometry and representation theory associated to H;

(iv) equivalence classes of PHS’s of weight one as Γ\H and automorphic forms;

(v) the geometric representation theory associated to P1, including the realization

of higher cohomology by global, holomorphic data;

(vi) Penrose transforms in genus g = 1 and g = 2.

Assumptions:

• basic knowledge of complex manifolds (in this lecture mainly Riemann surfaces);

• elementary topology and manifolds, including de Rham’s theorem;

• some familiarity with classical modular forms will be helpful but not essential;1

• some familiarity with the basic theory of Lie groups and Lie algebras.2

Complex tori of dimension one: We let X = compact, connected complex manifold

of dimension one and genus one. Then X is a complex torus C/Λ where

Λ = {n1π1 + n2π2}n1,n2∈Z ⊂ C

is a lattice. The pictures are

δ2

δ1

π2

π1

Here δ1 ↔ π1 and δ2 ↔ π2 give a basis for H1(X,Z).

1The classical theory will be covered in the lectures by Matt Kerr.
2This topic will be covered in Mark Green’s lecture.
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The complex plane C = {z = x+ iy} is oriented by

dx ∧ dy =
(
i
2

)
dz ∧ dz̄ > 0.

We choose generators π1, π2 for Λ with π1 ∧ π2 > 0, and then the intersection number

δ1 · δ2 = +1.

We set VZ = H1(X,Z), V = VZ ⊗Q = H1(X,Q) and denote by

{
Q : V ⊗ V → Q
Q(v, v′) = −Q(v′, v)

the cup-product, which via Poincaré duality H1(X,Q) ∼= H1(X,Q) is the intersection

form.

We have

H1(X,C) ∼= H1
DR(X) =

{
closed 1-forms ψ

modulo exact
1-forms ψ=dζ

}

∼ =

H1(X,Z)∗ ⊗ C

and it may be shown that

H1
DR(X) ∼= spanC {dz, dz̄} .

The pairing of cohomology and homology is given by periods

πi =

∫

δi

dz

and Π =
(
π2

π1

)
is the period matrix (note the order of the πi’s).

Using the basis for H1(X,C) dual to the basis δ1, δ2 for H1(X,C), we have

H1(X,C) ∼= C2 = column vectors

∈ ∈

dz = Π.

We may scale C by z → λz, and then Π = λΠ so that the period matrix should

be thought of as point in P1 with homogeneous coordinates [ z0z1 ]. By scaling, we may

normalize to have π1 = 1, so that setting τ = π2 the normalized period matrix is [ τ1 ]
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where Im τ > 0.

τ

1

Differential forms on an n-dimensional complex manifold Y with local holomorphic

coordinates z1, . . . , zn are direct sums of those of type (p, q)

f dzi1 ∧ · · · ∧ dzip︸ ︷︷ ︸
p

× dz̄j1 ∧ · · · ∧ dz̄jq︸ ︷︷ ︸
q

.

Thus the C∞ forms of degree r on Y are
{
Ar(Y ) = ⊕

p+q=r
Ap,q(Y )

Aq,p(Y ) = Ap,q(Y ).

Setting

H1,0(X) = span{dz}
H0,1(X) = span{dz̄}

we have {
H1(X,C) = H1,0(X)⊕H0,1(X)

H0,1(X) = H1,0(X).

This says that the above decomposition of the 1-forms on X induces a similar decom-

position in cohomology. This is true in general for a compact Kähler manifold (Hodge’s

theorem) and is the basic starting point for Hodge theory. This will be discussed in the

lectures by Eduardo Cattani.

From dz∧dz = 0 and
(
i
2

)
dz∧dz̄ > 0, by using that cup-product is given in de Rham

cohomology by wedge product and integration over X we have
{
Q
(
H1,0(X), H1,0(X)

)
= 0

iQ
(
H1,0(X), H1,0(X)

)
> 0.

Using the above bases the matrix for Q is

Q =

(
0 −1

1 0

)
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and these relations are {
Q(Π,Π) = tΠQΠ = 0

iQ(Π,Π) = itΠQΠ > 0.

For Π = [ τ1 ] the second is just Im τ > 0.

Definitions: (i) A Hodge structure of weight one is given by a Q-vector space V

with a line V 1,0 ⊂ VC satisfying {
VC = V 1,0 ⊕ V 0,1

V 0,1 = V
1,0
.

(ii) A polarized Hodge structure of weight one (PHS) is given by the above together

with a non-degenerate form

Q : V ⊗ V → Q, Q(v, v′) = −Q(v′, v)

satisfying the Hodge-Riemann bilinear relations{
Q(V 1,0, V 1,0) = 0

iQ(V 1,0, V
1,0

) > 0.

In practice we will usually have V = VZ ⊗Q. The reason for working with Q will be

explained later.

When dimV = 2, we may always choose a basis so that V ∼= Q2 = column vectors

and Q is given by the matrix above. Then V 1,0 ∼= C is spanned by a point

[ τ1 ] ∈ PVC ∼= P1

where Im τ > 0.

Identification: The space of PHS’s of weight one (period domain) is given by the

upper-half-plane

H = {τ : Im τ > 0}.
The compact dual Ȟ given by subspaces V 1,0 ⊂ VC satisfying Q(V 1,0, V 1,0) = 0 (this is

automatic in this case) is Ȟ = PVC ∼= P1 where

P1 = {τ -plane} ∪∞ = lines through the origin in C2.

It is well known that H and P1 are homogeneous complex manifolds; i.e., they are

acted on transitively by Lie groups. Here are the relevant groups. Writing

z =

(
z0

z1

)
, w =

(
w0

w1

)

and using Q to identify Λ2V with Q we have

Q(z, w) = twQz = z ∧ w
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and the relevant groups are
{

Aut(VR, Q) ∼= SL2(R) for H

Aut(VC, Q) ∼= SL2(C) for P1.

In terms of the coordinate τ the action is the familiar one:

τ → aτ + c

cτ + d

where ( a bc d ) ∈ SL2. This is because τ = z0/z1 and
(
a b

c d

)(
z0

z1

)
=

(
az0 + bz1

cz0 + dz1

)
= z1

(
aτ + b

cτ + d

)
.

If we choose for our reference point i ∈ H (= [ i1 ] ∈ P1), then we have the identifications
{
H ∼= SL2(R)/ SO(2)

P1∼= SL2(C)/B

where (this is a little exercise)

SO(2) =

{(
a b

b a

)
: a2 + b2 = 1

}
=

{(
cos θ − sin θ

sin θ cos θ

)}

B =

{(
a b

c d

)
: i(a− d) = −b− c

}
.

The Lie algebras are (here k = Q,R or C)

sl2(k) =

{(
a b

c −a

)
: a, b ∈ k

}

so(2) =

{(
0 −a
a 0

)
: a ∈ R

}

b =

{(
a −b
b −a

)
: a, b ∈ C

}
.

Remark: From a Hodge-theoretic perspective the above identifications of the period

domain H and its compact dual Ȟ are the most convenient. From a group-theoretic

perspective, it is frequently more convenient to set

ζ =
τ − i
τ + i

, Im τ > 0⇔ |ζ| < 1
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and identify H with the unit disc ∆ ⊂ C ⊂ P1. When this is done, SL2(R) becomes the

other real form

SU(1, 1)R =

{
g =

(
a b

c d

)
∈ SL2(C) : tḡHg = H

}

of SL2(R), where here H =

(
1 0

0 −1

)
. Then

H 3 i↔ 0 ∈ ∆

SO(2)↔
{(

eiθ 0

0 e−iθ

)}

B ↔
{(

a 0

b a−1

)}
.

Thus, SO(2) is here a “standard” maximal torus and B is a “standard” Borel subgroup.

We now think of H as the parameter space for the family of PHS’s of weight one and

with dim V = 2. Over H there is the natural Hodge bundle

V1,0 → H

with fibres

V1,0
τ =: V 1,0

τ = line in VC.

Under the inclusion H ↪→ P1, the Hodge bundle is the restriction of the tautological line

bundle OP1(−1). Both V1,0 and OP1(−1) are examples of homogeneous vector bundles.

In general, given

• a homogeneous space

Y = A/B

where A is a Lie group and B ⊂ A is a closed subgroup, and

• a linear representation r : B → AutE where E is a complex vector space,

there is an associated homogeneous vector bundle

E

��

=: A×B E
��

Y = A/B

where A×B E is the trivial vector bundle A× E factored by the equivalence relation

(a, e) ∼ (ab, r(b−1)e)
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where a ∈ A, e ∈ E, b ∈ B. The group A acts on E by a · (a′, e) = (aa′, e) and there

is an A-equivariant action on E → Y . There is an evident notion of a morphism of

homogeneous vector bundles; then E → Y is trivial as a homogeneous vector bundle if,

and only if, r : B → Aut(E) is the restriction to B of a representation of A.

Example: Let τ0 ∈ H ⊂ P1 be the reference point. For the standard linear representa-

tion of SL2(C) on VC, the Borel subgroup B is the stability group of the flag

(0) ⊂ V 1,0
τ0
⊂ VC.

It follows that there is over P1 an exact sequence of SL2(C)-homogeneous vector bundles

0→ OP1(−1)→ V→ OP1(1)→ 0

where V = P1×VC with g ∈ SL2(C) acting on V by g ·([z], v) = ([gz], gv). The restriction

to H of this sequence is an exact sequence of SL2(R)-homogeneous bundles

0→ V1,0 → V→ V0,1 → 0.

The bundle V1,0 is given by the representation(
cos θ − sin θ

sin θ cos θ

)
→ eiθ

of SO(2). Using the form Q the quotient bundle V/V1,0 =: V0,1 is identified with the

dual bundle V1,0∗.

The canonical line bundle is

ωP1
∼= OP1(−2).

Thus

ωH
∼= (V1,0)⊗2.

Convention: We set

ω
1/2
H = V1,0.

Proof. For the Grassmanian Y = G(n,E) of n-planes P in a vector space E there is

a GL(E)-equivariant isomorphism

TPY ∼= Hom(P,E/P ).

In the case above where E = C2 and z = [ z0z1 ] ∈ P1 we have

TzP1 ∼= V 1,0∗

z ⊗ VC/V 1,0
z

where V 1,0
z is the line in VC corresponding to z. If we use the group SL2(C) that preserves

Q in place of GL2(C), then

VC/V
1,0
z
∼= V 1,0∗

z .
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Thus the cotangent space

T ∗z P1 ∼= V 2,0
z

where in general we set Vn,0 = (V1,0)⊗n. The above identification ωP1
∼= OP1(−2) is an

SL2(C), but not GL2(C), equivalence of homogenous bundles.

The Hodge bundle V1,0 → H has an SL2(R)-invariant metric, the Hodge metric, given

fibrewise by the 2nd Hodge-Riemann bilinear relation. The basic invariant of a metric is

its curvature, and we have the following

General fact: Let L → Y be an Hermitian line bundle over a complex manifold Y .

Then the Chern (or curvature) form is

c1(L) =
i

2π
∂∂ log ‖s‖2

where s ∈ O(L) is any local holomorphic section and ‖s‖2 is its length squared.

Basic calculation:

c1(V1,0) =
1

4π

dx ∧ dy
y2

=
i

2π

dτ ∧ dτ
(Im τ)2

.

This has the following

Consequence: The tangent bundle

TH ∼= V0,2

has a metric

ds2
H =

dx2 + dy2

y2
=

(
1

(Im τ)2

)
Re(dz dz̄)

of constant negative Gauss curvature.

Before giving the proof we shall make a couple of observations.

Any SL2(R) invariant Hermitian metric on H is conformally equivalent to dx2 + dy2;

hence it is of the form

h(x, y)

(
dx2 + dy2

y2

)

for a positive function h(x, y). Invariance under translation τ → τ + b, b ∈ R, corre-

sponding to the subgroup ( 1 b
0 1 ), implies that h(x, y) = h(y) depends only on y. Then

invariance under τ → aτ corresponding to the subgroup
(
a1/2 0

0 a−1/2

)
, a > 0, gives that

h(y) = constant. A similar argument gives that c1(V1,0) is a constant multiple of the

form above.

The all important sign of the curvature K may be determined geometrically as follows:

Let Γ ⊂ SL2(R) be a discrete group such that Y = Γ\H is a compact Riemann surface
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of genus g = 2 with the metric induced from that on H. By the Gauss-Bonnet theorem

0 > 2− 2g = χ(Y ) =
1

4π

∫

Y

KdA = K

(
Area(Y )

4π

)
.

Proof of basic calculation: We define a section s ∈ Γ(H,V1,0) by

s(τ) =

(
τ

1

)
∈ V1,0

τ .

The length squared is given by

‖s(τ)‖2 = its(τ)Qs(τ) = 2y.

Using for τ = x+ iy {
∂τ = 1

2
(∂x − i∂y)

∂τ̄ = 1
2
(∂x + i∂y)

we obtain
i

2π
∂∂ = − 1

4π
(∂2
x + ∂2

y)dx ∧ dy.
This gives

i

2π
∂∂ log ‖s(τ)‖2 =

1

4π

dx ∧ dy
y2

.

Remark: There is also a SU(2)-invariant metric on OP1(−1) induced from the standard

metric on C2. For this metric

‖s(τ)‖2
c = 1 + |τ |2

(the subscript c on ‖ ‖2
c stands for “compact”). Then we have

c1(V1,0
c ) = − 1

4π

dx ∧ dy
(1 + |τ |2)2

.

Thus, V1,0 → H is a positive line bundle whereas V1,0
c → P1 is a negative line bundle

degOP1(−1) =

∫

P1

c1(V1,0
c ) = −1.

This sign reversal between the SL2(R)-invariant curvature on the open domain H and

the SU(2) (= compact form of SL2(C))-invariant metric on the compact dual Ȟ = P1

will hold in general and is a fundamental phenomenon in Hodge theory.

Above we have holomorphically trivialized V1,0 → H using the section

s(τ) =

(
τ

1

)
.

We have also noted that we have the isomorphism of SL2(R)-homogeneous line bundles

ωH
∼= V2,0.
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Now ωH has a section dτ and a useful fact is that under this isomorphism

dτ = s(τ)2.

The proof is by tracing through the isomorphism. To see why it should be true we make

the following observations: Under the action of ( a bc d ) ∈ SL2(R), s(τ) transforms to
(
a b

c d

)(
τ

1

)
=

(
aτ + b

cτ + d

)
= (cτ + d)

(
aτ+b
cτ+d

1

)
;

i.e., s(τ) transforms by (cτ + d)−1. On the other hand, using ad− bc = 1 we find that

d

(
aτ + b

cτ + d

)
=

dτ

(cτ + d)2
.

Thus s(τ)2 and dτ transform the same way under SL2(R), and consequently their ratio

is a constant function on H.

Beginnings of representation theory

In these lectures we shall be primarily concerned with infinite dimensional represen-

tations of real, semi-simple Lie groups and with finite dimensional representations of

reductive Q-algebraic groups. Leaving aside some matters of terminology and defini-

tions for the moment we shall briefly describe the basic examples of the former in the

present framework.

Denote by Γ(H,Vn,0) the space of global holomorphic sections over H of the nth tensor

power of the Hodge bundle, and by dµ(τ) the SL2(R) invariant area form dx ∧ dy/y2

on H.

Definition: For n = 2 we set

D+
n =

{
ψ ∈ Γ(H,Vn,0) :

∫

H

‖ψ(τ)‖2dµ(τ) <∞
}
.

There is an obvious natural action of SL2(R) on Γ(H,Vn,0) that preserves the pointwise

norms, and it is a basic result [K2] that the map

SL2(R)→ Aut(D+
n )

gives an irreducible, unitary representation of SL2(R).

As noted above there is a holomorphic trivialization of V1,0 → H given by the non-zero

section

σ(τ) =

(
τ

1

)
.

Then using the definition of the Hodge norm and ignoring the factor of 2,

‖σ(τ)‖2 = y.
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Writing

ψ(τ) = fψ(τ)σ(τ)

we have

∫

H

‖ψ(τ)‖2dµ(τ) =

(
i

2

)∫∫
|fψ(τ)|2(Im τ)n−2dτ ∧ dτ̄ .

Thus we may describe D+
n as

{
f ∈ Γ(H,OH) :

∫∫
|fψ(x+ iy)|2yn−2dx ∧ dy <∞

}
.

For n = 1 we define the norm by

sup
y>0

∫ ∞

−∞
|fψ(x+ iy)|2dx.

The spaces D−n are described analogously using the lower half plane.

Fact ([K2]): The D±n for n = 2 are the discrete series representations of SL2(R). For

n = 1, D±1 are the limits of discrete series.

The terminology arises from the fact that in the spectral decomposition of L2(SL2(R))

the D±n for n = 2 occur discretely.

There is an important duality between the orbits of SL2(R) and of SO(2,C) acting on

P1. Anticipating terminology to be used later in these lectures we set

• P1 = flag variety SL2(C)/B where B is the Borel subgroup fixing i = [ i1 ];

• SL2(R) = real form of SL2(C) relative to the conjugation A→ A;

• SO(2) = maximal compact subgroup of SL2(R) (in this case it is SL2(R) ∩B);

• H = flag domain SL2(R)/ SO(2);

• SO(2,C) = complexification of SO(2).

We note that SO(2,C) ∼= C∗.
Matsuki duality is a one-to-one correspondence of the sets

{SL2(R)-orbits in P1} ↔ {SO(2,C)-orbits in P1}



16 Phillip Griffiths

that reverses the relation “in the closure of.” The orbit structures in this case are

H

<<<<<<<< H

��������
open SL2(R) orbits

R ∪ {∞} closed SL2(R) orbit

P1\{i,−i}

��������

=======
open SO(2,C) orbit

i −i closed SO(2,C) orbit

The lines mean “in the closure of.” The correspondence in Matsuki duality is{
H↔ i

H↔ −i
R ∪ {0} ↔ P1\{i,−i}.

Matsuki duality arises in the context of representation theory as follows: A Harish-

Chandra module is a representation space W for sl2(C) and for SO(2,C) that satisfies

certain conditions (to be explained in Lecture 5). A Zuckerman module is, for these

lectures, a module obtained by taking finite parts of completed unitary SL2(R)-modules.

For the D+
n the modules are formal power series

ψ =
∑

k=0

ak(τ − i)kdτ⊗n/2.

We think of these as associated to GR-modules arising from the open orbit H. The

Lie algebra sl2(C), thought of as vector fields on P1, operates on ψ above by the Lie

derivative, and SO(2,C) operates by linear fractional transformations.

Associated to the closed SO(2,C) orbit i are formal Laurent series

γ =
∑

l=1

bl
(τ − i)l

(
∂

∂τ

)⊗n/2
dz.

This is also a (so(2,C), SO(2,C))-module. The pairing between SO(2,C)-finite vectors,

i.e., finite power and Laurent series, is

〈ψ, γ〉 = Resi(ψ, γ).

There are also representations associated to the closed SL2(R) orbit and open SO(2,C)

orbit that are in duality. We will not have a chance to discuss these in this lecture series

(cf. [Sch3]).
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There is a similar picture if one takes the other real form SU(1, 1)R of SL2(C). It is a

nice exercise to work out the orbit structure and duality in this case.

We shall revisit Matsuki duality in this case, but set in a general context, in Lecture 2.

Why we work over Q: Setting XΛ = C/Λ we say that XΛ and XΛ′ are isomorphic if

there is a linear mapping

α : C ∼−→ C
with α(Λ) = Λ′. This is equivalent to XΛ and XΛ′ being biholomorphic as compact

Riemann surfaces. Normalizing the lattices as above the condition is

τ ′ =
aτ + b

cτ + c
,

(
a b

c d

)
∈ SL2(Z).

Thus the equivalence classes of compact Riemann surfaces of genus one is identified with

the quotient space SL2(Z)\H.

For many purposes a weaker notion of equivalence is more useful. We say that XΛ and

XΛ′ are isogeneous if the condition α(Λ) = Λ′ is replaced by α(Λ) ⊆ Λ′. Then Λ′/α(Λ)

is a finite group and there is an unramified covering map

XΛ → XΛ′ .

More generally, we may say that XΛ ∼ XΛ′ if there is a diagram of isogenies

XΛ′′

��8888888

��						

XΛ XΛ′ .

Identifying each of the universal covers with the same C, we have Λ ⊂ Λ′′, Λ′ ⊂ Λ′′ and

then

Λ⊗Q = Λ′′ ⊗Q = Λ′ ⊗Q.
The converse is true, which suggests one reason for working over Q.

Remark: Among the important subgroups of SL2(Z) are the congruence subgroups

Γ(N) =

{(
a b

c d

)
=

(
1 0

0 1

)
(modN)

}
.

Then Γ(1) = SL2(Z). Geometrically the quotient spaces MΓ(N) =: Γ(N)\H arise as

parameter spaces for complex tori Xτ plus additional “rigidifying” data. In this case the

additional data is “marking” the N -torsion points

Xτ (N) =: (1/N)Λ/Λ ∼= (Z/NZ)2.
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When we require that an ismorphism XΛ(N) ∼= XΛ(N) take marked points to marked

points the the equivalence classes of XΛ(N)’s are Γ(N)\H.

Later in these talks we will encounter arithmetic groups Γ which have compact quo-

tients.
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Lecture 2

The classical theory: Part II

This lecture is a continuation of the first one. In it we will introduce and illustrate

a number of the basic concepts and terms that will appear in the later lectures, where

also the formal definitions will be given.

Holomorphic automorphic forms: We have seen above that the equivalence classes of

PHS’s of weight one with dimV = 2 may be identified with SL2(Z)\H. More generally,

for geometric reasons discussed earlier one wishes to consider congruence subgroups

Γ ⊂ SL2(Z) and the quotient spaces

MΓ =: Γ\H.
We make two important remarks concerning these spaces:

(i) The fixed points of γ ∈ Γ acting on H occur when we have a PHS

VC = V 1,0
τ ⊕ V 0,1

τ

left invariant by γ ∈ Aut(VZ, Q). Thus γ is an integral matrix that lies in

the compact subgroup of SL2(R) which preserves the positive Hermitian form

iQ(V 1,0
τ , V

1,0

τ ). It follows that γ is of finite order, so that locally there is a disc

∆ around τ with a coordinate t on ∆ such that

γ(t) = ζ · t, ζm = 1

for some integer m (in fact, m = 2 or 3). The map

s = tm

then gives a local biholomorphism between ∆ modulo the action of the group

{γm} and the s-disc. In this way MΓ is a Riemann surface. We define sections

of the bundle Vn,0 over the quotient space {γk, k ∈ Z}\∆ of the disc modulo

the action of γ to be given by γ-invariant sections of Vn,0 → ∆.

Remark: It will be a general fact, with essentially the same argument as above, that

isotropy group of a general polarized Hodge structure that lies in an arithmetic group is

finite.

(ii) MΓ will not be compact but will have cusps, which are biholomorphic to the

punctured disc ∆∗. The model here is the quotient of the region

Hc = {Im τ > c}, c > 0

by the subgroup Γ0 = {( 1 n
0 1 ) : n ∈ Z} of translations. Setting

q = e2πiτ
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we obtain a biholomorphism

Γ0\Hc
∼−→ {0 < |q| < e−2πc}

of the quotient space with a punctured disc.

Definition: A holomorphic automorphic form of weight n is given by a holomor-

phic section ψ ∈ Γ(MΓ,Vn,0) that is finite at the cusps.

These will be referred to simply as modular forms.

We recall that ωH
∼= V2,0, so that ω

⊗n/2
H

∼= Vn,0 and the sections of ω
⊗n/2
MΓ

around the

fixed points of Γ are defined as above. Thus automorphic forms of weight n are given by

ψ(τ) = fψ(τ)dτn/2

where fψ(τ) is holomorphic on H and satisfies

fψ

(
aτ + b

cτ + d

)
= (cτ + d)nfψ(τ).

Around a cusp as above one sets q = e2πiτ and expands in a Laurent series the resulting

well-defined function Fψ(q) = fψ(τ),

Fψ(q) =
∑

n

anq
n.

By definition, the finiteness condition at the cusp is an = 0 for n < 0.

As will be discussed in the lecture of Cattani, from a Hodge-theoretic perspective

there is a canonical extension V1,0
e → ∆ of the Hodge bundle V1,0 → ∆∗ given by the

condition that the Hodge length of a section have at most logarithmic growth in the

Hodge norm as one approaches the puncture. Modular forms are then the holomorphic

sections of Vn,0 → Γ\H that extend to Vn,0
e → Γ\H. In this way they are defined purely

Hodge-theoretically.

Among the modular forms are the special class of cusp forms ψ, defined by the equiv-

alent conditions

•
∫

Γ\H ‖ψ‖2dµ <∞;3

• a0 = 0;

• ψ vanishes at the origin in the canonical extensions at the cusps.

Representation theory associated to P1: It is convenient to represent P1 as the

compact dual of ∆ = SU(1, 1)/T . Thus

SL2(C) = SU(1, 1)C.

3This is not the usual condition, which involves the integral of fψ over a horizontal path in H. We
have used it in order to have a purely Hodge-theoretic formulation.
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At the Lie algebra level we then have

su(1, 1)R =

{(
iα β

β −iα

)
, α, β ∈ R

}

sl2(C) =

{(
a b

c −a

)}

where sl2(C) = su(1, 1)R + i su(1, 1)R via




a = α + iα′

b = β + iβ′

c = β + iβ
′
.

As basis for sl2(C) we take the standard generators

H =

(
1 0

0 −1

)
, X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)
.

Then setting

h = CH, n+ = CX, n− = CY
h is a Cartan sub-algebra and the structure equations are




[H,X] = 2X

[H,Y ] = −2Y

[X, Y ] = H.

The weight lattice P are the integral linear forms on ZH ⊂ h. Thus P ∼= Z with

〈1, H〉 = 1. The root vectors are the eigenvectors X, Y of h acting on sl2(C), and the

roots are the corresponding eigenvalues +2,−2 viewed in the evident way as weights.

They generate the root lattice R ⊂ P with P/R ∼= Z/2Z. The positive root is +2 and
{
n+ = span of positive root vector X

n− = span of negative root vector Y.

For the Borel subgroup B =
{(

a 0
c a−1

)}
, which is the stability group of [ 0

1 ] ∈ P1 corre-

sponding to the origin 0 ∈ ∆, the Lie algebra

b = h⊕ n−.

We note that the roots are purely imaginary on the Lie algebra

t =

{(
iθ 0

0 −iθ

)
: θ ∈ R

}

of the maximal torus T ⊂ SU(1, 1)R.
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As is customary notation in representation theory we set

ρ =
1

2
(Σ positive roots) = 1.

The Weyl group W acting on h is generated by the reflections in the hyperplanes defined

by roots; in this case it is just ± id. One usually draws the picture of it ⊂ h with the

roots and weights identified. In this case it is 2πit = R, P = Z, R = 2Z.

−2 −1 0 1 2

• • • • •
w

�� • • • •

where “2” is the positive root and W is generated by the identity and w where w(x) =

−x.

Given a representation

r : SL2(C)→ AutE

where E is a complex vector space, the weights are the simultaneous eigenvalues of

r(h). In this case they are the eigenvalues of r(H). The standard representation is

given by E = C2. The weight vectors are the eigenvectors for r(h). For the standard

representation they are

e+ =

(
1

0

)
, e− =

(
0

1

)

with weights ±1.

Any irreducible representation of SL2(C) is isomorphic to Sn =: SymnE for n =

0, 1, 2, . . . . The picture of Sn is

X X

• "" •bb • • • • • • !! •bb

Y Y

−n −n+ 2 n− 2 n

where the dots represent the 1-dimensional weight spaces with weights −n,−n+ 2, . . . ,

n− 2, n. The actions on X and Y are as indicated. If we make the identifications{
z0↔ e+

z1↔ e−

then

• Sn = homogeneous polynomials F (z0, z1) of degree n;

• X = ∂z1 , Y = ∂z0 ;

• zn0 is the highest weight vector.
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As SL2(C)-modules we have

H0(OP1(n)) ∼= Sn.

Geometrically, since OP1(n) = OP1(−n)∗ we see that on each line L in C2, F (z0, z0)

restricts to a form that is homogeneous of degree n. Thus

F
∣∣
L
∈ Symn L∗ = fibre of OP1(n) at L.

As a homogeneous line bundle

OP1(n) = SL2(C)×B C

where
(
a 0
b a−1

)
∈ B acts on C by the character an. With our convention above, the

differential of this character, viewed as a linear form on h, is the weight n.

With the notation to be used later we have

OP1(n) = Ln

where the subscript on L denotes the weight which is the differential of the character

that defines the homogeneous line bundle.

By Kodaira-Serre duality

H1
(
OP1(−k − 2)

)∗ ∼= H0(ωP1(k)),

and using the isomorphism of SL2(C)-homogeneous line bundles

ωP1
∼= OP1(−2)

H1
(
OP1(−k − 2)

)∗ ∼= H0
(
OP1(k)

) ∼= Sk.

Penrose transform for P1

One of the main aspects of these lectures will be to use the method of Eastwood-

Gindikin-Wong [EGW] to represent higher degree sheaf cohomology by global, holomor-

phic data. We will now illustrate this for H1(OP1(−k − 2)).

For this we set (the notation will be explained later in the lectures)

W̌ = P1 × P1\(diagonal).

Using homogeneous coordinates z = [ z0z1 ] we have

W̌ = {(z, w) ∈ P1 × P1 : z0w1 − z1w0 6= 0}.
For simplicity of notation we identify Λ2C2 = C and then have z ∧ w = z0w1 − z1w0.

For calculations it is, as usual, convenient to work upstairs in the open set U in C2×C2

lying over W̌ and keep track of the bi-homogeneity of a function defined in U .

The correspondence space W̌ has the properties

(A) W̌ is a Stein manifold (it is an affine algebraic variety);
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(B) the fibres of the projection W̌
π−→ P1 on the first factor are contractible (they are

just copies of C).

Under these conditions [EGW] showed that there is a natural isomorphism

(∗) Hq(OP1(m)) ∼= Hq
DR

(
Γ(W̌,Ω•π(m)); dπ

)
.

As we will now briefly explain, the RHS of (∗) is a global, holomorphic object. The

detailed explanation will be given in Lecture 7. We will explain “in coordinates” what

the various terms mean.

• Ωq
π = sheaf of relative differentials on W̌;

• (Ω•π, dπ) is the complex · · · → Ωq
π

dπ−→ Ωq+1
π → . . . ;

• Ω•π(m) = Ω•π ⊗OW̌
π∗OP1(m) where π∗OP1(m) is the pullback bundle;

• Hq
DR

(
Γ(W̌,Ω•π(m)); dπ

)
is the de Rham cohomology arising from the global sec-

tions of the above complex.

The relative forms are defined by

Ωq
π = Ωq

W̌
/image

{
π∗Ω1

P1 ⊗ Ωq−1

W̌
→ Ωq

W̌

}
,

and dπ is induced by the usual exterior differential d. We think of π∗OP1(m)→ W̌ as a

vector bundle whose transition functions are constant on the fibres of π, and then dπ is

well defined on sections of π∗OP1(m).

The pullback sheaf π−1OP1(m) is the sheaf over W̌ whose sections over an open set

Z ⊂ W̌ are the sections of OP1(m) over π(Z). We have an inclusion

π−1OP1(m) ↪→ π∗OP1(m)

where the subsheaf π−1OP1(m) is given by the sections of the bundle π∗OP1(m) that are

constant on the fibres of W̌→ P1.

In coordinates (z, w) = (z0, z1;w0, w1) on U , Ω•π means that we mod out by dz0 and

dz1. Setting

Ψ = w1dw0 − w0dw1

we have

• Γ
(
W̌, π−1OP1(m)

)
=

{
F (z, w) holomorphic in U and homogeneous

of degree m in z and of degree zero in w

}
;

• dπF (z, w) = Fw0(z, w)dw0 + Fw1(z, w)dw1.4

Using Euler’s relation

w0Fw0 + w1Fw1 = 0

4This equation is true for an F (z, w) with any bi-homogeneity in z, w.
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when F (z, w) is homogenous of degree zero in w we obtain

dπF (z, w) =

(
Fw0

w1

)
Ψ = −

(
Fw1

w0

)
Ψ.

For the reasons to be seen below, it is now convenient to set m = −k − 2. Then

• Γ(W̌,Ω1
π(−k − 2)) =

{
G(z,w)Ψ
(z∧w)k+2 where G(z, w) is homogeneous of

degree zero in z and of degree k in w

}
.

Theorem: Every class in H1
DR

(
Γ(W̌,Ω•π(−k − 2))

)
has a unique representative of the

form
H(w)Ψ

(z ∧ w)k+2

where H(w) is a homogeneous polynomial of degree k.

Discussion: Given G(z,w)Ψ
(z∧w)k+2 as above, we have to show that the equation

G(z, w)Ψ

(z ∧ w)k+2
= dπ

(
F (z, w)

(z ∧ w)k+2

)
+

H(w)Ψ

(z ∧ w)k+2
,

where F has degree zero in z and degree k+ 2 in w and H(w) is as above, has a unique

solution. Using Euler’s relation w0Fw0 + w1Fw1 = (k + 2)F we find that

dπ

(
F (z, w)

(z ∧ w)k+2

)
=
z0Fw0(z, w) + z1Fw1(z, w)Ψ

(z ∧ w)k+3
.

Then the equation to be solved is, after a calculation,

z0Fw0(z, w) + z1Fw1(z, w) = (z0w1 − z1w0)G(z, w) + (z0w1 − z1w0)H(w).

We shall first show that a solution is unique; i.e.,

z0Fw0 + z1Fw1 = (z0w1 − z1w0)H(w)⇒ H(w) = 0.

Taking the forms that are homogeneous of degree one in z0, z1 gives
{
Fw0 = w1H

Fw1 = −w0H.

Applying ∂w1 to the first and ∂w0 to the second leads to

H + w1Hw1 = −H − w0Hw0 .

Euler’s relation then gives that H(w) is homogeneous of degree −2, which is a contra-

diction.5

5One may wonder why the degree −2 appears, when all that is needed is degree −1. The philosophical
reason is that H1(OP1(−1)) = (0).
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It is an interesting exercise to directly show by a calculation the existence of a solution

to be above equation. On general grounds we know that this must be so because the

map

(∗∗) H(w) −→ H(w)Ψ

(z ∧ w)k+2

has been shown to be injective and dimH1
(
OP1(−k − 2)

)
= k + 1 = dimSk.

The map (∗∗) has the following interpretation: Let P1
z and P1

w be P1 with coordinates

z and w respectively. Then we have a correspondence diagram

W̌
πw
��					 πz

��55555

P1
w P1

z.

Setting OW̌(a, b) = π∗zOP1
z
(a) � π∗wOP1

w
(b) and using the theorem of EGW we obtain a

diagram

H0
(
OP1

w
(k)
) P //_____________ H1

(
OP1

z
(k − 2)

)

∼ = ∼ =

H0
DR

(
Γ(W̌,Ω•πw(0, k)); dπw

) Ψ

(z∧w)k+2
// H1

DR

(
Γ(W̌,Ω•πz(−k − 2, 0)); dπz

)

where the isomorphism

H0
(
OP1

w
(k)
) P−→ H1

(
OP1

z
(−k − 2)

)

is termed a Penrose transform. Letting SL2(C) act on W̌ ⊂ P1
w × P1

z diagonally in the

above correspondence diagram we see that P is an isomorphism of SL2(C)-modules.

In fact, it is a geometric way of realizing in this special case the isomorphism in the

Borel-Weil-Bott (BWB) theorem. The general discussion of the BWB will be given in the

appendices to Lectures 5 and 7, where the special role of the weight ρ and transformation

w(µ+ ρ)− ρ, where µ is a weight, will be explained.

The line bundle L−k−2 has weight −k − 2, and for k ≥ 0

−k − 2︸ ︷︷ ︸+ρ = −k − 1︸ ︷︷ ︸
is regular in the sense that its value on every root vector is non-zero. Moreover

#{positive root vectors X with 〈−k − 1, X〉 < 0} = 1.

For w ∈ W as above

w(−k − 1)− ρ = k + 1− 1 = k.
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The BWB states that for k = 0, Hq(OP1(−k − 2)) 6= 0 only for q = 1, and that this

group is the irreducible SL2(C) module with highest weight w(−k− 2 + ρ)− ρ = k. The

Penrose transform P realizes this identification.

Penrose transform for elliptic curves

The mechanism of the EGW theorem and resulting Penrose transform will be a basic

tool in these lectures. We now illustrate it for compact Riemann surfaces of genus g = 1

and then shall do the same for genus g > 1.

For reasons to be explained, and in part deriving from the work of Carayol that will

be discussed in the last lecture, it is convenient to take our complex torus

E ′ = C/OF

where F is a quadratic imaginary number field and OF is the ring of integers in F; e.g.,

F = Q(
√
−d).6 We set

W = C× C with coordinates (z′, z′′)

and consider the diagram

OF\W
π′

��������
π′′

��777777

E ′ E ′′

where α ∈ OF acts by α in the first factor and by −α in the second. It may be easily

checked that OF\W is Stein and the fibres of π′, π′′ are contractible (they are just C’s).

Thus the EGW theorem applies to the above diagram.

We will describe line bundles L′r → E ′ and L′′r → E ′′, where r is a positive integer,

and then shall define the Penrose transform to give an isomorphism

H0(E ′, L′r)
∼−→ H1(E ′′, L′′−r).

For this we let β be a complex number with
{
β + β = |α|2
Im β = β0 > 0.

Sections of L′r → E ′ are given by entire holomorphic functions θ′r(z
′) where

θ′r(z
′ + α) = θ′r(z

′) exp

(
2πir

β0

(
αz′ +

|α|2
2

))
.

6We apologize for the use of F to denote a number field rather than the more standard notation for
a finite field or its algebraic closure. The traditional symbols for number fields have been taken up by
more commonly used notations in these lectures.
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These are theta functions viewed as sections of L′r → E ′ where

L′r = C×OF C

with the equivalence relation

(z′, ξ) ∼
(
z′ + α, exp

(
2πir

β0

(
αz′ +

|α|2
2

)
ξ

))
.

Then

p(θ′)(z′, z′′) =: θ′(z′) exp

(
2πir

β0

z′z′′
)
dz′

gives a relative differential for π′′ : OF\W→ E ′′, and the functional equation

p(θ′)(z′ + α, z′′ − α) = p(θ′)(z′, z′′) exp

(
2πir

β0

(αz′′ + β)

)

shows that p(θ′) has values in π′′∗(L′′−r). Thus

p(θ′) ∈ H1
DR

(
Γ(OF\W,Ω•π′′(L

′′
−r)); dπ

′′) ∼= H1(E ′′, L′′−r)

and defines the Penrose transform alluded to above.

The relative 1-form exp
(

2πir
β0
z′z′′

)
dz′ plays the role of the form ω in the P1-case. As

suggested above the notion has been chosen to align with Carayol’s work which will be

discussed in the last lecture.

Penrose transforms for curves of higher genus

We let Γ ⊂ SL2(R) be a co-compact, discrete group and set

X ′ = Γ\H, X = Γ\H.
Here we take τ ′ as coordinate in H and τ as coordinate in H. The perhaps mysterious

appearance of H and H will be “explained” when in Lecture 6 we discuss cycle spaces

associated to flag domains GR/T where G is of Hermitian type. We set W = H ×H

and consider the diagram

Γ\W
π′

��






π

��444444

X ′ X.

It is again the case that Γ\W is Stein and the fibres of π, π′ are contractible. The Penrose

transform will be an isomorphism

H0(X ′, L′k)→ H1(X,Lk−2).
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In order to have L′k → X ′ be a positive line bundle we must have k = −1,−2, . . . . Then

Lk−2 = Lk ⊗ ωX
where Lk → X is negative since X = Γ\H.

We let f(τ ′) ∈ H0(X ′, L′k) be a modular form of weight −k, given by a holomorphic

function on H satisfying the usual functional equation under the action of Γ. We then

set

p(f)(τ ′, τ) = f(τ ′)

(
τ − τ ′

2i

)k−2

dτ ′.

This is a relative differential for Γ\W → X, and the transformation formula under

γ = ( a bc d ) ∈ Γ given by

γ∗
((

τ − τ ′
2i

)k−2

dτ ′
)

= (cτ + d)2−k(cτ ′ + d)−k
(
τ − τ ′

2i

)k−2

dτ ′

shows that we obtain a class

p(f) ∈ H1
DR

(
Γ
(
Γ\W,Ω•π(π∗Lk−2)

)
; dπ
)
∼= H1(X,Lk−2)

(apologies for the double appearance of Γ). It is a nice exercise to show that p(f) 6= 0,

and since

dimH0(X ′, L′k) = dimH1(X,Lk−2)

we see that the resulting map H0(X ′, L′k)→ H1(X,Lk−2) is an isomorphism.

Orbit structure for P1 The main groups we shall consider acting on P1 are

• GC = SL2(C);

• K = SO(2) and its complexification KC;

• GR = SL2(R) = real form of GC.

The compact real form Gc = SU(2) also acts on P1 but in these lectures we shall make

only occasional use of it. The complex group GC acts transitively on P1, but KC and GR

do not act transitively and their orbit structure will be of interest. The central point is

Matsuki duality, which is

the orbits of KC and GR are in a 1-1 correspondence.

We have already mentioned this in Lecture 1; here we formulate it in a manner that

suggests the general statement. The correspondence is defined as follows: Let z ∈ P1

and GR · z,KC · z the corresponding orbits. Then

GR ·z and KC ·z are dual exactly when their intersection consists of one

closed K orbit.
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The following table illustrates this duality.

GR-orbits KC-orbits

open

GR orbits

{
H

H

i

−i

}
closed

KC orbits

closed

GR orbit

{
R ∪ {0} P1\{i,−i}

} open

KC orbit

〈◦〉
We will now informally describe the content of the remaining lectures in this series.

The general objective is to discuss aspects of the relationship between Hodge theory and

representation theory, especially those that may be described using complex geometry.

The specific objective is to discuss and prove special cases of recent results of Carayol, and

some extensions of his work, that open up new perspectives on this relationship and may

have the possiblity to introduce new aspects into arithmetic automorphic representation

theory that are thus far inaccessible by the traditional approaches through Shimura

varieties. Whether or not this turns out to be successful, Carayol’s work is a beautiful

story in complex geometry.

Lecture 3 will introduce and illustrate the basic terms and concepts in Hodge theory.

We emphasize that we will not take up the extensive and central topic of the Hodge

theory of algebraic varieties. Rather our emphasis is on the Hodge structures as objects

of interest in their own right, especially as they relate to representation theory and

complex geometry.

The basic symmetry groups of Hodge theory are Mumford-Tate groups, and associated

to them are basic objects of complex geometry, the Mumford-Tate domains, consisting of

the set of polarized Hodge structures whose generic member has a given Mumford-Tate

group G. In Lecture 4 we will describe which G’s can occur as a Mumford-Tate group,

and in how many ways this can happen. The fundamental concept here is a Hodge

representation, consisting roughly of a character and a co-character. As homogeneous

complex manifolds the corresponding Mumford-Tate domains depend only on the co-

character. This lecture will explain and illustrate this.

Lecture 5 is concerned with discrete series (DS) and n-cohomology. The central point

is the realization of the DS’s via complex geometry, specifically the L2-cohomology of

holomorphic line bundles over flag domains.7 The latter may be realized, in multiple

7Another realization due to Atiyah and Schmid [AS], is via L2 solutions to the Dirac equation on
the associated Riemannian symmetric spaces. This realization has many advantageous aspects, but
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ways, as Mumford-Tate domains and this will be seen to be an important aspect in

Carayol’s work. The realization described above is largely the work of Schmid. An

important ingredient is this analysis and the description of the L2-cohomology groups

via Lie algebra cohomology, in this case the so-called n-cohomology. We will discuss

these latter groups in some detail as they will play an important role in the material of

the later lectures and the work of Carayol.

Lectures 6 and 7 will take up the basic construction and results in the geometry of

homogeneous complex manifolds that will play a central role in the remaining lectures,

as well as being a very interesting topic in their own right. The main point is that

associated to a flag domain there are complex manifolds that capture aspects of the

complex geometry and that provide the basic tools for understanding the cohomology of

homogeneous line bundles over flag domains. One of these, the cycle spaces, are classical

and have been the subject of extensive study over the years, culminating in the recent

monograph [FHW]. The other tool, the correspondence spaces, are of more recent vintage

and in several ways may be the object that best interpolates between flag domains and

the various associated spaces. Their basic property of universality is closely related to

Matsuki duality which will be introduced and illustrated in these two lectures.

Lectures 8 and 9 will introduce and study the Penrose transforms, which among other

things allow one to relate cohomologies on different flag domains and on their quotients

by arithmetic groups. The main specific results here are the analysis of Penrose trans-

forms in the case when G = U(2, 1) studied by Carayol in [C1], [C2], [C3] and when

G = Sp(4), which is a new case that is discussed in [GGK2] and in a further work

in preparation. Using the Penrose transform to relate classical automorphic forms to

non-classical automorphic cohomology, we discuss how the cup-products of the images

of Penrose transform reach the automorphic cohomology groups associated to totally de-

generate limits of discrete series (TDLDS), which are the central representation-theoretic

objects of interest in these lectures. This result for U(2, 1) is due to Carayol and for

Sp(4) will appear in [GGK2] and the sequel to that work.

In the last Lecture 10 we discuss some topics that were not covered earlier and some

open issues that arise from the material in the lectures. Particularly noteworthy in the

topics not covered is the whole issue of the study of cuspidal automorphic cohomology

at boundary components in the Kato-Usui completeion or partial compactifications of

quotients of of Mumford-Tate domains by arithmetic groups. This seems to be a very

interesting area for further work (cf. [KP]).

since in these lectures our primary interest is in the complex geometric aspects of Hodge theory and
representation theory we will not discuss it here.



32

Lecture 3

Polarized Hodge structures and Mumford-Tate groups and domains

In general we will follow the terminology and notation from [GGK1]. An exception is

that the Mumford-Tate groups were denoted by Mϕ, whereas here they will be denoted

by Gϕ.

In this lecture we will introduce and explain the following terms:

• polarized Hodge structures (PHS);

• period domains and their compact duals;8

• Hodge bundles;

• Mumford-Tate groups;9

• Mumford-Tate domains and their compact duals;

• CM polarized Hodge structures.

We will also introduce three of the basic examples for this lecture series.

We begin with a general linear algebra fact. We define the real Lie group

S = ResC/R Gm
∼= C∗ = R>0 × S1

where C∗ = {z = reiθ} is considered as a real Lie group. If V is a rational vector space

with VR = V ⊗Q R and we have a representation (a homomorphism of real Lie groups)

ϕ̃ : S→ Aut(VR)

satisfying ϕ̃ : Q∗ → Aut(V ), then we have

(i) V = ⊕V n, ϕ̃(r) = rn on V n (weight decomposition);

(ii) V n
C = ⊕

p+q=n
V p,q, V q,p = V p,q ϕ(z) = zpz̄q on V p,q.

The V n ⊂ V are subspaces defined over Q, and the V p,q ⊂ V n
C are the eigenspaces for

the action of ϕ̃(S) on V n
C . In (i) n is the weight, and in (ii) (p, q) is the type.

There are three equivalent definitions of a Hodge structure of weight n.

Definitions: (I) VC ⊕
p+q=n

V p,q, V q,p = V p,q (Hodge decomposition);

(II) (0) ⊂ F n ⊂ · · · ⊂ F n−1 ⊂ F n = VC (Hodge filtration) satisfying for each p

F p ⊕ F n−p+1 ∼−→ C;

(III) ϕ̃ : S→ AutVR of weight n.

8Jim Carlson and Aroldo Kaplan’s lectures will discuss the basic properties of these.
9Mark Green’s lecture will discuss the basic properties of algebraic groups and Lie groups that will

be used. A basic reference for this material is [K1].
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The equivalence of the first two definitions is

F p = ⊕
p′=p

V p′,q′ I⇒ II

V p,q = F p ∩ F q
II⇒ I.

We have seen above that the V p,q are the eigenspaces of ϕ̃(S) acting on VC, which gives

I⇔ III.

We shall primarily use the third definition and shall denote a Hodge structure by (V, ϕ̃).

In general, without specifying the weight a Hodge structure is given by V and ϕ̃ : S→
Aut(VR) as above. The weight summands are then Hodge structures of pure weight n.

Unless otherwise stated we shall assume that Hodge structures are of pure weight.

We define the Weil operator C on VC by C(v) = ϕ̃(i)v.

Hodge structures admit the usual operations

⊕, ⊗, Hom

of linear algebra. A sub-Hodge structure is given by a linear subspace V ′ ⊂ V with

ϕ̃(S)(V ′R) ⊆ V ′R. An important property is that morphisms are strict: Given

ψ : V → V ′

where V, V ′ have weights r, r′ = n+ r (r may be negative) and

ψ(F p) ⊆ F
′p+r,

which is equivalent to

ψ(V p,q) ⊆ V
′p+r,q+r,

we have the strictness property

ψ(VC) ∩ F ′p+r = ψ(F p).

That is, anything in the image of ψ that lies in F
′p+r already comes from something in

F p. The property of strictness implies that Hodge structures form an abelian category.

Hodge’s theorem: For X a compact Kähler manifold the cohomology group Hn(X,Q)

has a Hodge structure of weight n.10

As remarked in the first lecture, the decomposition of the C∞ differential forms
{
An(X) = ⊕

p+q=n
Ap,q(X)

Aq,p(X) = Ap,q(X)

10This theorem will be discussed in the lectures of Eduardo Cattani and Aroldo Kaplan. It opens
the door to the rich, extensive and very active field of the Hodge theory of algebraic varieties. A recent
treatment of this subject appears in [ICTP].
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where

Ap,q(X) =

{ ∑
{
|I|=p
|J |=q

fIJ(z, z̄)dzI ∧ dz̄J
}
,

and for I = (i1, . . . , ip) we have dzI = dzi1 ∧ · · · ∧ dzip , induces via de Rham’s theorem

the Hodge decomposition on cohomology.

An example of a different sort is given by

Tate Hodge structure Q(1): Here the Q-vector space is 2πiQ, the weight n = −2

and the Hodge type is (−1,−1).

One sets Q(n) = Q(1)⊗n and V (n) = V ⊗Q Q(n) (Tate twist). Then

H1(C∗,Q) ∼= Q(−1) with generator
dz

z

where for γ = {|z| = 1} ∈ H1(C∗,Q)

γ →
∫

γ

dz

z

gives an isomorphism H1(C∗,Q) ∼= Q(1). In general, for Y ⊂ X a smooth hypersurface

and

Hn(Y,Q)→ Hn+2(X,Q)

the Gysin map, defined to be the Poincaré dual of the map on homology induced by

the inclusion and which is dual to the residue map (where the 2πi comes in), one has a

morphism of Hodge structures of the same weight n+ 2

Hn(Y,Q(−1))→ Hn+2(X,Q).

This is useful for keeping track of weights in formal Hodge theory.

For these lectures the main definition is the following

Definition: A polarized Hodge structure (V,Q, ϕ) (PHS) is given by a Hodge struc-

ture ϕ : S→ Aut(VR) of weight n together with a non-degnerate form

Q : V ⊗ V → Q, Q(v, v′) = (−1)nQ(v′, v)

satisfying the Hodge-Riemann bilinear relations

(I) Q(F p, F n−p+1) = 0

(II) Q(v, Cv̄) > 0, 0 6= v ∈ VC.
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These are equivalent to the more classical versions

Q(V p,q, V p′,q′) = 0, p′ 6= n− p
ip−qQ(V p,q, V

p,q
) > 0.

A sub-Hodge structure V ′ ⊂ V of a polarized Hodge structure is polarized by the

restriction

Q′ = Q
∣∣
V ′
,

of Q′ to V ′, and setting V ′′ = V
′⊥, Q′′ = Q

∣∣
V ′′

(V,Q) = (V ′, Q′)⊕ (V ′′, Q′′)

is a direct sum of PHS’s. As a consequence, PHS’s form a semi-simple abelian category.

For polarized Hodge structures we set ϕ = ϕ̃
∣∣
S1 and have the

Propostion: ϕ : S1 → Aut(VR, Q).

Proof. Q ∈ V ∗ ⊗ V ∗ and by Hodge-Riemann (I) it has Hodge type (−1,−1). �

In general for a Hodge structure of even weight n = 2m we define the Hodge classes

Hgϕ(V ) to be those of Hodge type (m,m). We will return later to the resulting algebra

of Hodge tensors

Hg•,•(V ) = ⊕
k≡l(2)

Hg(V ⊗
k ⊗ V ∗⊗l).

An important observation is

Given a polarized Hodge structure (V,Q, ϕ), Hom(V, V ) = V ∗ ⊗ V has

a polarized Hodge structure. Moreover, the Lie algebra

g = HomQ(V, V ) ⊂ Hom(V, V )

is a sub-Hodge structure.

For the Hodge decomposition we have

gC = ⊕gi,−i

where

gi,−i =
{
X ∈ gC : X(V p,q) ⊆ V p+i,q−i} .

We note that [
gi,−i, gj,−j

]
= gi+j,−(i+j).

The case of Shimura varieties [Ke], which included PHS’s of weight n = 1, is when

gi,−i = 0 unless i = 0,±1.
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Period domains and their compact duals11

For a Hodge structure (V, ϕ̃) of weight n we set
{
hp,q = dimV p,q (= Hodge numbers)

fp = hn,0 + · · ·+ hp,n−p.

Definition: (i) A period domain D is the set of PHS’s (V,Q, ϕ) with given Hodge

numbers hp,q. (ii) The compact dual Ď is the set of filtrations F • of VC with dimF p = fp

and satisfying

Q(F p, F n−p+1) = 0.

The group GR =: Aut(VR, Q) is a real, simple Lie group that acts transitively on D.

The isotropy group H of a reference PHS (V,Q, ϕ0) preserves a direct sum of definite

Hermitian forms, and therefore it is a compact subgroup of GR that contains a compact

maximal torus T . The following exercises give details.

Exercise: D = {ϕ : S1 → GR : ϕ = g−1ϕ0g for some g ∈ GR}. That is, D is the set of

GR-conjugacy classes of the circle ϕ0 : S1 → GR.

It follows that H = Zϕ0
(GR) is the centralizer in GR of the circle ϕ0(S1). The centralizer

of a circle in a real Lie group always contains a Cartan subgroup, which is isomorphic to

the identity component of a product of R∗’s and S1’s. Since in our case Zϕ
0
(GR) ⊂ H is

compact only S1’s occur.

Exercise: For n = 2m+ 1 odd

H ∼= U(h2m+1,0)× · · · × U(hm+1,m)

is a product of unitary groups, and for n = 2m even with k = h2m,0 + h2m−2,2 + · · · and

l = h2m−1,1 + h2m−3,3 + · · ·+
H ∼= U(h2m,0)× · · · × U(hm+1,m−1)× O(hm,m)

is a product of unitary groups and over orthogonal group.12

The group GC = Aut(VC, Q) is a complex, simple Lie group that acts transitively on

Ď. The subgroup P in GC that stabilizes a F •0 is a parabolic subgroup with

H = GR ∩ P.
Usually we choose F •0 to be F •ϕ

0
where ϕ0 ∈ D is a reference point.

Since the second Hodge-Riemann bilinear relations are strict inequalities, the period

domain is an open orbit of GR acting on Ď. The orbit structure of GR’s acting on Ď’s

will be one theme in Lectures 6 and 7.

11These will be discussed more fully in the lectures of Jim Carlson and Aroldo Kaplan.
12It is frequently convenient in the even weight case to take V to be oriented, so that GR is connected.
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Exercise: For n = 1 show that

D ∼= Hg

where dimV = 2g and Hg, Siegel’s generalized upper half space, is = {Z ∈ Mg×g : Z =
tZ, ImZ > 0}. For the PHS associated to H1(X,Q) where X is a compact Riemann

surface of genus, the associated Z is the classical period matrix of X. (Here we use Z
instead of Q.)

Exercise: For n = 2 and h2,0 = h, h1,1 = 1 show that

Ď = {E ∈ Gr(h,C2h+1) : Q(E,E) = 0},
and that GR acting on Ď has two open orbits, one of which is the period domain. This

is the case that arises in the period matrices of the 2nd primitive cohomology of smooth

algebraic surfaces.

Hodge bundles: Over Ď these are the GC-homogenous vector bundles

Fp → Ď

whose fibre at a given point F • is F p. Restricting to D ⊂ Ď we have

V p,q =: Fp/Fp+1.

These are homogeneous vector bundles for the action of GR. Importantly, they are

Hermitian vector bundles with GR-invariant Hermitian metrics given in each fibre by

the second of the Hodge-Riemann bilinear relations. Their general differential geometric

properties will be discussed in the lectures by Jim Carlson. In Lecture 5 we will discuss

the special case of homogeneous line bundles.

At a reference point ϕ ∈ D with the PHS on g described above, we have for the Lie

algebras hC of HC and P

hC = g0,0

p = ⊕
i=0

gi,−i

and the holomorphic tangent space

TϕD ∼= gC/p ∼= ⊕
i<0

gi,−i.

We shall sometimes write gϕ and gi,−iϕ when we wish to emphasize the circle ϕ : S1 →
GR.

The real tangent space is the GR-homogeneous vector bundle whose fibre of Tϕ,RD at

the reference point ϕ is (
⊕
i 6=0

gi,−iϕ

)

R
.
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Setting T 1,0
ϕ D = TϕD, we have

TR,ϕD ⊗ C = T 1,0
ϕ D ⊕ T 0,1

ϕ D

where T 0,1
ϕ D = T 1,0

ϕ D. This gives a GR-invariant almost complex structure on D, which

is integrable by the bracket relations given previously. The Hodge-Riemann bilinear

relations for gR induce a GR-invariant Hermitian metric on D.

Mumford-Tate groups: These are the basic symmetry groups of Hodge theory, en-

coding both the Q-structure on V and the complex structure (Hodge decomposition)

on VC.

Definitions: (i) Given a Hodge structure (V, ϕ̃) the Mumford-Tate group is the

smallest Q-algebraic subgroup Gϕ̃ ⊂ GL(V ) such that

ϕ̃(S) ⊂ Gϕ̃,R.

(ii) Given a PHS (V,Q, ϕ) the Mumford-Tate group is the smallest Q algebraic

subgroup Gϕ ⊂ Aut(V,Q) such that

ϕ(S1) ⊂ Gϕ,R.

It may be shown, and we will explain why this is so, that

Gϕ = Gϕ̃ ∩ Aut(V,Q).

It is also that case that

Gϕ̃ and Gϕ are reductive, Q-algebraic groups.

For Gϕ we may see this as follows: If we have a Gϕ-invariant subspace V ′ ⊂ V , then

since ϕ(S1) ⊂ Gϕ,R there is an induced action ϕ′ of ϕ(S1) on V ′R and therefore (V ′, ϕ′) is

a sub-Hodge structure. We have observed earlier that it is polarized by Q′ = Q
∣∣
V ′

and

that setting (V ′′, Q′′, ϕ′′) = (V ′, Q′, ϕ′)⊥,

(V,Q, ϕ) = (V ′, Q′, ϕ′)⊕ (V ′′, Q′′, ϕ′′)

is a direct sum of PHS’s. Then by minimality and since ϕ(S1) ⊂ Gϕ′,R × Gϕ′′,R we

have that Gϕ ⊂ Gϕ′ ×Gϕ′′ .
13 In particular, Gϕ preserves the direct sum decomposition

V = V ′ ⊕ V ′′.
We note that

gϕ is a sub-Hodge structure of HomQ(V, V ).

In case Gϕ is semi-simple, the polarizing form will, up to scalings, be induced by the

Cartan-Killing form of gϕ.

The extreme cases are

13This inclusion is in general strict.
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• ϕ ∈ D is a generic point ⇒ Gϕ = Aut(V,Q);

• Gϕ ⊂ Hϕ = stability group of (V,Q, ϕ)⇒ Gϕ̃ is a Q-algebraic torus.

The second statement is a result whose proof will be given below just before the next

section. When Gϕ̃ is an algebraic torus, (V, ϕ̃) is by definition a complex multiplication

(CM) Hodge structure. If (V, ϕ̃) is simple, i.e., it contains no non-trivial proper sub-

Hodge structures, then Homϕ̃(V, V ) is a division algebra acting on (V, ϕ̃). We shall

discuss more about CM PHS’s below.

Example: Let Xτ = C/Z + τZ be as in the first lecture. Then

H1(Xτ ,Q) is CM ⇔ τ is a quadratic imaginary number.

Then L = Q(τ) is a number field and Gϕ̃ = L∗ is the group of units with Gϕ being those

of norm one.

Since Gϕ is a Q-algebraic group it is natural to ask:

What are the Q-algebraic equations that define Gϕ ⊂ Aut(V,Q)?

This question has a very nice answer as follows. Recall the algebra of Hodge tensors

Hg•,•ϕ ⊂ ⊕
k≡l(2)

V ⊗
k ⊗ V ∗⊗l .

We have noted that Gϕ fixes Hg•,•ϕ .

Theorem: Gϕ is equal to the subgroup Fix(Hg•,•ϕ ) that fixes the algebra of Hodge tensors.

The reverse inclusion

Fix(Hg•,•ϕ ) ⊆ Gϕ

is based on a theorem of Chevally:

A linear reductive Q-algebraic group is defined by stabilizing a line L ⊂
⊕
k,l

(V ⊗
k ⊗ V ∗⊗l).

The basic idea is that if L ⊂ V ⊗
k ⊗ V ∗⊗l then since ϕ(S1) ⊂ Gϕ,R we have that ϕ(S1)

acts trivially on LC. Thus the weight l − k = 2m and LC = Lm,mC , which says that

L ⊂ Hgk,lϕ .

The above characterization of Gϕ holds in a suitably modified form for Gϕ̃. The

modification is that on Hodge classes of weight n, ϕ̃(re) acts by rn. Thus the condition

of fixing tensors must be replaced by scaling them, and when this is done the above result

extends to general Hodge structures. In particular, given (V, ϕ̃) and a polarization Q,

ϕ̃(reiθ)·Q = r−2Q. Thus for Hodge structures that are polarizable the difference between

Gϕ̃ and Gϕ is just in the scaling action.
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The theorem “explains” why for a direct sum (V, ϕ) = (V ′, ϕ′) + (V ′′, ϕ′′) of Hodge

structures, the inclusion

Gϕ ⊂ Gϕ′ ×Gϕ′′

is in general strict. The inclusion holds because the direct sum has at least as many

Hodge tensors as those that come from the two factors. It will be strict if there are

additional Hodge tensors that relate (V ′, ϕ′) and (V ′′, ϕ′′).

Example: For the PHS (gϕ, B, ϕ) where B is the Cartan-Killing form, both B and the

bracket [ , ] are Hodge tensors. They essentially generate the algebra of Hodge tensors

in a manner to be explained below.

Proof of Gϕ ⊂ Hϕ ⇒ Gϕ̃ is an algebraic torus. We first note that End(V, ϕ), the endo-

morphisms of V that commute with the action of ϕ(S1) on VR, is just the space Hg1,1

of Hodge tensors in V ⊗ V ∗. Next, the assumption Gϕ ⊂ Hϕ, i.e. that Gϕ preserves the

Hodge structure (V, ϕ), implies that

Gϕ ⊂ End(V, ϕ).

Then Gϕ = Fix(Hg•,•ϕ ) says that Gϕ is commutative, which is what was to be shown. �

Mumford-Tate domains and their compact duals

Definition: Given a PHS (V,Q, ϕ) the associated Mumford-Tate domain is Dϕ, the

Gϕ,R-orbit of the corresponding point in the period domain.

Thus for Hϕ ⊂ Gϕ,R the stability group of (V,Q, ϕ) the quotient space

Dϕ = Gϕ,R/Hϕ

is a homogeneous complex manifold. As a set

Dϕ = {g−1ϕg : g ∈ Gϕ,R}

is the set of Gϕ,R-conjugacy classes of ϕ : S1 → Gϕ,R. From this we may infer that

Hϕ = ZGϕ,R(ϕ(S1)) is the centralizer of ϕ(S1) in Gϕ,R.

Since Hϕ is compact we have that

Hϕ contains a compact maximal torus T.

From general properties of Q-algebraic groups we obtain the result

A Mumford-Tate group contains an anisotropic, Q-maximal torus.
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One may think of a split Q-maximal torus in a reductive Q-algebraic group as a product

(Q∗)m × (S(Q))n where

S(Q) =

{(
a b

−b a

)
: a, b ∈ Q and a2 + b2 = 1

}
.

Anisotropic means that m = 0.

Among reductive Q-algebraic groups this is a very special property. For example,

GLn(Q), SLn(Q) for n = 3 are not Mumford-Tate groups. It is a much more subtle

matter to rule out other simple groups as being Mumford-Tate groups.

Example (continued): Given a PHS (V,Q, ϕ) there is an associated PHS (gϕ, B, ϕ).

It defines a point Adϕ in the corresponding period domain DAd. In case Gϕ is simple it

may be shown that the Mumford-Tate domain DAd,ϕ ⊂ DAd is the connected component

containing (gϕ, B, ϕ) of the variety defined by imposing the condition that B and [ , ]

are Hodge tensors. The essential point is the adjoint group

GC,a = Aut0(gC, [ , ])

is the identity component of the subgroup of Aut(gC) that preserves [ , ] (cf. [K1]).

In general, it does not seem to be known in what degrees the algebra of Hodge tensors

are effectively generated.

Example: We shall show how to realize the unitary group U(2, 1)R as the real Lie group

associated to a Q-algebraic group U(2, 1), and we will see that U(2, 1) is the Mumford-

Tate group of three PHS’s, including one of weight n = 3 with h3,0 = 1, h2,1 = 2. For

this we proceed in three steps:

(i) determine Hodge structures of a certain type;

(ii) put a real polarization on them;

(iii) ensure that the polarization is rational.

Let F = Q(
√
−d) where d > 0 is a squarefree positive rational number (d = 1 will

do), and let V be a 6-dimensional Q-vector space with an F-action; i.e., an embedding

F ↪→ EndQ(V ) .

Setting VF = V ⊗Q F, we have over F the eigenspace decomposition

VF = V+ ⊕ V−
where V + = V−. We will show how to construct polarized Hodge structures of weights

n = 4, n = 3, and n = 2 with respective Mumford-Tate groups U(2, 1), U(2, 1), and

SU(2, 1). For this we write VC = V+,C ⊕ V−,C. We shall do the n = 4 case first, and for



42 Phillip Griffiths

this we consider the following picture:

∗ ∗ ∗
∗ ∗ ∗

V+,C

V−,C

(4, 0) (3, 1) (2, 2) (1, 3) (0, 4)

The notation means this: Choose a decomposition V+,C = V 4,0
+ ⊕ V 3,1

+ ⊕ V 2,2
+ into 1-

dimensional subspaces. Then define V−,C = V 2,2
− ⊕ V 1,3

− ⊕ V 0,4
− where V p,q

− = V
q,p

+ .

Setting V p,q = V p,q
+ ⊕ V p,q

− gives a Hodge structure.14

Next we define a real polarization by requiring Q(V+,V+)=0=Q(V−,V−), then choos-

ing a non-zero vector ωp,q+ ∈ V p,q
+ and setting





Q(ω4,0
+ , ω 4,0

+ ) = 1, ω 4,0
+ ∈ V (0,4)

Q(ω3,1
+ , ω 3,1

+ ) = −1, ω 3,1
+ ∈ V (1,3)

−

Q(ω2,2
+ , ω 2,2

+ ) = 1, ω 2,2
+ ∈ V (2,2)

− .

All other Q(∗, ∗) = 0.

Finally, we may choose the V p,q
+ to be defined over F and ωp,q+ ∈ V+,F. Then





1
2
(ωp,q+ + ω p,q+ ) = e5−p p = 4, 3, 2

1
2
√
−d(ωp,q+ − ωp,q+ ) = e7−p p = 3, 2, 1

gives a basis e1, . . . , e6 for VR ∩ VF = V . In terms of this basis, the matrix entries of Q

are in R ∩ F = Q.

We observe that, by construction, the action of F on V preserves the form Q. We set

U = AutF(V,Q) .

This is an F-algebraic group, and we then set

U(2, 1) = ResF/Q U .

Proposition: (i) U(2, 1) is a Q-algebraic group whose associated real Lie group is

U(2, 1)R. (ii) If we operate on the reference polarized Hodge structure conjugated by a

generic g ∈ AutF(VR, Q) ∼= U(R), the resulting polarized Hodge structure has Mumford-

Tate group U(2, 1).

Proof. Setting J =
(

1
−1

1

)
, the matrix of Q in the Q-basis e1, . . . , e6 for V is

Q =

(
J 0

0
(

1
d

)
J

)
.

14In general, the number of ∗’s in a box will denote the dimension of the complex vector space.
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In terms of this basis, V+,F is spanned by the columns in the matrix

(
I√
−dI

)
.

If g ∈ AutF(V ), then the extension of g to VF commutes with the projections onto V+,F

and V−,F. A calculation shows that these are equations defined over Q. The conditions

that g preserve Q are further equations defined over Q. Thus, U is a Q-algebraic group.

Moreover, g is uniquely determined by its restriction to the induced mapping

g+ : V+,F → V+,F .

In terms of the basis ω4,0
+ , ω3,1

+ , ω2,2
+ of V+,C ∼= C3, g+ preserves the Hermitian form J ;

i.e.,

tg+Jg+ = J .

This shows that the real points U(R) have an associated Lie group isomorphic to U(2, 1)R,

and therefore proves (i). The proof of (ii) will be omitted (cf. [GGK1]).

The reason that the Mumford-Tate is U(2, 1) and not SU(2, 1) is that the circle {z ∈
C : |z| = 1} acts on ωp,q+ by zp−q and z4 · z2 · z0 = z6 6= 1. �

To obtain a polarized Hodge structure of weight n = 2 with Mumford-Tate group

SU(2, 1) we do the construction as shown in this figure:

∗ ∗ ∗
∗ ∗ ∗

V+,C

V−,C

h2,0 h1,1 h0,2

We are in SU(2, 1) because z2 · z0 · z−2 = 1.

To obtain a polarized Hodge structure of weight n = 3 with Mumford-Tate group

U(2, 1) we do a similar construction

∗ ∗ ∗
∗ ∗ ∗

V+,C

V−,C

h3,0 h2,1 h1,2 h0,3

A difference is that, in order to have Q alternating, we set

iQ(ω3,0
+ , ω 3,0

+ ) = 1 .
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All of the above give Mumford-Tate domains that are of the form GR/T where T is a

compact maximal torus. The picture when n = 1

∗∗ ∗
∗ ∗∗

V+,C

V−,C

h1,0 h0,1

gives a Mumford-Tate domain U(2, 1)/U(2) × U(1), which as a complex manifold is

SU(2, 1)/S(U(2) × U(1)). It is an Hermitian symmetric domain B parametrizing po-

larized abelian varieties of dimension 3 with an F-action. The corresponding quotient

GR/T , where T ⊂ K is the unique maximal torus, may be thought of as the set of Hodge

flags lying over the Mumford-Tate domain B. Here, for F 1 ∈ B a Hodge flag is given by

0 ⊂ L ⊂ F 1 where L is a line in F 1.

Returning to the general discussion, we note that Mumford-Tate domainsD = Gϕ,R/Hϕ

have compact duals

Ď = Gϕ,C/Pϕ

where Gϕ,C is the complex Lie group associated to Gϕ and Pϕ is the parabolic subgroup

of Gϕ that stabilizes the Hodge filtration F •ϕ. The Mumford-Tate domain is an open

orbit of Gϕ,R acting on Ď.

We will next obtain “pictures” of the D above and of its compact dual. For this we

We identify V+,C with C3 using the basis ω3,0
+ , ω2,1

+ , ω1,2
+ above. The Hermitian form has

the matrix 

−1

1

1


 .

Writing vectors in C3 as z =
(
z0
z1
z2

)
with [z] =

[
z0
z1
z2

]
∈ P2, the condition

H(z, z̄) < 0

defines the unit ball B ⊂ C2 ⊂ P2, where C2 is given by z1 = 1.15

The compact dual Ď = GL3(C)/P where P stabilizes the flag


∗
0

0


 ⊂



∗
∗
0


 ⊂



∗
∗
∗




15This will be one of the “running” examples in the lectures. For computational purposes it will

be more convenient to use each of
(−1

1
1

)
,
(

1
−1

1

)
, and

(
1

1
−1

)
for our Hermitian forms in the

different lectures where this example appears. We will specify which one is used each time the example
is discussed.
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in P2. We may picture Ď as the incidence variety in P2 × P2∗

l

p

where p ∈ P2, l ∈ P2∗ is a line and p ∈ l. The Mumford-Tate domain is the open set of

all configurations

l

p

B
where, setting Bc = P2\(closure of B), we have

{
p ∈ Bc

l ∩ B 6= ∅.

Example: We will describe the period domain D for PHS’s of weight n = 3 and with

all Hodge numbers hp,q = 1. This example is of considerable importance in mirror

symmetry, as it parametrizes possible PHS’s for mirror quintic varieties (cf. [GGK0] and

the references cited therein).

The construction we now give is an extension of the SU(1, 1), or unit disc, construction

of PHS’s of weight n = 1 with h1,0 = 1.

We consider a complex vector space VC with an alternating form Q where

• there is a basis v−e1 , v−e2 , ve2 , ve1 for VC such that Q =

( −1
−1

1
1

)
;

• there is a complex conjugation σ · VC → VC where
{
σ(v−e1) = ive1
σ(v−e2) = ive2 ,

and then σ(ve1) = iv−e1 ,σ(ve2) = ive2 ;
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• There is a Q-form V ⊂ VC given by V = spanQ{w1, w2, w3, w4} where




w1 = 1√
2i

(v−e1 − ive1)

w2 = 1√
2
(v−e1 + ive1)

w3 = 1√
2i

(v−e2 − ive2)

w4 = 1√
2
(v−e2 + ive2);

The matrix Qw of Q in this basis is


0 −1

1 0

0 −1

1 0




;

• H : VC ⊗ VC → C is the Hermitian form H(u, v) = iQ(u,σv). It has signature

(2, 2);

• H(v,σv) = 0 defines a real quadratic hypersurface QH in PVC ∼= P3, which we

picture as

• GC = Aut(V,Q);

• GR = Autσ(V,Q). Then GR is a real form of GC containing a compact maximal

torus T ;16

• GR is also the subgroup of GL(VC) that preserves both Q and H.

Proof. For g ∈ GC = Aut(VC, Q) we have

H(g(v), g(w)) = iQ(g(v),σ
(
g(w)

)

= iQ
(
g(v), ((σg)(σw))

)

where g ∈ GL(VC) and σg is the induced conjugation;

• the complexification of the maximal torus T ⊂ GR is given by the set of


λ−1
1

λ−1
2

λ2

λ1




;

16In fact, GR = Aut(VR, Qw) ∼= Sp(4)R.
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• v−e1 , v−e2 , ve2 , ve1 are the eigenvectors for the action of T on VC.

The compact dual Ď may be identified with the set of Lagrange flags

(0) ⊂ F 1 ⊂ F 2 ⊂ F 3 = F 1⊥ ⊂ VC

where dimF i = i and Q(F 2, F 2) = 0. In P3 = PVC such a Lagrange flag is given by a

picture

��
���

���
��s

p
E

where E (= PV 2) is a Lagrange line in P3 and p (= PV 1) is a point on E.

The period domain D may then be pictured as the set of Lagrange lines

�
��

�
��

�
��

�

s
< 0

p
(1, 1)
l

where the notation means H(p) < 0 and the restriction Hl =: H
∣∣
l

has signature (1, 1).

This translates into the condition that the corresponding flag F • satisfy the second

Hodge-Riemann bilinear relation.

Example: The “first” non-classical PHS occurs with weight n = 2 and Hodge numbers

h2,0 = 2, h1,1 = 1. Then dimV = 5 and the symmetric bilinear form

Q : V ⊗ V → Q

has signature (4, 1). For example, we might take V = Q5 and Q to have matrix

Q =

(
I4 0

0 −1

)
.

For convenience we choose an orientation on V .

The period domain may be described as

D = {F ∈ Gr(2, VC) : Q(F, F ) = 0, Q(F, F ) > 0}.

Here, Gr(2, VC) is the Grassmannian of 2-planes in VC ∼= C5, or equivalently the set

G(1, 3) of lines in PVC ∼= P4. The compact dual is

Ď = {F ∈ Gr(2, VC) : Q(F, F ) = 0}.
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It is sometimes convenient to denote it by GL(1, 3), thought of as Lagrangian lines in P4

and pictured something like

As a homogeneous complex manifold

D = GR/H

where H ∼= U(2)R with A ∈ U(2)R mapping to ( A 0
0 1 ) ∈ SO(4, 1)R using the standard

inclusion U(2)R ↪→ SO(4)R where U(2)R is given by the orthogonal transformation on

R4 preserving J =
(

0 I2
−I2 0

)
.

Variation of Hodge structure and Mumford-Tate groups

We will only briefly touch on this as it will be discussed in the lectures by Eduardo

Cattani and Jim Carlson.

Let D be a period domain for PHS’s (V,Q, ϕ) of weight n and where V = VZ ⊗ Q.

We set ΓZ = Aut(VZ, Q). In the tangent bundle TD there is a homogeneous sub-bundle

W whose fibre at ϕ ∈ D is

Wϕ = g−1,1
ϕ .

In terms of Hodge filtration we may think of the fibre

Wϕ = {ξ ∈ TϕD : ξ(F p
ϕ) ⊆ F p−1

ϕ }.

The condition in the brackets will be called the infinitesimal period relation (IPR).

Next, let S be a connected complex manifold. Usually S will be a quasi-projective

algebraic variety. A variation of Hodge structure (VHS) is given by a locally liftable,

holomorphic mapping

Φ : S → ΓZ\D
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whose differential satisfies the IPR. Thus, we have

S̃

��

Φ̃ // D

��
S

Φ // ΓZ\D

where S̃ → S is the universal cover, and the IPR is expressed by

Φ̃∗ : T S̃ →W.

Choosing a base point s0 ∈ S, because of the local liftability assumption there is an

induced mapping
Φ∗ : π1(S, s0)→ ΓZ.

The image Φ∗(π1(S, s0)) =: Γ ⊂ GZ is called the monodromy group. It is the basic

invariant of a global VHS.

Assume now that s0 ∈ S is a generic point with s̃0 ∈ S̃ lying over s0. Set Φ̃(s̃0) = ϕ0

corresponding to a PHS (V,Q, ϕ0). Then one may show that outside of a countable

union of proper analytic subvarieties of S̃, the Mumford-Tate groups of Φ̃(s) are the

constant subgroup Gϕ
0

=: GΦ ⊂ Aut(V,Q).

Definition: GΦ is the Mumford-Tate group of the VHS.

The basic facts about GΦ are:

(i) Γ ⊂ GΦ.

Thus, the Mumford-Tate group of the VHS contains the Q-Zariski closure Γ(Q) of the

monodromy group.

(ii) If S is a quasi-projective variety, then after passing to a finite covering of S, Γ

acts semi-simply on V = VZ ⊗Q.

If
G ∼ G1 × · · · ×Gn × A

is the almost product decomposition of the reductive Q-algebraic group G into its Q-

simple and abelian parts, then for some m 5 n

(iii) Γ = Γ1 × · · · × Γm where Γi ⊂ Gi for 1 5 i 5 m (in fact, Γi = Γ ∩Gi).

(iv) If Di is the Gi,R-orbit of ϕ0 ∈ D, then the VHS splits into a product

Φ : S → Γ1\D1 × · · · × Γm\Dm ×Dm+1 × · · · ×Dn︸ ︷︷ ︸
which is constant in the factor over the brackets.

(v) For 1 ≤ i ≤ m, the Q-Zariski closure

Γi(Q) = Gi.



50 Phillip Griffiths

These statements constitute the structure theorem for a global VHS.

It is not the case that Γi is commensurable with ΓZ ∩ Gi; i.e., Γi may not be an

arithmetic group. But it is the case that it is indistinguishable from one insofar as its

tensor invariants are concerned.

Informally, the result says that a global VHS splits into irreducible pieces, each one

of which is a quotient of a Mumford-Tate domain in GR/H where the group G is the

Q-Zariski closure of the monodromy group.

A final comment. Given a PHS (V,Q, ϕ) and an abelian subspace

W ⊂ g−1,1
ϕ ,

there is an action of Sym•W on ⊕V p,q where

SymkW ⊗ V p,q → V p−k,q+k.

The Sym•W -module⊕V p,q is called the infinitesimal variation of Hodge structure (IVHS).

CM polarized Hodge structures

A Hodge structure (V, ϕ̃) is of complex multiplication (CM) type if its Mumford-Tate

group Gϕ̃ is an algebraic torus. We shall discuss how to construct PHS’s of CM type.

We use the following notations:

• L = a number field = Q(γ) where γ is a primitive element;

• [L : Q] = r;

• V = L as a Q-vector space;

• A(l) : V → V = multiplication by l ∈ L.

Using 1, γ, . . . , γr−1 as a basis for V

A(γ) =




0 −ar
1 0 −ar−1

1
. . .

0 ·
1 −a1




where

γr + a1γ
r−1 + · · ·+ ar = 0

is the minimal equation of γ over Q. If γ1, γ2, . . . , γr are the roots of this equation, then

ηi(γ) = γi, i = 1, . . . , r
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give the embeddings L ↪→ C. Since

det(λI − A(γ)) = λr + a1λ
r−1 + · · ·+ ar

the eigenvalues of A(γ) are γ1, . . . , γr. We let ωi be an eigenvector associated to γi. Since

the γi are distinct,

{B : VC → VC : [B,A(γ)] = 0} = {B : B is diagonal in the basis ω1, . . . , ωr} .
Thus

TQ = {B ∈ Aut(V ) : [B,A(γ)] = 0}
is an algebraic group defined over Q whose associated complex Lie group TC is a product

of C∗’s.
A short computation gives that a basis of the eigenvectors is

ωi = λi




γr−1
i + a1γ

r−2
i + · · ·+ ar−1

...

γ2
i + a1γi + a2

γi + a1

1




where the λi are suitable constants of proportionality.

We are looking for a PHS (V,Q, ϕ) of weight n in which L ⊆ Endϕ̃(V ). In terms of

the basis ω1, . . . , ωr the circle

ϕ : S1 → T =: TR

must then be

ϕ(t) =



eik1t 0

. . .

0 eikrt


 .

Since the V p,q are eigenspaces of ϕ(S1) we have

ωi ∈ V pi,n−pi where ki = 2pi − n.
Because T is defined over Q, by minimality of Gϕ we will have

Gϕ ⊆ TQ.

To have a complex multiplication (CM) PMS it remains to find the polarization.17

We are thus looking for a non-degenerate pairing

Q : L⊗Q L→ Q
17In general, to construct a PHS the easier part is to construct the HS; finding the polarization is

more difficult. We will see this principle operating in generality in Lecture 4.
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with Q(a, b) = (−1)nQ(b, a), and a circle

ϕ : S1 → Aut(VR, Q)

with the appropriate signs on the V p,q in order to have the second Hodge-Riemann

bilinear relations. Because V p,q = V
q,p

, for suitable ωi and indexing, we must have{
γi = γr−i+1

ωi = ωr−i+1.

The cases n odd and n even are somewhat different, and we begin with the easier case.

n = odd: The conditions to be satisfied by Q are{
Q(ωj, ωk) = 0, k 6= r − j + 1

i2pj−nQ(ωj, ωj) > 0 where ki = 2pi − n.
We now use the assumption that L is a CM field; i.e., it is a totally real extension

of a purely imaginary quadratic number field L0. Specifically, since for n odd we have

dimV = r = 2s is even, and we set

L0 = Q(|γ|2) ⊆ R

where {
[L : L0] = 2

L0 = Q(|γ1|2, . . . , |γs|2).

We next use the trace

TrL/Q : L→ Q
defined by

TrL/Q(l) =
r∑

i=1

ηi(l).

Then the Galois group Gal(L/L0) is generated by ρ : L→ L where

ηi(ρ(l)) = ηi(l), ρ2 = identity.

Setting for simplicity of notation Tr = TrL/Q, we observe that since the ηi occur in

conjugate pairs we have

Tr ◦ ρ = Tr.

We may pick ξ ∈ L such that ρ(ξ) = −ξ. Then we claim that

Q(a, b) = Tr(ξaρ(b)) is Q-bilinear and alternating.

Proof. We have from ρ(ξ) = −ξ that

Tr(ξaρ(b)) = Tr(ρ(ξaρ(b))) = −Tr(ξρ(a)b). �
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Next we define the Q-adjoint B∗ of B ∈ Aut(V ) by

Q(B∗a, b) = Q(a,Bb), a, b ∈ V.
Then one may verify that{

A(l)∗ = A(ρ(l))⇒ A(γi)
∗ = A(γi)

A(γi)
∗= A(γi).

These relations imply that A(γ)∗ has the same eigenspaces as A(γ), which noting that

Q(γi, γj) = 0 for i 6= j implies that Hodge-Riemann (I) holds for Q. To have Hodge-

Riemann (II) for the Hermitian form

iQ(a, b̄)

it is enough to choose the kj in the right congruence class mod 4; i.e.,

kj ≡ 2pj − n (mod 4).

This shows that we can obtain many different PHS’s for the same L.

n even: In this case we cannot use the symmetric form

Q(a, b) = Tr(aρ(b))

because
Q(a, a) =

∑

i

ϕi(a)ϕi(ρ(a)) =
∑

i

|ϕi(a)|2 > 0

is positive definite. To be able to have an indefinite form Q preserved by L, we observe

that for ξ ∈ L0 if we set
Q(a, b) = Tr(ξaρ(b))

then since ρ(ξ) = ξ the form Q is symmetric and

Q(a, a) =
∑

i

ϕi(ξ)|ϕi(a)|2.

We then have the following result from algebraic number theory, for which we refer

to [GGK1] for a proof and discussion.

Lemma: Let ψ1, . . . ψm be the real embeddings L0 ↪→ R. Assign to each ψi a sign εi = ±1.

Then we may choose ξ ∈ L∗0 so that ψi(ξ)
|ψi(ξ)| = εi.

We now proceed in an analogous manner to the odd case by choosing ωi for i =

1, . . . , 2m and k2m−i = −ki with

ki ≡
{

0 mod 4 if εi = 1

2 mod 4 if εi = −1

for i = 1, . . . ,m. This gives a PHS with

V p,2m−p = spanC {ωi : ki = 2p−m} .
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Hodge representations and Hodge domains

A natural question is

Which reductive, Q-algebraic groups arise as Mumford-Tate groups of a

polarized Hodge structure?

Classically, this question was addressed by starting with a PHS (V,Q, ϕ) and asking

what the possible Mumford-Tate groups are.

For weight one (abelian varieties), the MT domain Dϕ ⊂ Hg is a complex, homo-

geneous sub-manifold.18 Thus, Dϕ is an Hermitian symmetric domain (HSD),19 and

a century ago E. Cartan classified the equivariant holomorphic embeddings of an irre-

ducible HSD in Hg. The list is quite short, and does not include any HSD’s associated to

exceptional groups. In the 1960’s this subject was revisited by Satake, Shimura, Kuga,

Mumford and others putting in arithmetic aspects arising from the Albert classification

of the division algebras which might arise as Endϕ̃(V ). In higher weight this approach

becomes very complicated, as illustrated by the following is the table of possibilities

when n = 3 and h3,0 = h2,1 = 1. This table was taken from [GGK1]; we will not attempt

to explain it but rather offer it as an illustration of the issue.

18This is also the case when the weight n = 2 and h2,0 = 1.
19Not every bounded homogeneous domain in CN is an HSD. However, a homogeneous sub-domain

of an HSD is an HSD.
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type unconstrained? ht(M) G G(R)0

/Herm. symm.?

(i) no/no 2 Sp4 Sp4(R)

(ii) no/yes 2 ResQ(
√
d)/Q SL2,Q(

√
d) SL2(R)× SL2(R)

(iii) yes/yes 2 UQ(
√
−d)(V,Q)

{
U(1, 1) ∼=
U(1)× SL2(R)

(iv) no/no 2 UQ(
√
−d)(V,Q) U(2)

(v) yes/yes 4 SL2 SL2(R)

(vi) yes/yes 2 ResL0/Q UL U(1)× U(1)

(vii) yes/yes 2 ResL0/Q UL U(1)× U(1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(viii) no/yes 2 SL2× SL2 SL2(R)× SL2(R)

(ix) no/yes 2 UQ(
√
−d) × SL2 U(1)× SL2(R)

(x) yes/yes 2 UQ(
√
−d) × SL2 U(1)× SL2(R)

(xi) yes/yes 2 UQ(
√
−d′) × UQ(

√
−d′′) U(1)× U(1)

(xii) yes/yes 4 UQ(
√
−d) U(1)

Because of the complexity of this list in the first non-classical case and where dimV = 4

is minimal to have Dϕ non-classical, it is natural to invert the above question and ask

In how many ways may a given reductive Q-algebraic group G be realized

as a Mumford-Tate group?

This translates into a question in representation theory and leads to the following

Definition: A Hodge representation (V, ρ, ϕ) is given by a representation

ρ : G→ Aut(V )

defined over Q, and a circle

ϕ : S1 → GR

such that there is a non-degenerate form

Q : V ⊗ V → Q

preserved by ρ(G) and where V (Q, ρ ◦ ϕ) is a polarized Hodge structure.

We have seen above that if G admits a Hodge representation that is injective on the Lie

algebra level, then G contains an anisotropic maximal torus TQ. This greatly simplifies
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the representation theory, and we assume it to be the case and denote by T ⊂ GR the

compact maximal torus in the corresponding real Lie group.

We write

T = t/Λ

where Λ ⊂ t is a lattice. We may choose coordinates so that

t ∼= Rr where r is the rank of G;

Λ ∼= Zr

so that T = {(e2πiθ1 , . . . , e2πiθr)}. A character

χλ : T → S1

is given by

χλ(e
2πiθ1 , . . . , e2πiθr) = e2πi(n1θ1+···+nrθr)

where λ = (n1, . . . , nr) ∈ Hom(Λ,Z). This gives an identification of the character group

X(T ) ∼= Hom(Λ,Z).

We denote by P ⊂ it∗ the weight lattice. Elements of P are linear forms that take values

in 2πiZ on Λ. The differential of the above character is a weight.

The co-characters X̌(T ) are given by homomorphisms

ϕ : S1 → T,

and there is an identification

X̌(T ) ∼= Hom(Z,Λ)

where 1→ (l1, . . . , lr) =: lϕ so that for t ∈ S1 = R/Z

ϕ(t) = (e2πil1t, . . . , e2πilrt).

In first approximation, a Hodge representation is given by the data (λ, lϕ) of a char-

acter λ and co-character lϕ where λ is the highest weight of the induced representation

ρ∗ : gC → End(VC)

of the complex Lie algebra. Here we are implicitly assuming that G is semi-simple, an

assumption that we shall make throughout this lecture.20 Less essential, as we shall see,

is the implicit assumption that the representation is absolutely irreducible. Finally, in

general there are several real Lie groups with the same real Lie algebra gR, indexed by

lattices P ′ with

R ⊂ P ′ ⊂ P

20The extension to the reductive case has yet to be done, and this is a very important piece of the
story that remains to be completed.
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where R and P are the respective root and weight lattices t. This additional piece of

data will enter into the final result.

To explain the main result that leads to an answer to the question posed above we

need to introduce some notation. Let

gR = k⊕ p

be the Cartan decomposition where t ⊂ k, k being the Lie algebra of the unique maximal

compact subgroup K of GR that contains T . We recall that
{

[k, p] ⊆ p

[p, p] ⊆ k

and the Cartan involution θ is defined by θ = − id on p, θ = id on k.

We define a map ψ : R→ Z/2Z by

ψ(α) =

{
0 if α is a compact root

1 if α is a non-compact root.

Since the Cartan involution is a Lie algebra homomorphism, it follows that ψ is a ho-

momorphism. We next define a homomorphism

Ψ : R→ Z/4Z

by Ψ = “2ψ”; i.e., Ψ(α) = 0 for compact roots and Ψ(α) = 2 for non-compact roots.

Finally, we shall say that an irreducible representation ρ : G → Aut(V ) leads to a

Hodge representation if there is a ρ : S1 → GR such that (V, ρ, ϕ) is a Hodge represen-

tation. This means that there exists at least one Q : V ⊗ V → Q such that (V,Q, ρ ◦ϕ)

is a PHS.

Theorem: Suppose that λ ∈ P ′. Let δ be the minimal positive integer such that δλ ∈ R.

Then ρ leads to a Hodge representation if, and only if, there exists an integer m such

that

Ψ(δλ) ≡ δm (mod 4).

Here, λ is a weight associated to ρ in a manner to be described now. For this we assume

that ρ : GR → Aut(VR) is irreducible. The extension from Q up to R is described in

[GGK1] and will not be discussed here.

By Schur’s lemma EndgR(VR) is a division algebra and there are three cases:

EndmR(VR) =





R (real case)

C (complex case)

H (quaternionic case).
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Then for EndmR(VR)⊗ C ∼= EndmR(VC) where VC = VR ⊗R C, we have

EndmR(VC) =





R⊗R C = C
C⊗R C∼= C⊕ C
H⊗R C∼= M2(C),

where as usual H are quaternions and M2(C) denotes the 2× 2 matrices with complex

entries. Only in the real case do we get a division algebra over C, so VC is reducible in

the other two cases. The analysis of whether there are invariant forms and whether they

are symmetric or alternating will necessitate considering the various cases arising from

the three possibilities above.

We denote by ResC/R the operation of restriction of scalars that considers a vector

space over C to be one over R, and similarly for ResH/R,ResH/C.

We can associate to VR an irreducible representation U of gC over C such that as

representations of gC

VC =





U (real case)

U ⊕ U∗, U 6∼= U∗ (complex case)

U ⊕ U∗, U ∼= U∗ (quaternionic case)

and

VR ∼= ResC/R(U) ∼= ResC/R(U∗) (complex and quaternionic cases),

while

VR ⊕ VR ∼= ResC/R(U) (real case).

Furthermore, in the quaternionic case there is an irreducible representation U of gR⊗RH
over H such that

VR ∼= ResH/R(U) (quaternionic case)

and then

U ∼= ResH/C(U) (quaternionic case).

Now

EndgR(VR) acts on VR as





R (real case)

C acting on ResC/R(U) (complex case)

H acting on ResH/R(U) (quaternionic case).

In the quaternionic case, if gR ⊗R H acts on the left, then EndmR(VR) ∼= H acts on the

right.

Before proceeding we recall the basic notions from the theory of semi-simple complex

Lie algebras. The general reference for this is [K1].
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• gC is a complex, semi-Lie algebra;

• h = tC is a Cartan sub-algebra;

• the common eigenspaces of ad h acting on gC are 1-dimensional root spaces gα

gC = h⊕
(
⊕
α∈Φ

gα
)

where α ∈ Φ ⊂ h∗ is a root and ad h acts on gα by the linear function α:

[H,X] = 〈α,H〉X H ∈ h, X ∈ gα;

• since the roots are purely imaginary on t, we have Φ ⊂ it∗ and

g−α = gα

where the conjugation is relative to the real form gR of gC;

• we may choose root vectors Xα ∈ gα and co-root vectors Hα ∈ h such that

Xα = ±X−α 



[Hα, Xα] = 2Xα

[Hα, X−α] = −2Xα

[Xα, X−α] = Hα.

Thus {Hα, Xα, X−α} span an sl2(C) in gC;

• if α, β ∈ Φ then

[Xα, Xβ] = Nα,βXα+β

where

N−α,−β = −Nα,β = N−β,α+β = Nα+β,−α.

If α + β is not a root, then [Xα, Xβ] = 0 (where we consider 0 as a root);

• the Cartan-Killing form

B(x, y) = Trace(adx ad y), x, y ∈ gC,

is symmetric, non-singular and positive definite on it. Therefore it determines an

inner product ( , ) on it. The hyperplanes Pα = {λ ∈ it : (λ, α) = 0) : α ∈ Φ}
divide it into a finite number of closed, convex cones, the Weyl chambers. The

reflections sα in the Pα generate the Weyl group W , which leaves Φ invariant

and permutes the Weyl chambers simply and transitively;

• a system of positive roots Φ+ is a subset of Φ such that

(i) Φ = Φ+ ∪ Φ− (disjoint union) where Φ− = −Φ;

(ii) α, β ∈ Φ+ ⇒ α + β ∈ Φ+;
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• associated to a positive root system Φ+ is the dominant Weyl chamber

C = {λ ∈ it : (α, λ) = 0 for α ∈ Φ+};
• the Weyl group acts simply transitively on the sets of positive roots and estab-

lishes a bijection

Weyl chambers←→ positive root systems;

• the Cartan-Killing form has the properties
{
B(Xα, Xβ) = δα,−β
B(Hα, H) = 〈α,H〉 , H ∈ h;

• a root is simple if it is not a non-trivial sum of roots. Given a set of positive

roots there is determined a set α1, . . . , αr of simple, positive roots such that the

Pαi form the walls of the corresponding Weyl chamber;

• the weight lattice P is defined as the set of λ ∈ it such that

〈λ,Hα〉 ∈ Z, α ∈ Φ;

• the restriction to h of an irreducible representation

r : gC → End(VC)

decomposes VC into weight spaces

Vω = {v ∈ VC : r(H)v = 〈ω,H〉 v for H ∈ h};
• there is a unique highest weight λ characterized by

r(Xα)Vλ = 0 for α ∈ Φ+

and Vλ = Cvλ where vλ is a highest weight vector.

Step one: We let λ be the highest weight of U . There is a unique element w0 of the

Weyl group such that w0(Φ+) = Φ−. It is known that U has an gC-invariant bilinear

form if, and only if, w0(λ) = −λ. By Schur’s Lemma, this is non-degenerate, unique up

to a constant, and either alternating or symmetric.

If α1, . . . αr are a choice of simple positive roots for gC and Hαi are the co-roots, let

h0 =
∑

i

Hαi .

Then

The universal bilinear form is symmetric/alternating depending on whether

〈λ, h0〉 is even/odd.
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Further, 〈
αi, h

0
〉

= 2 for all i.

Step two: If we write the decomposition into weight spaces

U = ⊕
ω
Uω

then

U∗ = ⊕
ω
U∗ω, U∗ω has weight − ω.

On VC ∼= VR ⊗R C conjugation gives an isomorphism VC
c−→ VC that gives a natural

isomorphism of vector spaces Uω
cω−→ U∗ω. In the complex and quaternionic cases, VC ∼=

U ⊕ U∗ and c is cω on Uω and c−1
ω on U∗ω. Now

HomgR(S2VR,R)⊗R C ∼= HomgC(S2VC,C)

and thus

HomgR(S2VR,R)⊗R C

=

{
HomgC(S2U,C) (real case)

HomgC(S2U,C)⊕HomgC(U ⊗ U∗,C)⊕HomgC(S2U∗,C) (complex and

quaternionic cases).

Similarly,

HomgR(Λ2VR,R)⊗R C

=

{
HomgC(Λ2U,C) (real case)

HomgC(Λ2U,C)⊕HomgC(U ⊗ U∗,C)⊕HomgC(Λ2U∗,C) (complex and

quaternionic cases).

Thus:

Real case: There is a unique (up to a constant) invariant bilinear form on VR, sym-

metric/alternating depending on the parity of 〈λ, h0〉.

Complex case: There are unique (up to constants) symmetric invariant bilinear and

alternating invariant bilinear forms on VR.

Quaternionic case: There are unique (up to constants) symmetric invariant bilinear

and alternating invariant bilinear forms Q on VR that pair U and U∗ so that Q(v, v) is

non-degenerate on VC.
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Step three: We recall our notations from above: R is the root lattice of (gC, h), and

the real form gR has a Cartan involution gR
θ−→ gR where

θ =

{
1 on k

−1 on p.

We have the map

R
ψ−→ Z/2Z

where

ψ(α) =

{
0 if Xα ∈ k

1 if Xα ∈ p,
α ∈ Φ.

As noted above, since θ is a Lie algebra homomorphism ψ extends uniquely from Φ to

R as a group homomorphism. Then

R
Ψ−→ Z/4Z

is defined by {
Ψ(x) = 2 if, and only if, ψ(x) = 1

Ψ(x) = 0 if, and only if, ψ(x) = 0.

Step four: Associated to gR are connected Lie groups GP ′ for each lattice P ′ with

P ⊇ P ′ ⊇ R, R = root lattice, P = weight lattice

where

π1(GP ′) ∼= P/P ′, Z(GP ′) ∼= P ′/R.

Note that

GR = Ga adjoint form, Ga
Ad
↪→ Aut(gR)

GP = Gs simply connected form, π1(Gs) = 0.

The maximal torus T of GP ′ is

T = t/Λ, Λ ∼= Hom(P ′,Z).

In order to have U defined on GP ′ , we need λ ∈ P ′.
Step five: The weights that occur for U belong to λ+R, and

spanZ(weights of U) = Zλ+R.

Note that λ ∈ R⊗Z Q, so this is not a direct sum. Let

P ′ = Zλ+R, Λ = Hom(P ′,Z)

and lϕ ∈ Λ be the lattice point such that the line Rlϕ projects in T ⊂ GR to give the

circle ϕ(S1).
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The key computation that must be done is:

Let Zλ+R
lϕ−→ Z project to Zλ+R

l̃ϕ−→ Z/4Z. Then lϕ gives a polarized

Hodge structure for Q or −Q if, and only if,{
l̃ϕ|R = Ψ

l̃ϕ(λ) even/odd if, and only if, Q symmetric/alternating.

Step six: In the complex and quaternionic cases, there exist both symmetric and

alternating Q’s, so the parity of l̃ϕ(λ) can always be matched.

To deal with the real case, one needs an additional result. In the real case, w0(λ) = −λ.

Since for any element w of the Weyl group and any λ ∈ P , we have w(λ) ≡ λmodR, it

follows that λ− w0(λ) ∈ R, and consequently 2λ ∈ R. Write

2λ =
r∑

i=1

miαi, mi ∈ Z

where α1, . . . , αr are the simple positive roots. Then it may be shown, and this is the

crucial step to which we refer to [GGK1] for the proof, that we are in the

• real case if, and only if,
∑

ψ(αi)=0

mi is even

• quaternionic case if, and only if,
∑

ψ(αi)=0

mi is odd.

Now

l̃ϕ(λ) =
1

2
ΣmiΨ(αi) =

∑

ψ(αi)=1

mi

〈
λ, h0

〉
=

〈
1
2

∑

i

miαi, h
0

〉
=
∑

i

mi = l̃ϕ(λ) +
∑

ψ(αi)=0

mi.

In the real case, this implies
〈
λ, h0

〉
≡ l̃ϕ(λ) (mod 2),

and thus in the real case

Q is symmetric if, and only if, l̃ϕ(λ) is even

Q is alternating if, and only if, l̃ϕ(λ) is odd.

We then have:

In all cases — real, complex, quaternionic — for an appropriate choice

of invariant Q,

lϕ gives a polarized Hodge structure if, and only if, l̃ϕ|R = Ψ.



64 Phillip Griffiths

Step seven: Since the weights of VC belong to the λ+R, we have that ϕ(z) acts on Vω
as zlϕ(ω).21 Thus

Vω ⊂ V p,q, where p− q = lϕ(ω).

The weight n of the PHS must satisfy
{
n≥ max lϕ(ω), ω a weight of VC
n≡ l(λ) mod 2.22

Once such a weight n is chosen,

Vω ⊂ V p,q where p =
n+ lϕ(ω)

2
, q =

n− lϕ(ω)

2
.

At this stage the analysis proceeds by considering the action on Vω of an sl2 generated

by Hα, Xα, X−α.

Step eight: It is possible to compute ψ, and hence Ψ, using the Vogan diagram.23 For

the compact form, ψ = 0. For other real forms, using α1, . . . , αr to denote the simple

positive roots corresponding to the Dynkin diagram,

ψ(αi) =

{
1 if node i is “painted” in the Vogan diagram

0 if node i is “unpainted” in the Vogan diagram.

The existence of a compact maximal torus is equivalent to the Vogan diagram being

“non-folded.”

Example: We shall illustrate the above in the simplest case when V = Q2 thought of

as column vectors with the bilinear form Q(u, v) = tvQu where Q = ( 0 −1
1 0 ). In this

case the group is SL2 with maximal torus T = SO(2) given by
{(

cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)}
. Thus,

identifying t ∼= R with coordinate θ, we have T ∼= R/Z. We set H = ( 0 −1
1 0 ) and Hl = lH

and will check by linear algebra that

exp(−i log zHl) gives a polarized Hodge structure if, and only if,

l ≡ 1 (mod 4).

Here we are thinking of z = e2πiξ ∈ S1 = R/Z so that for l = 1, z → exp(−i log zH)

gives the circle S1 in SL2(R).

The eigenvectors and eigenvalues of H are given by setting

v+ =

(
1

−i

)
, v− =

(
1

i

)
= v+,

21We use the notation lϕ(ω) for the pairing 〈ω, lϕ〉 between h∗ and h.
22We are here assuming that the HS is VC = V n,0 ⊕ V n−1,1 ⊕ · · · ⊕ V 0,n; i.e., for all non-zero V p,q

we have p = 0, q = 0.
23This will be discussed in Mark Green’s lecture.
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and then

Hv± = ±iv±.
We note that

Q(v+, v+) = −2i

so that {
iQ(v+, v+) > 0

i3Q(v−, v−) > 0.

Since Q is alternating, the weight n must be odd. The only possible Hodge decomposi-

tions are

VC = V n,0 ⊕ V 0,n

where V n,0 = V±. Thus n = l and the bilinear relation

ilQ(v, v) > 0 v ∈ V n,0

gives {
l ≡ 1 (mod 4) V n,0 = V+

−l ≡ 3 (mod 4) V n,0 = V−.

The second is redundant, so that we have confirmed the italicized statement above.

For the root-weight approach to the computation, since the roots are purely imaginary

it is more convenient notationally to set

h = −iH =

(
0 i

−i 0

)
.

The root spaces are then the spans of
{
X = 1

2

(
1 −i
−i −1

)

Y = 1
2

( 1 i
i −1 ) = X. 24

Then 



[h,X] = 2X

[h, Y ] = −2Y

[X, Y ] = h

and {
h · v+ = v+

X · v+ = 0.

24For the polarized Hodge structure on sl2,ϕ where ϕ = i ∈ H, we have sl
(0,0)
2,ϕ = CH, sl−1,1

2,ϕ = CX
and sl1,−1

2,ϕ = CY .
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This gives us that, identifying it with R where h↔ 1, the weight and root lattices are

P ∼= Z
∪
R ∼= 2Z.

Moreoever, the standard representation of SL2 on Q2 has highest weight 1. Thus, in the

above notations we have

• U = C2 = Cv+ ⊕ Cv−
• 〈λ, h〉 = 1 and v+ is the highest weight vector

• 〈α, h〉 = 2 where [h,X] = 2X

• ψ(α) = 1, Ψ(α) = 2.

Setting lϕ = lh, lϕ(α) = 2l. Thus the condition l̃ϕ|R = Ψ on the map Zλ+R→ Z/4Z is

2l = 〈α, lϕ〉 ≡ 2 (mod 4).

This is exactly the condition that lϕ give a polarized Hodge structure for ±Q (+Q when

l ≡ 1 (mod 4), −Q when l ≡ 3 (mod 4)).

• The list of non-compact real forms that admit Hodge representations is

Ar su(p, q), p+ q = r + 1, sl(2,R)

Br so(2p, 2q + 1), p+ q = r

Cr sp(p, q), p+ q = r

Dr so(2p, 2q), p+ q = r, so∗(2r)

E6 EII,EIII

E7 EV,EV I,EV II

E8 EV III, EIX

F4 FI, FII

G2 G.

Missing are sl(m,R), m = 3, sl(m,H), EI, EIV . Those with the more rare odd

weight Hodge representations are

su(2p, 2q), p+ q ≡ 0(2)

su(2k + 1, 2l + 1)

so(4p+ 2, 2q + 1), so∗(4k)

sp(2n,R)

EV and EV II.
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• The passage from real forms to Q-forms is greatly simplified by the assumption

that M ⊃ T , which implies that the roots are purely imaginary on t. It does

require the assumption that M be absolutely simple. We refer to [GGK1] for

details.

• There is also a classification of which M have faithful Hodge representations.

There are a few simple groups that have Hodge representations but none that

are faithful. We again refer to [GGK1] for details.

The adjoint representation

We recall our notation of a maximal compact subgroup K ⊂ GR with T ⊂ K. Then

we have the Cartan decomposition

gR = k⊕ p

where t ⊂ k, and the standard bracket relations
{

[k, p] ⊆ p

[p, p] ⊆ k

hold. We will denote by α1, . . . , αd the roots of T belonging to k (the compact roots),

by β1, . . . , βe the roots of T belonging to p (the non-compact roots). B denotes the

Cartan-Killing form. The basic observations are

(i) the representation Ad : M → Aut(g, B) preserves the symmetric form B;

(ii) B is negative on the compact root spaces gαj and is positive on the non-compact

root spaces gβk .

This means that B < 0 on (gαj⊕g−αj)∩k = (gαj⊕g−αj)R, and B > 0 on (gβk⊕g−βk)∩p =

(gβk ⊕ g−βk)R. Thus, both the issue of an invariant form and the signs of the form on

eigenspaces are determined in this case.

We consider a co-character

ϕ : S1 → T

given by

ϕ(z) =
(
zl1 , . . . , zlr

)

where lϕ= (l1, . . . , lr)∈Hom(Z,Λ). As before, we identify lϕ with lϕ(1)∈Λ.

Proposition: ϕ gives a polarized Hodge structure on (g, B) if, and only if
{
〈αj, lϕ〉 ≡ 0 (mod 4)

〈βk, lϕ〉 ≡ 2 (mod 4).
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Proof. Since B is symmetric, the weight n = 2n′ must be even. In fact, by tensoring

with a Tate twist Q(−n′) we may assume that n = 0. Because, as previously noted

kC = tC ⊕
(
⊕
j
gαj
)

= ⊕
i
g−2i,2i

pC = ⊕
j
gβj = ⊕

i
g−2i−1,2i+1,

the conditions in the proposition exactly mean that the form Q = −B satisfies the

second Hodge-Riemann bilinear relations. �

Remarks: (i) The Lie algebra hϕ of the isotropy group is given by

hϕ = t⊕ ⊕{ 〈αj ,lϕ〉=0

αj∈Φ+
c

(gαj ⊕ g−αj)R.

We note the inclusion hϕ ⊂ k, consistent with the fact that Hϕ is compact.

(ii) We have a map

Λ/4Λ
(α1,...,αd,β1,...,βe)−−−−−−−−−−→

(
⊕

1
2

(dim k−r)
Z/4Z

)
⊕
(
⊕

1
2

(dim p)

Z/4Z
)

where r = dimT is the rank, and the conditions in the proposition are conditions on

this map.

The reason that all the congruences are “mod 4” is of course that i4 = 1; more

specifically

• the 2nd bilinear relations are ip−qQ(v, v̄) > 0 for 0 6= v ∈ V p,q;

• the V p,q are eigenspaces Vm with eigenvalues mi for the action of the differential

lϕ = (l1, . . . , lr) of ϕ;

• thus on the one hand p− q = m, so that ip−q depends only on m (mod 4), while

on the other hand for the adjoint representation the Vm are direct sums of root

spaces gαj , gβk so that the m’s above are given by m = 〈αj, lϕ〉, m = 〈βk, lϕ〉.

G2:

We will determine the Hodge representations for the exceptional Lie group G2. In

V = Q7 with basis e1, . . . , e7 we set

ω = (e1 ∧ e4 + e2 ∧ e3 + e3 ∧ e6) ∧ e7 − 2e1 ∧ e2 ∧ e3 + 2e4 ∧ e5 ∧ e6.

Then one characterization of G2 is

G2 = Aut(V, ω).

We will proceed in several steps.
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Step 1: Make a change of basis

u1 = e1 − e4, v1 = e1 + e4

u2 = e2 − e5, v2 = e2 + e5

u3 = e3 − e6, v3 = e3 + e6

v4 = e7.

Then

4ω =− u1 ∧ u2 ∧ u3 + u1 ∧ (v1 ∧ v4 − v2 ∧ v3) + u2 ∧ (v2 ∧ v4 − v3 ∧ v1)

+ u3 ∧ (v3 ∧ v4 − v1 ∧ v2).

Step 2: Define Q(X, Y ) = (Xcβ) ∧ (Y cβ) ∧ β where β = −4ω.

In terms of the basis u1, u2, u3, v1, . . . , v4,

Q =

(
−I3 0

0 I4

)
.

Step 3: g2,R ⊂ so(4, 3) is defined by infinitesimally preserving β. If

3
{

4
{

3︷︸︸︷ 4︷︸︸︷
A B

tB C


 , where A = −tA,C = −tC is an element of so(4, 3),

then the equations to preserve β are

a12 = c12 + c43 b14 = b32 − b23

a23 = c23 + c41 b24 = b13 − b31

a31 = c31 + c42 b34 = b21 − b12

b11 + b22 + b33 = 0.

Step 4: Note that if E = ( 0 −1
1 0 ) and

H1 =




E 0 0 0

0 0 0 0

0 0 E 0

0 0 0 0



, H2 =




0 0 0 0

0 0 0 0

0 0 E 0

0 0 0 E




satisfy the equations of Step 3, mutually commute, and exp(tH1), exp(tH2) are circles in

G2(R) with period 2πi. They commute and span a maximal torus T . The exponentials

of 2πi times their real linear combinations give a torus T in G2(R), which must then be

a maximal torus since G2 has rank two.
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Proposition: The co-character ϕ whose differential is lϕ = l1H1+l2H2 gives a polarized

Hodge structure for every representation of G2 if, and only if, the conditions
{
l1 ≡ 0 (mod 4)

l2 ≡ 2 (mod 4)

are satisfied.

Proof. We first show that the standard representation of G2 on V ∼= Q7 with Q as in

Step 2, has a polarized Hodge structure. For this we think of VR as column vectors and

let 



V − = column vectors




∗
∗
∗
0
0
0
0


 where Q < 0

V + = column vectors




0
0
0
∗
∗
∗
∗


 where Q > 0.

Then l1H1 + l2H2 has
{

eigenvalues ± l1i, 0 on V −

eigenvalues ± (l1 + l2)i,±l2i on V +.

This gives a polarized Hodge structure if, and only if, l1 ≡ 0 (mod 4), l2 ≡ 2 (mod 4)

and l1 + l2 ≡ 2 (mod 4). The third condition is a consequence of the first two, which are

just the conditions in the proposition.

At this point we recall the root diagram of g2 with positive roots

2α2 + 3α1

α2 α1 + α2 2α1 + α2 3α1 + α2iiTTTTTTTTTTTTTTTTTT

ffMMMMMMMMMM

OO

88qqqqqqqqqq

33fffffffffffffffffffffffff // α1.

For this choice the co-roots are {
Hα1 = H1

Hα2 = H2 −H1.

Then the dominant weights of the irreducible g2,C-modules are linear combinations

λ = m1λ1 +m2λ2,
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where m1,m2 are non-negative integers, and where
{
λ1 = 2α1 + α2

λ2 = 3α1 + 2α2.

The standard representation has highest weight λ1, corresponding to the co-weight

H1 + H2. The adjoint representation has highest weight λ2 = 3α1 + 2α2. It follows

that the representation with highest weight λ = m1λ1 +m2λ2 occurs in Sm1V ⊗ Sm2g2,

and hence has a polarized Hodge structure when the conditions in the proposition are

satisfied. �

Hodge domains

In this section G will be a reductive Q-algebraic group, not necessarily semi-simple

(e.g., U(m,n)). We assume that GR contains a compact maximal torus T , meaning that

the Lie algebra

gR = ga,R ⊕ A

where ga is the Lie algebra of the adjoint group and where

t = t ∩ ga,R ⊕ A.

Writing T = t/Λ, for a given circle

ϕ : S1 → T

given by lϕ ∈ Λ, we have seen that there may be many representations

ρ : G→ Aut(V,Q)

such that (V,Q, ρ ◦ ϕ) is a PHS. Setting

H = ZGR(ϕ(S1)),

the same homogeneous complex manifold D = GR/H therefore appears in many different

ways as a Mumford-Tate domain.

Definition: A Hodge domain is a homogeneous complex manifold

D = GR/H

where H = ZGR(ϕ(S1)) and where G admits a Hodge representation (V,Q, ρ ◦ ϕ).

We emphasize that the data ϕ : S1 → T is part of the definition of a Hodge domain

— there will be many such circles in T with the same centralizer. A more precise but

less agreeable notation would be (G,ϕ) consisting of a reductive Q-algebraic group G

and a co-character ϕ : S1 → T for the maximal torus of GR containing ϕ(S1).
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Example: We have seen in Lecture 3 that the homogeneous complex manifold

D = U(2, 1)R/T

is a Mumford-Tate for PHS’s of weights n = 4, 3. There we also saw that the homoge-

neous complex manifold

D̃ = SU(2, 1)R/TS,

where TS = T∩SU(2, 1)R is a Mumford-Tate domain for PHS’s of weight n = 2. We note

that D and D̃ are the same as complex manifolds but are not the same as homogeneous

complex manifolds. In this case the groups Pich(D),Pich(D̃) of equivalence classes of

homogeneous line bundles are quite different (cf. [GGK2] for details).

We have noted above that a Hodge domain D = GR/H is associated to the data

(G,ϕ). Since by definition there is at least one PHS (V,Q, ρ ◦ ϕ) for a representation

ρ : G→ Aut(V ), it follows that there is a PHS on g where

Adϕ : S1 → Aut(gR)

gives the circle. We thus have

gC = ⊕
i
g−i,i

and the infinitesimal period relation (IPR) is given by the GR-invariant distribution

W ⊂ TD

where W = GR ×H g−1,1. The IPR is independent of the representation ρ, and thus

depends only on the data (G,ϕ); i.e.,

The IPR is an invariant of the Hodge domain.

Examples (cf. [GGK1] for details): We consider two examples for G2:

(A) l1 = 4, l2 = −2.

Then the standard representation gives a PHS of weight n = 4 and with Hodge

numbers

h4,0 = 1, h3,1 = 2, h2,2 = 1.

For the adjoint representation we may see that

g−1,1
2 = span {Xα1+α2 , X−2α1−α2} .

The corresponding Hodge domain Da has dimension five and

W ⊂ TDa

is a field of 2-planes. We claim that

W is bracket generating.
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Proof. From

[Xα1+α2 , X−2α1−α2 ] = aX−α1 , a 6= 0,

we see that the bracket is non-trivial and

W + [W,W ] = span {Xα1+α2 , X−2α1−α2 , X−α1} .
Then from {

[X−α1 , Xα1+α2 ] = bXα2 , b 6= 0

[X−α1 , X−2α1−α2 ] = cX−3α1−α2 , c 6= 0

we see that W + [W,W ] + [W [W,W ]] = ⊕
i>0

g−i,i2 . �

(B) l1 = 0, l2 = 2.

For the standard representation we obtain a PHS of weight n = 2 and Hodge numbers

h2,0 = 2, h1,1 = 3.

For the adjoint representation one finds that

g−1,1
2 = span {X−3α1−α2 , X−2α1−α2 , X−α1−α2 , X−α2} .

The matrix of brackets is
0 0 0 ∗
0 0 ∗ 0

0 ∗ 0 0

∗ 0 0 0

where each ∗ is an aX−3α1−2α2 , a 6= 0. This says that

W defines a contact structure.

But there is much more geometry here. The infinitesimal variation of Hodge structure25

gives a map

Sym2W → Sym2 V 0,2,

the dual of which defines three quadrics in PW ∗. The common zeroes of these quadrics

give a twisted cubic curve

C ⊂ PW.

Historical remark: In his famous 1905 “Five variables” paper Elie Cartan gave two

realizations of G2 as the group of symmetries of a 5-manifold M in which there was

a “Cartan geometry” in TM. These examples were (A) and (B), the Cartan geometry

being the bracket generating field of 2-planes in (A), and the contact structure with a

field of twisted cubic curves in the contact planes in (B).

25This will be discussed in the lectures by Jim Carlson.
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(C)

Again we take the standard representation and l1 = 4, l2 = 2. This gives a PHS of

weight n = 6 and with all Hodge numbers

hp,6−p = 1.

Recently it has been shown ([KP]) that some points of DC are “motivic” in the sense

that they arise from part of the Hodge structure on the cohomology of a projective

algebraic variety. A consequence of their work is that

G2 is a motivic Mumford-Tate group.
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Lecture 5

Discrete series and n-cohomology

Introduction

In this section

• GR will be a real, semi-simple Lie group containing a compact maximal torus T .

Essentially everything we will discuss will hold in case GR is reductive, and in fact we will

use these results in one of two running examples when GR = U(2, 1)R. Our main interest

will be in the case when GR is the real Lie group associated to a Q-algebraic group G.

Throughout we assumed fixed a maximal compact subgroup K with T ⊂ K ⊂ GR. We

also assume that GR is connected as a real Lie group. Thus for every weight PHS’s

(V,Q, ϕ) we assume given an orientation of VR.

• Γ ⊂ GR will be a discrete subgroup.

Unless mentioned otherwise we shall assume that Γ is co-compact and neat. Although

the main eventual interest is the case where Γ ⊂ G is an arithmetic subgroup which

may not be co-compact, it will simplify the exposition to assume co-compactness. Neat

means that Γ contains no non-trivial elements of finite order. This is a convenient but

inessential technical assumption that may always be achieved by passing to a finite index

subgroup of Γ.

The representations we will be interested in are

• The discrete summands in L2(GR), the discrete series (DS), and the related

limits of discrete series (LDS).

Here, GR acts unitarily on both the left and right. The unitary dual ĜR of GR is defined

to be the set of equivalence classes of irreducible unitary representations

π : GR → Aut(Vπ)

of GR on a Hilbert space Vπ. One then has the Plancherel formula

L2(GR) =

∫

ĜR

EndHS(Vπ)dπ

and the DS’s are those for which the Plancherel measure dπ assigns a strictly positive

point mass. This is equivalent to the matrix coefficients (π(g)u, v) being in L2(GR).

The DS’s are parametrized by weights µ belonging to the weight lattice P and such

that µ + ρ is regular, which in particular implies that µ + ρ belongs to a unique Weyl

chamber C.26 In these lectures we will be especially interested in LDS’s, which are

parametrized by pairs (µ,C) where µ+ρ ∈ C but is singular and therefore is orthogonal

26We recall that a weight λ is regular if (λ, α) 6= 0 for all non-zero roots α. Otherwise, λ is singular.
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to some root of GR but is not orthogonal to any C-simple compact root.27 The infinites-

imal character (defined below) associated to a DS or LDS will be denoted by χµ+ρ. Of

very particular interest will be the totally degenerate limits of discrete series (TDLDS)

(0, C) where µ = −ρ and which have infinitesimal character χ0.

• The unitary GR-module L2(Γ\GR).

In both of the cases of GR and of Γ\GR the objective of this lecture is to relate

the representation theory to complex geometry. In the first case this will involve the

cohomology groups

Hq(D,Lµ)

where D is a flag domain as defined below and Lµ → D is a GR-homogeneous line bundle

associated to the weight µ. In the second case the relevant cohomology groups are

Hq(Γ\D,Lµ).

Representation theory enters via the formula

Hq(Γ\D,Lµ) = ⊕
π∈ĜR

Hq(n, Vπ)
⊕mπ(Γ)
−µ

where the RHS is a finite sum, mπ(Γ) is the multiplicity of V ∗π in L2(Γ\GR), and the

notation for the n-cohomology groups Hq(n, V ∗π )−µ will be explained below.

In summary, the theme of this lecture is to begin to develop the relationship between

representation theory and the geometry of locally homogeneous complex manifolds. Ref-

erences are [GS], [Sch1], [Sch2], [Sch3] and the references cited therein, [W1], [FHW],

and [GGK2] and the references cited there.

We remark that the most classical relation between representation theory and the

geometry of homogeneous complex manifolds is the Borel-Weil-Bott (BWB) theorem.

This deals with the GC-modules Hq(GC/B, Lµ) where B is a Borel subgroup of GC and

µ is a holomorphic character of B. In the appendix to this lecture we have given a

discussion of the BWB theorem in the framework of the overall perspective of these

lectures.

Harish-Chandra modules and their infinitesimal character

In these lectures it will frequently be more convenient to work with the Harish-Chandra

module (HC module) associated to one of the types of unitary representation mentioned

above, and also with the corresponding infinitesimal character. It will also be convenient

to work with flag domains rather than general homogeneous complex manifolds. We now

explain these terms.

27The singular parameters that are not orthogonal to any compact root K are the non-degenerate
LDS’s.



Lecture 5 77

We recall our notations

• gC = gR ⊗ C is a complex, semi-simple Lie algebra;

• h = t⊗ C is a Cartan sub-algebra;

• KC is the complex Lie group corresponding to the unique maximal compact

subgroup K ⊂ GR that contains T ;

• U(gC) is the universal enveloping algebra of gC with center Z(gC).

A (gC, KC)-module is a complex vector space M that is a U(gC)-module and is a linear

KC-module, and where the conditions

• The action of KC is locally finite; i.e., every m ∈ M lies in a finite dimensional

KC-invariant subspace on which KC-acts holomorphically; and

• The differentiated KC-action agrees with the action of the subspace kC of U(gC)

are satisfied.

Definition: A Harish-Chandra module is a (gC, KC)-module that is finitely gener-

ated as a U(gC)-module and is admissible in the sense that every irreducible KC-module

occurs in M with finite multiplicity.

Examples: (i) The subspace Vπ,K-finite ⊂ Vπ of K-finite vectors in a unitary represen-

tation, in particular in a DS or LDS gives an HC-module.

(ii) With notations to be explained below, the GR-module given by a non-zero co-

homology group Hd(D,Lµ) where µ + ρ ∈ C, the closure of the anti-dominant Weyl

chamber and d = dimK/T , gives an HC-module.

We now turn to the definition of the infinitesimal character associated to a weight µ.

For this we set

• H = U(h), the universal enveloping algebra for h; and

• P =
∑

α∈Φ+ U(gC)gα where gα ⊂ gC is the α-weight space.

By the Poincaré-Birkhoff-Witt theorem, H ∩ P = (0) and

Z(gC) ⊂ H ⊕ P.

Explicitly, elements of U(gC) are
∑
X−β1 · · ·X−βjHi1 · · ·HikXα1 · · ·Xαl where the βi, αi

are positive roots and the Hi are a basis for h. Then Z(gC) is contained in the sums of

such terms with no X−βi ’s.

We define

σ : h→ H

by

σ(H) = H − ρ(H)1
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where, as usual, ρ = 1
2

∑
α∈Φ+ α ∈ h∗. We next define

γ′ : Z(gC)→ H

to be the projection and set

γ = σ ◦ γ′

where σ(Hi1 · · ·Hik) = σ(Hi1) · · ·σ(Hik). It is a theorem of Harish-Chandra that this

gives an algebra isomorphism

γ : Z(gC)
∼−→ HW

where the RHS is the sub-algebra of elements of H invariant under the Weyl group W

of (gC, h). Note that we may identify HW with the algebra C[h] of polynomial functions

on the dual h∗ of h.

Definition: For ζ ∈ h∗, we define the infinitesimal character as the homomorphism

χζ : Z(gC)→ C

given for z ∈ Z(gC)

χζ(z) = γ(z)(ζ).

The RHS is the value of the polynomial γ(z) ∈ C[h] on ζ ∈ h∗.

It is another result of Harish-Chandra that

Every character of Z(gC) is an infinitesimal character χζ, and χζ = χζ′

if, and only if, ζ ′ = w(ζ) for some w ∈ W .

Below we shall give a geometric interpretation of χλ.

Flag varieties and flag domains

Definitions: (i) A flag variety is a homogeneous complex manifold

Ď = GC/B

where B ⊂ GC is a Borel subgroup.28 (ii) A flag domain is an open orbit

D = GR · x0

of GR acting on Ď where the isotropy group is a compact maximal torus T .

We have noted above that every flag domain arises as a Mumford-Tate domain. In

fact, if ϕ · S1 → GR is a circle with ϕ(S1) ⊂ T and corresponding to lϕ ∈ Λ where

T = t/Λ, the condition ZGR(ϕ(S1)) = T is equivalent to

〈α, lϕ〉 6= 0, α ∈ Φ.

28In the literature a common notation for flag varieties is X. Here our emphasis is on the D = GR/T ’s
and we are thinking of Ď = GC/B as the compact dual of D. We will generally use the notation for X
as a quotient X = Γ\D.
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Since every such pair (G,ϕ) leads to a Hodge representation it follows that D = GR/T

is a Mumford-Tate domain.

If D = GR/H is a general Mumford-Tate domain as discussed in Lecture 3 and with

compact dual Ď = GC/P , there is a unique Borel subgroup B ⊂ GC with B ⊆ P , and

we have a diagram

GR/T ⊂ GC/By y
D = GR/H ⊂ GC/P = Ď.

Then the flag domain GR/T may be interpreted as the set of Hodge flags associated to

D. In fact, given a point F • ∈ Ď, a point in GC/B lying over F • may be interpreted as a

full flag on VC and the points of GR/T are the Hodge flags. We shall not give the formal

definitions as they are not needed in these lectures, although they will be illustrated

in several examples below. The point is that from the point of view of representation

theory flag varieties and flag domains are especially convenient, and when we have a

Mumford-Tate domain the points in the corresponding flag domain may be thought of

as PHS’s with the additional data given by full flags satisfying certain conditions in each

V p,q.

A more intrinsic description of the flag variety as a set is

Ď = {set of Borel sub-algebras bx ⊂ gC}.

Since any two Borel sub-algebras are conjugate in GC, upon choice of a reference bx0

with Bx0 the corresponding Borel subgroup we have an identification with the RHS

above with GC/Bx0 .

Root theoretic descriptions

These are especially useful for computational purposes. Given the choice of B with

Lie algebra b containing h there is a unique choice of positive roots for (gC, h) such that

{
b = h⊕ n

n = ⊕
α∈Φ+

g−α.

We set n+ = ⊕
α∈Φ+

gα. The reason for writing just n instead of n− is that it makes

the notation for n-cohomology more convenient; we shall occasionally use n− where

warranted by the circumstances.

At the reference point x0 = eB ∈ Ď we have for the holomorphic tangent space

Tx0Ď
∼= gC/b ∼= n+.
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Choosing x0 = eT ∈ D there are the identifications

Tx0,RD
∼= gR/t

Tx0,CD
∼= gC/h ∼= n+ ⊕ n−

of the real tangent space and of its complexification. Setting T 1,0
x0,CD = n+ with T 0,1

x0,C =

T 1,0
x0,C = n− gives a GR-invariant almost complex structure on GR/T , one that due to

[n+, n+] ⊆ n+ is integrable.

Conversely, a choice Φ+ of positive roots for (gC, h) determines an integrable almost

complex structure on GR/T as well as a Borel sub-algebra b = h ⊕ n−. An important

observation is

Two such choices Φ+,Φ
′+ give equivalent homogeneous complex struc-

tures on GR/T if, and only if, Φ
′+ = w(Φ+) for some w ∈ NGR(T )/T =

NK(T )/T =: WK, the Weyl group for K.

If Gc is a compact real form of GC with T ⊂ Gc, then the above discussion applies

to Gc/T , and one has that homogeneous complex structues on Gc/T given by Φ+ and

Φ
′+ are equivalent since the Weyl group NGc(T )/T = NGC(H)/H acts transitively on

the set of choices of positive roots. We note that Gc/T and GC/B are the same complex

manifolds, although they are of course different as homogeneous complex manifolds.

A U(gC)-module W is said to have an infinitesimal character if Z(U(gC)) acts on it

by scalars. The resulting homomorphism

Z(U(gC))→ C

is then χµ for some µ ∈ h∗. An element w ∈ W is said to be a highest weight vector with

weight µ ∈ h∗ if {
n+ · w = 0

h acts on w by h(w) = 〈µ, h〉w.
Then

if W is finite dimensional, irreducible gC-module with highest weight µ

in the usual sense, W has infinitesimal character χµ+ρ.

Homogeneous line bundles and their curvature forms

For T = t/Λ we recall the character group

X(T ) ∼= Hom(Λ,Z) ⊂ it∗ ⊂ h∗.

Here, T = {(e2πiθ1 , . . . , e2πiθr)} where θ = (θ1, . . . , θr) ∈ Rr/Zr and µ ∈ Hom(Λ,Z) is

given by (µ1, . . . , µr) where

µ(θ) = µ1θ1 + · · ·+ µrθr.
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We identify Hom(Λ,Z) with the character group X(T ) by

χµ(e2πiθ1 , . . . , e2πiθr) = e2πiµ(θ).

Up to a factor of 2πi, µ is the differential of χµ. Identifying the Cartan subgroup H

with (C∗)r, χµ extends to a holomorphic character χµ : H → C∗ where χµ(z1, . . . , zr) =

zµ1

1 · · · zµrr . Finally using H = B/[B,B] we obtain a holomorphic homomorphism

χµ : B → C∗.

Notation: The holomorphic homogeneous line bundle Lµ → Ď is given by

Lµ = GC ×B C

where B is represented in Aut(C) = C∗ by χµ.

Denoting by Lµ the sheaf OĎ(Lµ) of holomorphic sections of Lµ → Ď, the action of

GC on Lµ → Ď induces an action of gC, and hence of U(gC), on Lµ. It is a nice exercise

to show that

Any z ∈ Z(gC) acts on Lµ by the scalar γ(z)(µ+ ρ)

where γ : Z(gC) → HW is the Harish-Chandra isomorphism introduced above. Recall

that µ+ ρ ∈ h∗ while γ(z) ∈ C[h], the polynomial functions on h∗.

For notational simplicity, we shall identify locally free coherent sheaves with the cor-

responding holomorphic vector bundles, and shall therefore just set Lµ = Lµ.

We shall also denote by Lµ → D the restriction to D of the homogeneous C∞ line

bundle

GR ×T C
with the holomorphic structure given above. Since χµ

∣∣
T

is unitary, the line bundle

Lµ → D has an invariant Hermitian structure. Denoting by Xα ∈ gα the standard root

vector with dual ωα we have{
T 1,0
x0
D= span{Xα : α ∈ Φ+}
ωα = ±ω−α.

We will determine the ± sign below.

Basic calculation: The Chern form, expressed in terms of the curvature, is given by

c1(Lµ) =
i

2π




∑

α∈Φ+
c

(µ, α)ωα ∧ ωα −
∑

β∈Φ+
nc

(µ, β)ωβ ∧ ωβ


 .

Before deriving the formula we comment that there is a Gc-invariant metric in Lµ → Ď

whose Chern form is given by a similar expression but with a +(µ, β) instead of a
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−(µ, β) coefficient of ωβ ∧ ωβ for β ∈ Φ+
nc. This sign reversal was noted in Lecture 1 in

the simplest case of SL2.

The calculation is based on rather general principles and will be given in a sequence

of steps.

Step one: Let A,B be the connected Lie groups with B ⊂ A a closed, reductive

subgroup. Here, reductive means that the real Lie algebra A of A has an AdB-invariant

splitting {
A = b⊕ h 29

[b, h] ⊆ h.

The homogeneous vector bundle H = A×B h then gives an A-invariant connection

TA = π∗TB ⊕H

in the principal bundle A
π−→ A/B. The basic observation is that the curvature form Ω

of this connection is given at the identity coset eB by

Ω(u, v) = −1/2[u, v]b

where u, v ∈ h ∼= TeB(A/B) and [ , ]b is the b-component of the bracket. The −1/2

comes from the Maurer-Cartan equation

dω(u, v) = −1

2
[u, v]

where ω is a left-invariant 1-form on A and u, v ∈ A are left invariant vector fields.

As a check on signs and constants, let Xi be a basis for the Lie algebra of left-invariant

vector fields with dual basis ωi. Setting

[Xj, Xk] =
∑

k

cijkXi

we claim that

dωi =

(−1

2

)∑

j,k

cijkω
j ∧ ωk.

Let

dωi =
∑

j,k

aijkω
j ∧ ωk, aijk + aikj = 0.

Using the standard formula
〈
dωi, (Xj, Xk)

〉
= Xj · ωi(Xk)
��

��
��
�
−Xk · ωi(Xj)
��

��
��
�
−
〈
ωi, [Xj, Xk]

〉

29Here, h stands for “horizontal” and is not related to the Cartan sub-algebra, which is the h every-
where else in these lectures. The same applies to b and to the H defined below.
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the crossed out terms are zero by left-invariance. The RHS is −cijk, while the LHS is

aijk − aikj. Thus

2aijk = −cijk
as was to be shown.

For GLn the Maurer-Cartan matrix is

ω = g−1dg, g = ‖gij‖ ∈ GLn .

Then dg−1 = −g−1dgg−1 gives

dω = −ω ∧ ω,
which again serves to check the sign.

Step two: Next let r : B → Aut(E) be a linear representation and

E = A×B Ey
A/B

the corresponding homogeneous vector bundle. Then this bundle has an induced con-

nection whose curvature form ΩE is given by

ΩE(u, v) = r∗Ω(u, v).

Step three: We now apply this when A = GR, B = T and r is given by χµ as above.

Writing

gR ⊗ C = tC ⊕ n+ ⊕ n−,

from [n±, n±] ⊆ n± we see that the curvature form is of type (1, 1) whose only non-zero

terms are

Ω(Xα, Xα) = −1/2[Xα, X−α] =

(
−1

2

)
hα.

We now use that gC has two conjugations corresponding to the two real forms gc and

gR {
τ ↔ compact form gc

σ ↔ non-compact form gR

and 



τ(Xα) = −X−α

σ(Xα) =

{
−X−α if α is compact

Xα if α is non-compact.
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The conjugation signs on Xα above and on ωα below are relative to σ. Then

Ω =
∑

α∈Φ+
c

hαω
α ∧ ωα −

∑

β∈Φ+
nc

hβω
β ∧ ωβ.

Here, the −1/2 has gone away using ωα∧ωα = −ωα∧ωα. Denoting by Ωµ the curvature

form ΩLµ and using 〈µ, hα〉 = (µ, α) we obtain

Ωµ =
∑

α∈Φ+
nc

(µ, α)ωα ∧ ωα −
∑

β∈Φ+
nc

(µ, β)ωβ ∧ ωβ.

This concludes the proof of the basic calculation.

For later use we introduce the notation

q(µ) = #
{
α ∈ Φ+

c : (µ, α) > 0
}

+ #
{
β ∈ Φ+

nc(µ, β) < 0
}
.

Then we note that

• the curvature form Ωµ is non-degenerate (non-singular) if, and only if, µ is

regular;

• in this case, Ωµ has signature (q(µ), n− q(µ)) where n = #Φ+ = dimCD.

The classical and non-classical cases

Among the homogeneous complex manifolds we have been considering a very special

and important class are the Hermitian symmetric domains (HSD’s)

D = GR/K.

Here, K is the maximal compact subgroup. Relative to the Cartan decomposition{
gR = k⊕ p where

[k, p] ⊆ p, [p, p] ⊆ k

identifying at x0 = eK ⊂ D the complexified tangent space

Te,RD ⊗ C = pC = p+ ⊕ p−

where p+ = T 1,0
x0
D, p− = T 0,1

x0
D = p+ we have

p± = ⊕
β∈Φ±nc

gβ.

Since [p+, p+] ⊆ kC this implies (and is equivalent to)

p± are abelian Lie algebras.

This is equivalent to the adjoint representation of K on pC decomposing into conjugate

K-submodules.

Definition: A homogeneous complex manifold is classical if it fibres holomorphically

or anti-holomorphically over an HSD. Otherwise it is non-classical.
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From the above we see that

D is classical ⇔ p+ is an abelian Lie algebra.

We will now show that

There exists a µ such that q(µ) = 0 if, and only if, D is classical.

Proof. If q(µ) = 0 then we have
{

(µ, α) > 0 for α ∈ Φ+
c

(µ, β) < 0 for β ∈ Φ+
nc.

For p± = ⊕
β∈Φ±

gβ we have

gC = kC ⊕ p+ ⊕ p−.

Writing

kC = h⊕ n+
c ⊕ n−c

where n±c = n± ∩ kC, we have from

[k, pC] ⊆ pC

that, since the sum of two negative roots is negative,

[n−c , p
−] ⊆ p−.

We must show that

[n−c , p
+] ⊆ p+.

This is the same as

for α ∈ Φ+
c , β ∈ Φ+

nc, either −α+β is not a root or we have −α+β ∈ Φ+
nc.

Now, if −α + β is a root it must be a non-compact root, and if −α + β ∈ Φ−nc then

(µ,−α + β) > 0.

This gives

(µ, β) > (µ, α) > 0

which is a contradiction. �

As an application, if D is non-classical we have

H0(Γ\D,Lµ) = 0

for any µ 6= 0. The proof is by noting that for a section s ∈ H0(Γ\D,Lµ) we have

i

2π
∂∂ log ‖s‖2 = Ωµ.
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At a maximum point of ‖s‖2 we must have Ωµ = 0. But in the non-classical case Ωµ has

a negative eigenvalue.

Root diagrams of the complex structures

The homogeneous complex structures on flag domains are given by choices of positive

root systems, or equivalently of Weyl chambers. Two such are equivalent as homogeneous

complex manifolds if, and only if, the two Weyl chambers are congruent under the action

of the compact Weyl group WK = NK(T )/ZK(T ). In examples it is convenient to use

the root diagram to picture things.

SU(2, 1): This is the subgroup of SL(3,C) that preserves the Hermitian form with matrix



1

1

−1


 .

The maximal torus

TS =







e2πiθ1

e2πiθ2

e2πiθ3








where θ1 + θ2 + θ3 ≡ 0 modZ. We let R3 have standard basis e1, e2, e3 viewed as column

vectors, and the dual space will be row vectors with dual basis e∗1 = (1, 0, 0), e∗2 = (0, 1, 0),

e∗3 = (0, 0, 1). Then the Lie algebra

tS ⊂ R3

is defined by the relation

e∗1 + e∗2 + e∗3 = 0.

The root diagram is then

•e∗1 − e∗2 •

• •

••

e∗2 − e∗3e∗1 − e∗3

e∗3 − e∗1e∗3 − e∗2

e∗2 − e∗1

The maximal compact subgroup K ∼= U(2) is
{(

A 0

0 a

)
: A ∈ U(2), a = detA−1

}
,

and from this we see that the compact roots are those within a box.
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The Weyl chambers are

�
�
�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@
@

@ 	
c c

nc nc+

c c

where “c” means a classical complex structure and “nc” a non-classical one. The action

of the compact Weyl group is pictured by the arrow. The Mumford-Tate domains for

the U(2, 1) example corresponding to PHS’s of weight n = 3 with h3,0 = 1, h2,1 = 2

in Lecture 3 correspond to the Weyl chamber marked with a +. We note that for this

choice the compact root e∗2−e∗1 is positive. For the non-classical complex structure given

by the Weyl chamber with the + the values of q(µ+ ρ) are

�
�
�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@
@

@
n2 n1

n1 n2
n2 n1

We note that q(µ) 6= 0, 3. We also note the duality that the q(µ+ ρ)’s in opposite Weyl

chambers add up to dimD, a general phenomenon.
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Sp(4): In this case we will not need to distinguish between R4 and its dual and can use

the more standard notation for the roots. The root diagram is

•−2e1 •

• •

••

e1 − e2
−e1 − e2

e1 + e2

•2e2

e2 − e1

2e1

•−2e2
The Weyl chamber picture is

�
�
�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@
@

@
nc c

nc

c nc+

c

c

nc

�

The values of q(µ+ρ) for the homogeneous complex structure corresponding to the Weyl

Chamber marked + are

�
�
�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@
@

@
n2 n1

n1
n2 n3

n3

n2

n2
We note that for this Weyl chamber the compact root e1 − e2 is positive. This is

the opposite convention to the U(2, 1) example, the two conventions being chosen for

Hodge-theoretic reasons. The difference will need to be kept in mind when we do the

calculations in Lecture 9. We note again that q(µ+ ρ) 6= 0, 4 and the symmetry.
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SO(4, 1): The root diagram is

•

•

•

•

•

•

•

•

The Weyl chamber picture is

�
�
�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@
@

@ *
U

There are two equivalence classes of non-classical homogeneous complex structures.

There are no classical ones.

Realization of the DS

The basic story here is due to Schmid, beginning with his thesis [Sch1] and continuing

through a series of papers appearing in the Annals of Mathematics.30 Here we shall

largely follow the expository lecture [Sch2] which contains an extensive bibliography

including references to his papers on the subject.

The basic results we shall discuss are

(A) Let µ be a character giving a homogeneous holomorphic line bundle Lµ → D. Then

(i) the L2-cohomology group Hq
(2)(D,Lµ) is zero unless µ + ρ is regular and q =

q(µ+ ρ);

(ii) if µ + ρ is regular, then Hq(µ+ρ)(D,Lµ) is a unitary GR-module that realizes

the discrete series representation whose Harish-Chandra parameter is µ+ρ. In

particular it has infinitesimal character χµ+ρ.

30We note again the paper [AS], which gives a different way of realizing the DS’s. The approach
taken here is one that uses the geometry of homogeneous complex manifolds.
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Schmid’s proof of this result uses the realization of L2-cohomology as n-cohomology.

Recalling the Plancherel decomposition

L2(GR) =

∫

ĜR

V ∗π ⊗̂Vπdπ

the result is

Hq
(2)(D,Lµ) =

∫

ĜR

V ∗π ⊗̂Hq(n, Vπ)−µ.

Here the terms in the integrand on the RHS are n-cohomology groups that will be

discussed below.

(B) Let Vπ be in the DS, and µ a weight with µ+ρ regular, and Hq(n, Vπ)−µ 6= 0. Then

(i) q = q(µ+ ρ);

(ii) for this q, dimHq(n, Vπ)−µ = 1;

(iii) V ∗π has infinitesimal character χµ+ρ;

(iv) H∗(n, Vπ)−µ′ 6= 0⇒ µ′ + ρ = w(µ+ ρ) for some w ∈ WK.

In the section below on the Hochschild-Serre spectral sequence we will use curvature

considerations to sketch a proof of (B) for µ sufficiently non-singular.

We remark that in [Sch2] there are three GR-modules that are used:

• Vπ = unitary GR-module;

• V ∞π = C∞ vectors in Vπ;

• Vπ,K-finite = K-finite vectors in Vπ.

The arguments given there show that the n-cohomology is the same in all three cases.

We will give a general discussion of n-cohomology later in this lecture.

Next we let Z0 = K ·x0 ⊂ D be the K-orbit of the reference point x0 = eT ∈D. Then

Z0 = K/T is a maximal compact, complex analytic subvariety of D. There will be a

general discussion of these in Lecture 6.

(C) Let µ be a weight such that µ + ρ ∈ −C, the closure of the anti-dominant Weyl

chamber. Then for d = dimK/T = dimZ0,

(i) Hd(D,Lµ) is a Harish-Chandra module with infinitesimal character χµ+ρ;

(ii) the K-type of Hd(D,Lµ) may be obtained by expanding the cohomology about

the maximal compact subvariety Z0.

The above results, stated somewhat more precisely, are in [Sch2] in the case when µ+ ρ

is regular. The extension to the case when µ+ ρ is on a wall of the anti-dominant Weyl

chamber is by a personal communication by Schmid. This latter includes the cases of a

LDS and a TDLDS that are of particular importance in these lectures.

We will now explain the other terms used above. For L2-cohomology we used the GR-

invariant metrics in Lµ → D and in the tangent bundle TD to define an inner product
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(pre-Hilbert space structure) on the space A0,q
c (D,Lµ) of compactly supported, smooth,

Lµ-valued (0, q) forms on D. Using this one then defines the adjoint ∂
∗

of the ∂-operator

and Laplace-Beltrani operator �. After completing A0,q
c (D,Lµ) in L2, one may regard

∂, ∂
∗

as densely defined unbounded operators and setting � = ∂ ∂
∗

+ ∂
∗
∂ define the

L2-cohomology groups

Hq
(2)(D,Lµ) = ker�

= (ker ∂) ∩ (ker ∂
∗
).

The proof of the vanishing statement (i) in (A) for µ+ρ sufficiently far from the walls

of the Weyl chamber was proved in [GS] using the classical method of Bochner-Yano, the

same method used by Kodaira in the proof of his vanishing theorem.. That regularity

alone is insufficient follows by observing that this same method gives the vanishing of

Hq(Γ\D,Lµ), q 6= q(µ+ ρ)

for Γ co-compact and neat, while for D non-classical and n = dimD, which implies that

q(µ+ ρ) 6= 0 for all µ,

Hn(Γ\D,L−2ρ) = Hn(Γ\D,ωΓ\D) 6= 0.

The two ingredients used in removing the restriction of sufficient regularity are Zuck-

erman’s translation principle and the lemma of Casselman-Osborne, both of which will

be discussed in Lecture 9.

n-cohomology

We will assume the basic definition and elementary properties of Lie algebra cohomol-

ogy, and will now explain how it arises in the study of the cohomology groups Hq(D,Lµ).

The basic idea is the following. In the fibration GR
π−→ D the space Γ(D,C∞(E)) of sec-

tions of any homogeneous bundle

E = GR ×T Ey
D

are given by E-valued smooth functions f : GR → E such that under the right action

of T

f(gt) = r(t−1)f(g)

where r : T → Aut(E) is the given representation of T . Taking

E = ΛqT 0,1∗D ⊗ Lµ
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to be the bundle of Lµ-valued (0, q) forms where χµ : T → Aut(Cµ) is the character that

gives Lµ, we have the identification

A0,q(D,Lµ) = (C∞(GR)⊗ Λqn∗ ⊗ Cµ)T .

Here we have used the identification

T 0,1
x0
D = n,

and the notation ( )T means “T -invariants” where T acts on C∞(GR) by right trans-

lation on GR, on n by the adjoint action Ad and on Cµ by χµ. We may abbreviate this

by letting (
C∞(GR)⊗ Λqn∗

)
−µ

be the elements that transform under the Lie algebra t of T by the weight −µ. Here

the action of t on C∞(GR) ⊗ Λqn∗ is given for H ∈ t by RexpH ⊗ 1 + 1 ⊗ AdH where

Rg denotes the action of right translation by g ∈ GR. Equivalently, we consider H as a

left-invariant vector field on GR, and then the infinitesimal action is

H · (f ⊗ ω) = (LHf)⊗ ω + f ⊗ ad∗H(ω)

where LH is the Lie derivative and ad∗ is the dual of the adjoint action ad of t on n.

Then (C∞(GR)⊗ Λqn∗)−µ are sums of terms f ⊗ ω where

H · (f ⊗ ω) = −〈µ,H〉 f ⊗ ω.
The final step is to note that under the identification

A0,q(D,Lµ) = (C∞(GR)⊗ Λqn∗)−µ

the ∂-operator on the LHS becomes the Lie algebra coboundary operator δ on the RHS

(cf. [GS]). Here, n acts on C∞(GR) by considering X ∈ n as a left-invariant vector field,

so that for g ∈ GR

exp(tX)(g) =
d

dt
(g · exp(tX))t=0

where the LHS is the action of the 1-parameter group on GR and the RHS is multipli-

cation in the group. Briefly we say that “left-invariant vector fields act by infinitesimal

right translation.” We note that the group GR acts on both sides of the identification

above; on the RHS it acts by left translation on C∞(GR) and acts trivially on n∗.

Summarizing we have the identifications of complexes of GR-modules

A0,•(D,Lµ), ∂) ∼=
(
(C∞(GR)⊗ Λ•n∗)−µ, δ

)

which gives the isomorphism of GR-modules

Hq(D,Lµ) ∼= Hq(n, C∞(GR))−µ.
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Replacing C∞(GR) by L2(GR) or other subspaces of L2(GR), involves analytic issues

that are treated in [Sch2]. The end result is the identification

Hq
(2)(D,Lµ) =

∫

ĜR

V ∗π ⊗̂Hq(n, Vπ)−µdπ

mentioned above.

The K-type

The K-type of a Harish-Chandra module M is the decomposition of the KC-module

M into irreducible KC-modules with finite multiplicities

M
∣∣
KC

= ⊕
λ∈K̂C

mλW
λ

whereW λ is theKC-module corresponding to λ ∈ K̂C. A subtlety that we shall encounter

in examples is that K will in general be reductive but not semi-simple; e.g., GR =

SU(2, 1)R in which case K = U(2). Thus K̂C will not just be the set of highest weights

of the derived group of K, but will have additional parameters arising from the characters

of K itself.

Let Z0 = K/T = KC/BK where BK = KC ∩ B be the maximal compact, complex

submanifold of D = GR/T given by the K-orbit of x0 = eT . The general properties of

the space of compact, complex submanifolds of D will be discussed in the next lecture.

Here we want to explain the statement (C) above.

For simplicity of notation, we set Z = Z0 and use the notations

• IZ ⊂ OD is the ideal sheaf of Z;

• NZ/D → Z is the normal bundle of Z ⊂ D;

• N∗Z/D is the dual and SkN∗Z/D is the kth symmetric product.

Then we have

SkN∗Z/D
∼= IkZ/I

k+1
Z .

Proof. Locally there are holomorphic coordinates x1, . . . , xd, y1, . . . , yn−d on D such that

Z =
{
y1 = · · · = yn−d = 0

}
.

Then, identifying locally free sheaves and vector bundles

• NZ/D
∼= span over OZ of ∂/∂y1, . . . , ∂/∂yn−d;

• N∗Z/D ∼= span over OZ of dy1, . . . , dn−d;

• IZ ∼= span over OD of y1, . . . , yn−d.
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The map

IZ → N∗L/D

∈ ∈∑

i

fi(x, y)yi →
∑

i

fi(x, 0)dyi

is well defined, the point being that a change of coordinates is of the form

ỹi =
∑

j

F i
j (x, y)yj.

The kernel is I2
Z and the resulting map IZ/I

2
Z → N∗Z/D is readily seen to be an isomor-

phism. A similar argument works for IkZ/I
k+1
Z → SymkN∗Z/D.

From the above, setting IkZ(Lµ) = IkZ ⊗OD Lµ and OZ(Lµ) = Lµ/IZ(Lµ) we obtain

exact sequences

0→ IZ(Lµ)→ Lµ → OZ(Lµ)→ 0

0→ I2
Z(Lµ)→ IZ(Lµ)→ N∗Z/D(Lµ)→ 0

0→ I3
Z(Lµ)→ I2

Z(Lµ)→ S2N∗Z/D(Lµ)→ 0

...

The induced maps on cohomology

→ Hd(D, IZ(Lµ))→ Hd(D,Lµ)→ Hd(Z,Lµ)→ Hd+1(D, IZ(Lµ))

Hd(D, I2
Z(Lµ))→ Hd(D, IZ(Lµ))→ Hd(Z,N∗Z/D(Lµ))→ Hd+1(D, I2

L(Lµ))

Hd(D, I3
Z(Lµ))→ Hd(D, I2

Z(Lµ))→ Hd(Z, S2N∗Z/D(Lµ))→ Hd+1(D, I3
Z(Lµ))

...

are what is meant by the phrase expanding the cohomology group Hd(D,Lµ) about Z.

As will be seen in the next lecture, for any coherent sheaf F → D

Hq(D,F) = 0 for q > d.

Thus all the above maps on cohomology

Hd(D, IkZ(Lµ))→ Hd(Z, SkNZ/D(Lµ))

are surjective. More formally: Define the filtration

F kHd(D,Lµ) = image
{
Hd(IkZ(Lµ))→ Hd(D,Lµ)

}
.

We will note below that ∩kF kHd(D,Lµ) = 0, which gives
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The filtration F •Hd(D,Lµ) on the Harish-Chandra module Hd(D,Lµ)

is KC-invariant and has associated graded

⊕
k=0

Hd(Z, SkN∗Z/D(Lµ)).

This KC-module is the K-type of Hd(D,Lµ).

For the TDLDS, which is the case of particular interest in these lectures, the Harish-

Chandra parameter is zero so that the TDLDS is specified by a choice C of positive

Weyl chamber for which no simple root is compact. Then C determines a set Φ+ of

positive roots and the Harish-Chandra module is Hd(D,L−ρ).

In general, the K-type does not determine the HC-module. Here one may think of

the principle series which has continuous parameters all with the same K-type such as

the TDLDS for SU(2, 1)R. The TDLDS occur for special values of the parameters (cf.

[CK]). However, as will be explained below and in Lecture 6 this geometric realization

of the K-type gives more: we will see that the cup-product mappings

H0(Z,NZ/D)⊗Hd(Z, SkN∗Z/D(Lµ))→ Hd(Z, Sk−1N∗Z/D(Lµ))

will enable us to reconstruct the gC-module Hd(D,Lµ) from its K-type.

Remark: Suppose that µ + ρ is regular but may not be anti-dominant. Then there is

a Weyl chamber C ′ such that µ + ρ ∈ −C ′. With ρ′ =
(

1
2

)
(sum of the positive roots

corresponding to C ′) we define the weight µ′ by

µ′ + ρ′ = µ+ ρ.

Then Hd(D′, Lµ′) is a Harish-Chandra module with infinitesimal character χµ′+ρ′ = χµ+ρ

and we may determine the K type by expanding about Z ′ = K/T ⊂ D′ as above. We

note that D′ will in general have a different complex structure than D.

If we want to keep an equivalent complex structure we may choose w ∈ WK such that

w(µ + ρ) is only K-anti-dominant and write w(µ + ρ) = µ′ + ρ and proceed as above

([Sch2]).

In Lecture 8 we will use a modification of this method. There we will have µ′+ρ′ = µ+ρ

as above but where for the Weyl chamber C ′ we will have

q(µ′ + ρ′) = 0.

Then the corresponding homogeneous complex manifold D′ will be classical and the

Harish-Chandra module will be H0(D′, Lµ′). In fact, µ′ will be orthogonal to all the

compact roots and H0(D′, Lµ′) will correspond to a holomorphic discrete series arising

from L2 holomorphic sections of a line bundle over an HSD.
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The Hochschild-Serre spectral sequence (HSSS)

Let V be an n-module. Identifying

p+ = pC/n

we have from [b, n] ⊆ n that p+ is a b-module, and hence also an n-module.31 Using the

Cartan-Killing form we also have the identification of b-modules

n∗ ∼= p+.

The HSSS is a spectral sequence abutting to H∗(n, V ) and with E1-term

Ep,q
1 = Hq(nK ,∧pp+ ⊗ V ).

The differentials in the spectral sequence commute with the action of h, and therefore

for any weight µ we have a spectral sequence abutting to H∗(n, V )−µ and with E1 term

Ep,q
1 = Hq(nK ,∧pp+ ⊗ V )−µ.

In practice we will assume that V is an admissible Harish-Chandra module and decom-

pose it into K-types (the reason for using W λ∗ will appear below)

V = ⊕
λ∈K̂C

mλW
λ∗ .

Then

Ep,q
1 = ⊕

λ∈K̂C

Hq(nK ,∧pp+ ⊗W λ∗)⊕mλ−µ .

For V the space of K-finite vectors in Hd
(2)(D,Lµ), the K-type is V = ⊕Vn where

Vn = GrnV = Hd
(
Z, SymnN∗Z/D(Lµ)

)
.

As noted previously, we have an inclusion

pC ↪→ H0(Z,NZ/D),

and then the cup-products on cohomology induce

pC ⊗ Vn → Vn−1.

Using that V is unitarizable with the Vn being unitary summands and that p ∼= p∗ as

unitary n-modules, we have dually

pC ⊗ Vn → Vn+1

It is these maps that enable one to compute the differentials in the HSSS. In particular,

setting

Ep,q
r,n = ker d1 ∩ · · · ∩ ker dr−1 on Hq(nK ,∧pp+ ⊗ Vn)

31There is an important subtlety here in that except in the classical case we do not have [b, n+] ⊆ n+.
The b-module structure is that on the quotient pC/n.
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we see that

dr involves only Vn, Vn+1, . . . , Vn+r;

i.e., the action of ⊕
l5r

Syml p on Vn.

In the appendix to Lecture 7, for E any bK-module with corresponding homogeneous

vector bundle E→ Z, we will see that

Hq(Z,E(µ)) = ⊕
λ∈K̂

W λ ⊗Hq(nK , E ⊗W λ∗)−µ.

Using this and the HSSS we will give a sketch of how one my prove Schmid’s result (B)

for µ sufficiently regular, denoted here by |µ| � 0 where | | is the minimum distance to

the a wall of a Weyl chamber.

We first assume that µ + ρ is anti-dominant. Then since Lµ → Z is a negative line

bundle, by the Kodaira vanishing theorem for |µ| � 0 we will have

Hq(Z,∧pNZ/D(Lµ)) = 0, 0 5 q 5 d− 1 and all p.

Using the above and taking for E the ∧pp+’s this gives

Hq(nK ,∧pp+ ⊗W λ∗)−µ = 0, 0 5 q 5 d− 1 and all p

for any finite dimensional irreducible KC-module W λ∗ . In particular, for |µ| � 0

Ep,q
1 = ⊕

n
Hq(nK ,∧pp+ ⊗ Vn)−µ = 0, 0 5 q 5 d− 1 and all p.

Thus the E1 term of the HSSS for H∗(n, V )−µ looks like

∗ ∗ · · · ∗
0 0 · · · 0

· · ·
· · ·
0 0 · · · 0

and then E2 = E∞; i.e.,

• Hq(n, V )−µ = 0, 0 5 q 5 d− 1;

• Hd(n, V )−µ ∼= ker{d1 · E0,1
1 → E1,d

1 }.
On the other hand, again for |µ| � 0 we have

Hq
(2)(D,Lµ) = 0, q 6= d.

This is using the same curvature argument for vanishing of cohomology that we have

mentioned above. Since

Hq
(2)(D,Lµ) =

∫

ĜR

V ∗π ⊗̂Hq(n, Vπ)−µdπ,
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for V the Harish-Chandra module associated to the DS Hd
(2)(D,Lµ) we may infer that

E0,d
2 = E0,d

∞
∼= Hd(n, V )−µ

Ep,d
2 = 0 for 2 5 p 5 n− d where n = dimD.

Moreover, as will be seen in the appendix to the next lecture, E0,d
2 = ker d1 : E0,d

1 → E1,d
1

and

E0,q
2 ⊂ E0,q

1 is the 1-dimensional with generator the Kostant class κµ of

the lowest K-type V0 = Hd(Z,Lµ).

This establishes Schmid’s result for V ∗π = V and |µ| � 0. Proof analysis shows that

we have really only used that µ is K-anti-dominant. Then

q(µ) = d+ e

where

e = #{β ∈ Φ+
nc : (µ, β) > 0}.

Then vector ∧

β∈Φ+
nc

(µ,β)>0

Xβ =: Jµ ∈ ∧pp+

defines a line in ∧pp+. The E2-term of the HSSS looks like

∗ ∗ · · · ∗ ∗
0 0 · · 0 0

· ·
· ·
0 0 · · 0 0

and using Hq
(2)(D,Lµ) 6= 0 only for q = q(µ) = d+ e the E2 is

e

0 · · 0 C 0 · · 0

0 · · 0 0 0 · · 0

· · · · ·
0 · · 0 0 0 · · 0

where the non-zero term is

Jµ ⊗
(

Kostant class of the lowest K-type in H
q(µ)
(2) (D,Lµ)

)
.
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Finally, the condition |µ| � 0 may be removed, as in [Sch2], using Zuckerman trans-

lation and Casselman-Osborne.

The above is of course not meant to give a proof of Schmid’s results in (B), but rather

to indicate why they might hold.
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Appendix to Lecture 5: The Borel-Weil-Bott (BWB) theorem

The most classical relation between representation theory and complex geometry is

the BWB theorem. For reference and for use in Lecture 7 we shall briefly discuss a

special case of it here.

The special case deals with a flag variety Ď = GC/B. The general case is that of a

homogeneous projective variety GC/P , and it may be reduced to the special case using

the Leray spectral sequence for the fibration GC/B → GC/P .

We consider a weight µ giving rise to a GC-homogeneous line bundle Lµ → Ď. Let

qc(µ+ ρ) = #
{
α ∈ Φ+ : (µ+ ρ, α) < 0

}
.

This is the same q(µ + ρ) as defined earlier, but where we take for our real form of GC

the compact real form Gc, so that then Ď = Gc/T . The statement of the BWB theorem

has two parts, the first of which is

(i) if µ+ ρ is singular, then all the cohomology groups Hq(Ď, Lµ) = 0.

If µ + ρ is regular, then there is a unique element w ∈ W in the Weyl group of (gC, h)

such that w(µ+ ρ) ∈ C, the interior of the positive Weyl chamber for Φ+.

(ii) Hqc(µ+ρ)(Ď, Lµ) is the irreducible GC-module with highest weight w(µ+ ρ)− ρ.

Thus the same GC-module may appear in different ways as cohomology groups. In

the appendix to Lecture 7 we shall show that these different realizations are all related

geometrically via Penrose transformations (which in fact leads to yet another proof of

the BWB theorem in this case).

We want to make a couple of observations about the BWB theorem. The first is an

explanation of the pervasive appearance of the expression

w(µ+ ρ)− ρ
in the subject: it is forced by Kodaira-Serre duality. In more detail, the original Borel-

Weil theorem was the case when µ ∈ C, in which case µ+ ρ ∈ C, and it states that:

H0(Ď, Lµ) is the irreducible GC-module with highest weight µ.

This result may be proved rather directly (cf. [Sch2]).

Keeping µ ∈ C, setting dim Ď = n and noting that ωĎ = L−2ρ, Kodaira-Serre duality

gives that

Hn(Ď, L−µ−2ρ) is the dual GC-module to H0(Ď, Lµ).

Define f(ν) by “Hn(Ď, Lν) has highest weight f(ν).” Then Hn(D,L−µ−2ρ) has highest

weight f(−µ− 2ρ) and since H0(Ď, Lµ)∗ has lowest weight −µ,

f(−µ− 2ρ) = w(−µ)
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where w(Φ−) = Φ+. Replacing µ by −λ gives

f(λ− 2ρ) = w(λ).

Then formally replacing λ− 2ρ by µ and using that w(ρ) = −ρ (see below) gives

f(µ) = w(µ+ 2ρ) = w(µ+ ρ) + w(ρ) = w(µ+ ρ)− ρ,
which was what we wanted to show.

Next, following the classical paper [Ko], we want to give the n-cohomology interpre-

tation of the BWB theorem. For this we use here the following notations, which with

apologies are not the same as those in the lecture:

• nc = ⊕
α∈Φ+

g−α.

The subscript “c” here refers to the compact real form Gc of GC, where Φ+
c = Φ+ is the

set of all positive roots.

• For w ∈ W we set Ψw = wΦ− ∩ Φ+.

This is the set of negative roots that change sign under w.

• For Ψ ∈ {ψ1, . . . , ψq} ⊂ Φ+ we set
{
〈Ψ〉 = ψ1 + · · ·+ ψq
ω−Ψ = ω−ψ1 ∧ · · · ∧ ω−ψq .

Here, for α ∈ Φ+ we are denoting by ω−α ∈ n∗c the dual to the negative root vector X−α.

In the appendix to Lecture 7 we will interpret the ω−α geometrically in the context of

the EGW-theorem.

• If α1, . . . , αr are the positive roots, then

(i) ρ− 〈Ψ〉 = 1
2
(±α1 ± α2 ± · · · ± αr) for some choices of signs, and as Ψ runs

through all subsets of Φ+ all choices of signs are possible;

(ii) Ψw and Ψc
w =: Φ+\Ψw are both closed under addition;

(iii) if Ψ ⊂ Φ+ has this property, then Ψ = Ψw for a unique w ∈ W ;

(iv) w(ρ) = ρ− 〈Ψw〉; and

(v) 〈Ψ〉 = 〈Ψw〉 ⇒ Ψ = Ψw.

Let V λ be the irreducible GC-module with highest weight λ. The dual GC-module V λ∗

has lowest weight −λ and we let v∗−λ be a lowest weight vector. Then for any w ∈ W ,

w(−λ) is an extremal weight for V λ∗ and we let v∗w(−λ) be the corresponding weight

vector. Finally we set

µ = w−1(λ+ ρ)− ρ⇒ λ = w(µ+ ρ)− ρ,
κµ = v∗w(−λ) ⊗ ω−〈Ψm〉.
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Theorem: (i) Hq(nc, V
ν∗)−µ = 0 for ν 6= w(µ+ ρ)− ρ and q 6= qc(µ+ ρ).

(ii) dimHqc(µ+ρ)(nc, V
w(µ+ρ)−ρ)−µ = 1 with generator κµ.

We shall refer to κµ as the Kostant class. It is a harmonic form in the sense of [Ko],

and also in the sense of the EGW-theorem to be discussed in the appendix to Lecture 7.

It is instructive to see why the Lie algebra coboundary κµ = 0. This follows from

property (ii) above and

X−βv
∗
w(−λ) = 0 for β ∈ Ψc

w.

We will give the calculation in the appendix to Lecture 7 when we discuss the BWB in

the context of the EGW-theorem and Penrose transforms there.

Finally we remark that we shall need the BWB when Gc is only reductive. Here we are

considering Gc/T as a Gc-homogeneous complex manifold. As a complex manifold this is

the same as Gad
c /T

ad where T ad = Gad
c ∩T . But as homogeneous complex manifolds Gc/T

and Gad
c /T

ad are quite different. One may think here of P1 = U(2)/T . The characters

of T are a semi-direct product of those on T ad and on Gc itself, and the action of the

latter on cohomology must be added to the usual statement of the BWB theorem. We

see this already when the line bundle L is associated to a character of Gc. It is trivial

as a holomorphic line bundle but non-trivial as a homogeneous one; the action of Gc on

H0(Gc/T, L) is non-trivial.
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Lecture 6

Geometry of flag domains: Part I

In these two lectures we will introduce and explain the relationships among and major

properties of three constructions associated to a flag domain D = GR/T :

• cycle space U;

• incidence variety I;

• correspondence space W.

Both U and W will be shown to be Stein manifolds and there will be a basic diagram

on which GR acts equivariantly:

W

πJ

������������������������

π′

��/
/////////////////////

π

��
I

πD

��������������

πU

��????????????

D U

The fibres of W
π−→ D and of W

πI−→ I will be seen to be contractible, so that the basic

theorem of Eastwood-Gindikin-Wong [EGW], discussed in the next lecture, will apply

to this situation. In particular the cohomology groups Hq(D,Lµ) will be represented by

global, holomorphic data on W.

As a consequence of Matsuki duality, which is explained below, we will see that U and

W have the property of universality. One implication is that U and W depend only on

the flag variety Ď = GC/B and not on the particular flag domain D. A consequence of

this is that if we index the open GR-orbits in Ď as

Dw ⊂ Ď, w ∈ W/WK

then there are diagrams

W

πw

��������������
πw′

��????????????

Dw Dw′

and applying the [EGW] theorem from Lecture 7 enables us to relate the cohomology

groups on Dw to those on Dw′ . It is this property that suggests the name correspondence

space for W.
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Pseudo-convexity of D

We shall use the notations

n = dimD

d = dimK/T.

A basic result, dating to [Sch1], [GS] and discussed in [FHW] and the references cited

there, is

Theorem: There exists an exhaustion function

f : D → R

whose Levi form L(f) has everywhere at least n− d positive eigenvalues.

The argument will proceed in several steps.

Step one: For a holomorphic line bundle over a complex manifold the ratio of the lengths

of any section relative to two Hermitian metrics is a well-defined positive function. We

let h, hc be the length function for the GR, respectively Gc invariant metrics in ωD, ωĎ.

Then

f = − log(h/hc)

is a well-defined function from D to R. Moreover, the Levi form

L(f) =
i

2π
∂∂f = c1(ωD)− c1(ωĎ),

and we have seen in Lecture 5 that

• c1(ωĎ) < 0;

• c1(ωD) has everywhere = n− d positive eigenvalues.

It follows that L(f) has the property in the theorem. Therefore, it remains to show that

f is an exhaustion function; i.e.,

f(x)→∞ as x→ ∂D.

Since the volumes of D relative to h and hc satisfy
{

vol(D, h) =∞
vol(D, hc) <∞

this is at least plausible. For D = ∆ the unit disc in Ď = P1 we have

hc =
dzdz̄

(1 + |z|2)2

h =
dzdz̄

(1− |z|2)2
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which gives

f = − log

(
1− |z|2
1 + |z|2

)

= log
1

1− |z| +O(1).

Step two: There are Gc, respectively GR invariant metrics ( , )Ď, ( , )D in the tangent

bundles TĎ, TD, and hc, h are the induced metrics in the dual top exterior powers. Thus

we need to compare ( , )c and ( , ) in D as we approach ∂D. Specifically, if λ1, . . . , λn
are the eigenvalues of h relative to hc, it will suffice to show

• the λi extend to continuous functions on D = D ∪ ∂D;

• at least one λi(x)→ 0 as x→ ∂D.

We recall our notations

• Bx = Borel subgroup corresponding to x ∈ Ď;

• B = Bx0 where x0 ∈ D is the reference point.

Then B determines a set Φ+ of positive roots for (gC, h) where h = tC and where

• b = h⊕ n−;

• n± = ⊕
α∈Φ±

gα;

• Tx0D
∼= n+.

Each of gR, gc is a real form of gC and we let
{
σ : gC → gC

τ : gC → gC

be the respective conjugation. Then denoting by B the Cartan-Killing form, for u, v ∈ n+

we have32

{
(u, v)D = B(u, σ(v))

(u, v)Ď = −B(u, τ(v)).

We let

• O = GC-orbit of Tx0Ď in TĎ;

• OR = GR-orbit of Tx0D in TĎ;

• Oc = Gc-orbit of Tx0Ď in TĎ.

32We here use B to denote the Cartan-Killing form, since the customary notation for it denotes in
this lecture the Borel subgroup.



106 Phillip Griffiths

Then we note that each of ( , )D and ( , )Ď give continuous functions on O which re-

strict to the respective GR, Gc invariant metrics on TD and TĎ. Here we are identifying

TxĎ ∼= Ad gx · n+ where gx · x0 = x with gx ∈ GC. We have to show

If x ∈ ∂D, then ( , )D(x) is degenerate.

It is positive semi-definite by continuity.

Step three: The crucial step is

Bruhat’s Lemma: Any two Borel sub-algebras of gC contain a common σ-stable Cartan

sub-algebra.

We apply this to bx and σ(bx) and denote by hx a common Cartan sub-algebra of gC
with Φx denoting the root system of (gC, hx). Then

TxĎ ∼= gC/bx

singles out a set Φ+
x of positive roots.

So far this discussion applies to any x ∈ Ď. We need to use the assumption that

x ∈ ∂D, which implies for the GR-orbit GR · x of x that the real codimension

codimĎGR · x > 0.

Let Vx ⊂ GR be the stability group of x with Lie algebra vx. Then

vx = gR ∩ bx.

We note that

• vx is a real form of bx ∩ σ(bx), and

• hx = hx,R ⊗ C
where hx,R = hx ∩ σ(hx) is a real Cartan-sub-algebra of gR with

hx,R ⊂ vx.

We have

gC = hx ⊕
(
⊕

α∈Φx
gαx

)

bx = hx ⊕
(
⊕

α∈Φ+
x

g−αx

)
=: hx ⊕ nx

where gαx ⊂ gC is the α-root space for α ∈ Φx. Also,

vx,C = hx,C ⊕ (⊕ root spaces).
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Since vx is a real form of bx ∩ σ(bx),

vx = hx,R ⊕
(

⊕
α∈Φ+

x ∩σΦ+
x

g−αx

)

R

where
( )

R
is the root space. This gives for the real codimension

codimĎGR · x = #
(
Φ+
x ∩ σΦ+

x

)
.

Thus

codimĎGR,x > 0⇔ Φ+
x ∩ σΦ+

x 6= ∅.

We are now done. Namely, let 0 6= v ∈
(

⊕
α∈Φ+

x ∩σΦ+
x

gα
)

R
. Then v ∈ nx and

(v, v)D = B(v, σv) = B(v, v) = 0

since B(nx, nx) = 0. �

Remark: Intuitively, the GR-invariant metric in TD is induced from the metrics in the

Hodge bundles using the inclusion

TD ⊂ ⊕Hom(Fp,VC/Fp).

The metrics in the Fp are non-singular in D, but at least one becomes singular on the

boundary ∂D = D\D. This means that the second Hodge-Riemann bilinear relations

become only positive semi-definite. This heuristic may help to explain what is behind

the above argument.

Remark: For the complexified tangent space we have

(TGR · x)x,C =

{(
⊕

α∈Φ+
x ∩σΦ+

x

gα
)

R
⊗ C

}
⊕
(

⊕
α 6∈Φ+

x ∩σΦ+
x

gα

)
.

The first factor is the complexification of the “real” part of the tangent space and the

second factor is the complexification of the Cauchy-Riemann or complex part of the

tangent space

TCRGR·x = (TGR,x)x ∩ Jx(TGR·x)x

where Jx is the almost complex structure in the real tangent space Tx,RĎ to Ď at x.

A simple example will illustrate the mechanism in the argument. For GR = SL2(R)

and D = H, Ď = P1 we let

x =

[
0

1

]
∈ ∂D
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be the origin. Then

• bx =

{(
a 0

b −a

)
: a, b ∈ C

}
,

• σ

(
a 0

b −a

)
=

(
ā 0

b̄ −ā

)
,

• hx =

{(
a 0

0 −a

)
: a ∈ C

}
,

• vx =

{(
a 0

b −a

)
: a, b ∈ R

}
,

• v =

(
0 0

1 0

)
is a σ-real root vector relative to hx,R.

A more substantive example is this.

Example: For GR = SU(2, 1)R with non-classical domain D ⊂ Ď as discussed before,

we consider the point x = (p, l) ∈ ∂D given by

   
   

   
   

   
   

 sp
L = line at infinity

l

Here

p =




1

0

1


 , L = [0, 0, 1], l = [0, 1, 0].

We have

• gC = sl(3,C) =







a11 a21 a

a12 a22 b

c d e


 : a11 + a22 + e = 0





;
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• σ



a11 a21 a

a12 a22 b

c d e


 =



−ā11 −ā12 c̄

−ā21 −ā22 d̄

ā b̄ −ē


;

• bx =







a11 a21 a

0 a22 0

c d e


 :

a11 + a = c+ e

a11 + a22 + e = 0





.

Note that dimC bx = 5 = dim gC − dim Ď.

• bx ∩ σ(bx) =







a11 a21 a

0 a22 0

c 0 e


 :

a11 + a22 + e = 0

a11 + a = c+ e





;

• vx =








iα 0 γ − i(2α + β)

0 iβ 0

γ + i(2α + β) 0 −i(α + β)


 : α, β, γ ∈ R





.

Note that for the real dimensions we have dimR vx = 3 = dimRGR − dimR(GR · x).

We take

H1 =



i 0 0

0 −2i 0

0 0 i


 ∈ vx

H2 =




0 0 1

0 0 0

1 0 0


 ∈ vx

X =



i 0 −i
0 0 0

i 0 −i


 ∈ vx

Then

• vx = spanR {H1, H2, X};

• hx,R = spanR{H1, H2};

• [H1, X] = 2X, [H2, X] = 0;
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• Vx ∼ S1 × N where N ∼=
{(

u v

0 u−1

)
, u, v ∈ R

}
, where ∼ denotes is “isoge-

neous to”;

• Φ+
x ∩ σΦ+

x = “2”.

In particular, Φ+
x = σ(Φ+

x ) and codimRGR · x = 1.

Remark: In this example the real part of the tangent space maps onto the real part to

the tangent space to the sphere S3 = ∂B. The Cauchy-Riemann part has dimension 2

and may be described as the direct sum of two pieces

(i) p varies in the CR-part of TpS
3;

(ii) l varies in the P1 of lines in P2 passing through p.

The Levi form is positive on the first part and zero on the second part, which is a

holomorphic curve in GR · x.

Using a standard result in complex analysis (cf. the references in [GS], [Sch1] and

[FHW]) the above theorem has the following

Corollary: For any coherent analytic sheaf F → D,

Hq(D,F) = 0 for d > n− d.

The cycle space

Let D = GR/T be a homogeneous complex manifold as above. Then Z0 =: K/T is a

compact, complex submanifold of D.

Definition: The cycle space

U = {gZ0 : g ∈ GC and gZ0 ⊂ D} .

That is, U is the set of translates by elements in GC of the compact, complex submanifold

Z0 that remain in D.

A basic fact is given by the

Theorem: U is a Stein manifold.

We shall give one argument, following [W3], and shall then discuss another argument

from [BHH] that gives additional information that will be used later.

Proof. It will suffice to produce a strictly plurisubharmonic exhaustion function

F : U→ R.
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We denote points of U by u and let Zu ⊂ D be the corresponding compact, complex

submanifold of D. Set

F (u) = sup
x∈Zu

f(x).

Then F is an exhaustion function. There are some technical issues regarding the smooth-

ness of F for which we refer to [W3]. We want to show that the Levi form

L(F ) > 0.

Let xu ∈ Zu be a point at which f
∣∣
Zu

has a maximum. Then by the maximum principle

• df
∣∣
TxuZu

= 0

• L
(
f
∣∣
Zu

)
5 0

We want to show that for ξ ∈ TuU
L(F )(ξ) > 0.

For this we identify ξ with a normal vector field to Zu in D; i.e.,

ξ ∈ H0(Zu, NZu/D).

Then

L(F )(ξ) = L(f)(ξ(xu)).

Since L(F ) has everywhere at least dimD − dimZu positive eigenvalues and L(F ) 5 0

in TxuZu, we may infer that L(F )(ξ) > 0 as desired. �

The cycle space in the non-classical case

The structure of the cycle space U defined above is quite different in the classical and

non-classical cases. If D is a classical flag domain, then there is a fibration

D → DHSD = GR/K

over an Hermitian symmetric domain that is either holomorphic or anti-holomorphic. It

follows that the image of any compact, connected complex analytic submanifold of D

is a point. Thus U ∼= GR/K with one of the two homogeneous complex structures. In

these lectures we are primarily interested in the non-classical case, and therefore in the

remainder of this lecture we shall assume that

D is non-classical.

We then have the

Proposition: U ⊂ GC/KC.
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Proof. Let u0 ∈ U be the reference point corresponding to Z0 = K/T ⊂ D. We will

show that there is a natural identification

Tu0U = gC/kC.

This will establish the proposition at the tangent space level, and we refer to [FHW] for

the proof of the full statement. We will also assume that gC is simple, as the general

case may be reduced to this one.

We may think of gC as a Lie algebra of holomorphic vector fields on Ď. Restricting

these vector fields to Z0 gives a map

gC → H0(Z0, NZ0/D),

where the normal vector fields are thought of as infinitesimal deformations of Z0 in D.

With this interpretation there is an inclusion

Tu0U ↪→ H0(Z0, NZ0/D),

and by the definition of U we have

gC → Tu0U ↪→ H0(Z0, NZ0/D).

Since the complexification KC of K acts on the compact, homogenous complex manifold

K/T , we see that the vector fields corresponding to kC are tangent to Z0, so that we

have the natural surjective mapping

gC/kC � Tu0U

that we want to show is injective. Thinking of gC as normal vector fields along Z0, the

subspace of those that are tangent to Z0 is a sub-algebra. Thus we have to show

Let q ⊂ gC be a sub-algebra with kC ⊂ q ⊂ gC and where both inclusions

are proper. Then there is a choice of positive roots such that

q = kC ⊕ p−

where p− = ⊕
β∈Φ−nc

gβ.

Since GR is assumed to be simple it is known [K1] that in the Cartan decomposition

gR = k⊕ p.

AdK acts irreducibly, and it acts absolutely irreducibly if, and only if, GR is not of

Hermitian type. If GR is of Hermitian type, then K = Z(S1) where the circle S1 ⊂ K
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is the center. Moreover, AdS1 acting on pC decomposes into conjugate eigenspaces

• pC = p+ ⊕ p−

• p− = p+

where the conjugation is relative to the real form gR of gC; i.e., the σ above. It then

follows that since the inclusions kC ⊂ q ⊂ gC are proper

q = kC ⊕ p±.

There is then a choice of positive roots such that q is as in the italicized statement above.

�
A natural question that arises from the above argument is:

Are all the deformations of Z0 in D obtained from the cycle space?

Here one should be a little fussy and phrase the question more precisely as follows:

(i) Does U contain a (topological) neighborhood of u0 in the Hilbert scheme of Ď?

(ii) Is the Hilbert scheme reduced at u0?

The answer to (ii) is “yes” (cf. [FHW]), and the answer to (i) is “no” in general. We

shall see below that

For D = SU(2, 1)R/T with a non-classical complex structure we have

gC ∼= H0
(
Z0, NZ0/0

)
. As we shall see in the appendix to Lecture 9, for

D = Sp(4)R/T with a non-classical complex structure, dimH0(Z0, NZ0/D) =

dim gC + 1.

The definition of U depended on a particular choice of flag domains D ⊂ Ď. It was

proved in [AkG] that U has the following universality property.

Theorem: U ⊂ GC/KC is the same for any D.33

In fact they prove more. Let

gR = k⊕ p

be a Cartan decomposition and A ⊂ p a maximal abelian sub-algebra. It is known

that any two such are conjugate under AdK, and that AdK(A) = p. Let Φ(gR,A) be

the restricted root system. It is also known that gR is an orthogonal direct sum of the

restricted root spaces, which are the common eigenspaces of the adH for H ∈ A, all of

the eigenvalues being real. Following [AkG] one defines

ω0 = {H ∈ A : |α(H)| < π/2 for α ∈ Φ(gR,A)} .

33This will be formulated somewhat more precisely below.
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Recalling that U ⊂ GC/KC, [AkG] prove that

U = GR exp(iω0) · u0.

In the appendix to this lecture there are more details about the root space decomposition

of gR under the action of A with application to the computation of the tangent spaces

to U along exp(iω0) · u0.

Example: Referring to the SU(2, 1) example, for the open GR-orbit D we have the

picture

s
s
p

L

ls
q

where

• q =
[

0
0
1

]
=origin in B;

• L = [0, 0, 1] = line at infinity;

• p =
[

1
1
0

]
= point on L

and l = qp. Then u0 corresponds to the maximal compact subvariety Z(q, L). Taking

A =




H =




0 0 a

0 0 0

a 0 0


 : a ∈ R




∼= R

the action of exp itA on u0 may be described geometrically as follows: As t increases the

point p and line L move at equal speed to where at t = t0 we have

pt0 ∈ ∂B, Lt0 tangent to ∂B at pt0 .
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In coordinates we take a = 1 in H above. Then

exp(itH) =




cos t 0 i sin t

0 1 0

i sin t 0 cos t




exp(itH) =



i sin t

0

cos t




and the condition exp(itH)q ∈ B is |t| < π/4, which is consistent with the boxed result

and in this case the root being “2.”

Example: SO(4, 1). We may first identify

W̌ = GC/KC =
{
E ∈ Gr(4, VC) : Q

∣∣
E

non-singular
}
.

Then we let u = E⊥ where “⊥” means “Q orthogonal complement.” Then one may show

that

E ∈ U⇔
{

span(u, ū) has dimension one and H
∣∣
span(u,ū)

< 0,

or H
∣∣
span(u,ū)

has signature (1, 1)

}

where H(u, v) = Q(u, v̄). The first condition is equivalent to E = E and H
∣∣
E
> 0. The

set of such E’s is just the real symmetric space SO(4, 1)R/ SO(4)R ⊂ U. Either of the

two conditions is equivalent to

E ∈ U⇔ for 0 6= v ∈ E, if Q(v, v) = 0 then H(v, v̄) > 0.

We will interpret this result Hodge-theoretically. For this we let D0
∼= SO(4, 1)R/U(2)

be the period domain for PHS’s of weight n = 2 and with h2,0 = 2, h1,1 = 1. A point of

D0 is F 2 ∈ Gr(2,C5) with
{
Q(F 2, F 2) = 0, i.e., F 2 ∈ GrL(2,C5)

Q(F 2, F
2
) > 0.

The flag domain D is the set of Hodge flags given by J ⊂ F 2, dim J = 1. Thus D → D0

is a P1-bundle. We note that given J ⊂ F 2 there is a full flag

0 ⊂ J ⊂ F 2 ⊂ F 2⊥ ⊂ J⊥ ⊂ C5.

The maximal compact subvarieties of D and D0 are in one-to-one correspondence under

the map D → D0. For D and E as above, the maximal compact subvariety is

Z(E) =
{
F 2 ⊂ E : Q(F 2, F 2) = 0

}
= GrL(2, E).
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It is interesting to interpret the [AkG] result in this case. Taking for Q the standard

form

Q =

(
I4 0

0 −1

)

then

gR =

{


0 tb a

−b A c

a︸︷︷︸
1

tc︸︷︷︸
3

0︸︷︷︸
1


 : a ∈ R and b, c ∈ R3, A ∈ so(3)R

}

.

Taking

A =








0 0 a

0 0 0

a 0 0








and letting ξ ∈ A be given by the above matrix when a = t we have

exp(iξ) =




cot t 0 i sin t

0 I3 0

i sin t 0 cos t


 .

For our reference point u0 ∈ U we take the point u0 = (0, . . . , 0, 1) with corresponding

E0 = C4 ⊂ C5. Then for ut = exp(iH)u0 we have

ut = (i sin t, 0, 0, 0 cos t).

Then for t not an integral multiple of π/2, dim span(ut, ūt) = 2 and on this span

H =

(
sin2 t 0

0 − cos2 t

)
,

which has signature (1, 1) for 0 < t < π/2.

Interlude on Grauert domains

The result of Akheizer-Gindikin [AkG], and the use we shall make of it below following

[BHH], is part of a very nice story in complex geometry that we want to briefly outline.

We let M be a Riemannian manifold with metric g and set

• TM ∼= T ∗M (identification using g);

• ρ : TM → R the Riemannian distance;

• α = canonical 1-form on T ∗M and ω = dα.

Grauert’s idea was that there is a Stein complex structure in a neighborhood N of

M ⊂ TM ; in this way N has lots of real analytic functions. The basic result is this:
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there exists a unique complex structure on a sufficiently small N such

that (i) ρ2 is strictly plurisubharmonic and the corresponding Kähler

metric restricts to g on M ; and (ii) (∂∂ρ)n = 0 on N\M .

The complex structure is the unique one such that for every geodesic γ : [0, ε]→M

s+ it→ (γ(s), tγ′(s))

is a holomorphic curve in N . We shall refer to N as a Grauert domain.

A natural question is: What is the maximal Grauert domain? It is known (cf. [BHH]

and the references cited there) that negative curvature of M implies that any N must

have finite radius. This is because of the following result:

The almost complex structure tensor J is a solution of the Jacobi equa-

tion along holomorhpic curves as above.

In this way the curvature enters the picture, and negative curvature turns out to imply

that J develops a singularity in finite time.

In the case when M = GR/K and

TM = GR ×K p

the Jacobi operator is

Y → R(Y,X)X = −(adX)2Y

where X, Y ∈ p and R is the curvature. Then the Jacobi equation for J may be explicitly

analyzed in terms of the eigenvalues of the operator adX and it follows that the maximal

Grauert domain is

G = GR × (AdK(ω0)) ⊂ TM.

The basic result in [AkG], with another proof given in [BHH], is

The map

G → U

given by (g,Ad k(H)) → gk exp(iH)u0 is a GR-equivariant biholomor-

phism.

If we identify the tangent space

Tu0(GC/KC) = pC = p⊕ ip
then the differential at the identity of the above map is the identity.

The above result leads to another proof, again following [BHH], that U is Stein. For

this we first note that

the action of GR on U is proper.
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Proof. Let u0 ∈ U be fixed and {gn} ∈ GR a sequence with un = gnu0. Assuming that

{un} is a bounded sequence in U, we have to show that a subsequence converges to a

point in GR. The maximal compact subvarieties Zun = gnZu0 lie in a bounded subset

in D. Then from the fact that GR acts property on D, we may infer that {gn} is a

bounded sequence in GR, and hence has a convergent sequence. �

Another proof follows from the [AkG] result in the box above. Namely, one may

observe that

For u = exp(iH) · u0 where H ∈ ω0, the isotropy group GR,u is the

centralizer of H in K.

In particular, GR,u = ZK(H) is compact.

A consequence is that the orbits are closed and the quotient space GR\U is Hausdorff.

A GR-invariant function

f : U→ R

is said to be an exhaustion function modulo GR if for a sequence un ∈ U that is diver-

gent in GR\U we have f(un) → ∞. As shown in [BHH] such a function is uniquely

determined by the restriction fω0 to a function on ω0 that is invariant under the Weyl

group NK(A)/ZK(A), and any such function fω0 extends to a GR-invariant function f

on U. Moreover, f has Levi form L(f) > 0 exactly when fω0 is strictly convex. It fol-

lows that there exist strictly plurisubharmonic functions f that are exhaustion functions

modulo GR. In the appendix to this lecture we will further discuss this result.

Let now Γ ⊂ GR be a co-compact, neat discrete group. Then the projection Γ\U →
GR\U is proper. This implies that

f : Γ\U→ R

is an exhaustion function in the usual sense, so that

Γ\U is Stein,

as then is also its covering space U.

The result about Γ\U will be used below.

Although we shall not need it in these lectures there is an interesting result describing

the cycle space U in case G is of Hermitian type, meaning that the quotient GR/K has

the structure of an Hermitian symmetric domain B.

Theorem ([BHH] and [FHW]): If G is of Hermitian type and D is non-classical, then

there is a biholomorphism

U ∼= B×B.
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Example: SU(2, 1). We recall that Ď is the flag manifold for P2 consisting of pairs

(p, l) where p ∈ P2, l ∈ P2∗ is a line in P2, and p ∈ l. We also recall that B ⊂ C2 denotes

the unit ball with Bc the complement of the closure. Points of the non-classical D are

then given by the following sets of points (p, l) ∈ Ď

l

p
p ∈ Bc, l ∩ B 6= ∅.

We next note that any pair (P,L) where
{
P ∈ B
L ∩ Bc = ∅

gives a compact subvariety Z(P,L) ∼= P1 in D as described by the picture

l

p

LP

That is, Z(P,L) = {(p, l) : l is a line through P and p = l ∩ L}. The cycle space U is

the set of all such Z(P,L)′s. We note that the set

{L ∈ P2∗ , L ⊂ Bc} ∼= B.

Indeed, the LHS is just the set of points L ∈ P2∗ on which the Hermitian form H is

negative, and H gives a conjugate linear isomorphism C3 ∼−→ C3∗ . From this we see that

U ∼= B× B.

Example: Sp(4). We recall that Ď is the set of Lagrange flags (p, l) in P3, where l ∈ P3

is a line that is Lagrangian for the alternating form Q and p ∈ l. One of the two

non-classical flag domains D ⊂ Ď is given by

D = {(p, l) : H(p) < 0, Hl has signature (1, 1)}
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where H is the Hermitian form described in Lecture 3 and Hl is the restrction of H to l.

For each pair L,L′ of Lagrangian lines with

HL < 0, HL′ > 0

we have a compact subvariety Z(L,L′) ∼= P1 in D described by the pictures

l

p⊥

L

L′

p

Here, for p ∈ L the point p⊥ ∈ L′ is the unique point on L with H(p, p⊥) = 0, and the

line l = pp⊥. It follows that

U ∼= H3 ×H3

where H3 is Siegel’s generalized upper-half-space.

Hyperbolicity of U

Another nice result, not required for these lectures but of interest, is

For D non-classical, U is Kobayashi hyperbolic.

This follows from the fact mentioned above that there is a bounded strictly plurisub-

harmonic function ρ2 on U. Any complex manifold with this property is Kobayashi

hyperbolic. In case G is of Hermitian type the result also follows from the above iden-

tification U ∼= B×B.

Although for G not of Hermitian type U is far from being homogeneous, the two

properties of being Stein and hyperbolic mean that, from the point of view of complex

function theory, U has many of the function-theoretic characteristics of an HSD.

Matsuki duality

Let O = (OKC ,OGR) be a pair of orbits
{
OKC = KC · xO
OGR = GR · xO.
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Definition: We say that O is a dual pair if the intersection

OKC ∩ OGR = K · xO
is a K-orbit.

We note that the orbit K · xO is unique.

The relation “contained in the closure of” partially orders the sets of KC and GR

orbits. Matsuki’s result [Ma] is that the notion of duality between pairs of orbits induces

a bijection

{GR-orbits in Ď} ↔ {KC-orbits in Ď}
that reverses the partial ordering.

We set

UO = {g ∈ GC · (gOKC) ∩ OGR is closed and non-empty}o/KC

where { }o is the connected component of e. The precise universality statement is

UO is independent of O.

We shall illustrate this in our running examples. In these lectures we shall mainly use

it for open GR-orbits, which by Matsuki duality correspond to closed KC-orbits.

Example: SU(2, 1). We shall illustrate the KC and GR-orbits with pictures. For this

we denote by

P0, L0 ∈ P2 × P2∗

the standard pair on which the Hermitian form has the indicated signatures

+

L0P0

•−

Here P0 is the origin in C2 ⊂ P2 and L0 is the line at infinity.

We will here denote points of Ď by a flag F 0 ⊂ F 1

x

F 0

F 1
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Denoting by ↘ the relation “contained in the closure” there are six KC-orbits

x open

x

x

x

x

x

closed
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We may denote each of these by a table

F 0

F 1

P0 L0

where the entries are dimF i ∩ P0 and dimF i ∩ L0. Then the above picture is

0 1

0 0

0 1

0 1

1 1

0 0

1 1

0 1

0 2

0 1

1 1

1 0
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The correspondence to GR orbits is

# negative
eigenvalues

on F 1

# positive
eigenvalues

on F 1

# negative
eigenvalues

# positive
eigenvalues

The pictures of the GR-orbits are

closed orbit

open orbits

D′′ D D′
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Here, D is the non-classical flag domain for SU(2, 1) and D′, D′′ are the two classical

ones. The root diagram with the positive Weyl chambers labelled is

D′′

D

D′

Example: Sp(4). In P3 we have the two standard reference Lagrange planes L±,

represented by lines in P 3, on which the Hermitian form H is positive, respectively

negative definite. There are ten KC orbits, which may be pictured as

0 0

0 0

1 0

0 0

0 1

0 0

1 1

0 0

1 0

1 0

0 1

0 1

1 1

1 0

2 0

1 0

1 1

0 1

0 2

0 1

open orbit

closed orbits
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The picture of the dual GR-orbits it given below. We set HF j = H
∣∣
F j

and the notation

HF j(a, b) means that H
∣∣
F j

has signature (a, b).

HF 1 = 0 closed orbit

HF 1 > 0 HF 1 < 0 open orbits

D3

classical

D1 D2︸ ︷︷ ︸
non-classical

︸ ︷︷ ︸D4

classical

HF 1(1 0)

HF 0 = 0

, HF 1(0 1)

HF 0 = 0

,

HF 1(1 1)

HF 0 = 0

, HF 1(0 1)

HF 0 < 0

,HF 1(1 0)

HF 0 > 0

,

HF 1(1 1)

HF 0 > 0

, HF 1(1 1)

HF 0 < 0

,

︸ ︷︷ ︸

The root diagram is

D3

D1

D2D4

Example: SO(4, 1).34 With Q =
(
I4 0
0 −1

)
and H(u, v) = Q(u, v̄) as above, we set

P = {z5 = 0} ⊂ C5.

34This description is due to Mark Green.
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We shall also denote by Q ⊂ P4 the corresponding quadric and P ∼= P3 the projectiviza-

tion of P above. Then setting PR = P ∩ R5 the maximal compact subgroup

K = {g ∈ SO(4, 1)R : gPR = PR} ∼= O(4)R.

We denote by p∞ = [0, 0, 0, 0, 1] and by

π : P3\p∞ → P

the projection.

We shall first describe the orbit structure for the period domain D, and then say

how this lifts to the orbit structure of the flag domain D̃ lying over D. Recall that the

compact dual

Ď = space of lines lying in Q.

For the GR-orbits, we let F2 ∈ Ď and set HF2 = H
∣∣
F2

. Then we have

(i) dim(F2 ∩ F 2) = 0 or 1;

(ii) dim(F2 ∩ F 2) = 0⇒ HF2 has signature (2,0) or (1,0);

(iii) dim(F2 ∩ F 2) = 0⇒ HF2∩F 2
= 0 and HF2 has signature (1,0).

These describe the GR-orbits in Ď.

Turning to the KC-orbits, we have

(i) π(F2) is tangent to P ∩Q or lies in P ∩Q;

(ii) span{p∞, F2} ∩Q = F2∪ line. This line may be F2 or distinct from F2.

These describe the KC-orbits in Ď. The duality between them and the GR-orbits is
{

dimF2 ∩ F 2 = 0

signature HF2 = (2, 0)

}
←→ π(F2) ⊂ P ∩Q⇔ F2 ⊂ P ∩Q.

These are two open GR-orbits corresponding to the two components of O(4)R and two

closed KC-orbits corresponding to the two rulings of P ∩Q
{

dimF2 ∩ F 2 = 0

signature HF2 = (1, 0)

}
←→

{
span{p∞, F2} ∩Q is a

double line, F2 6⊂ P ∩Q

}

dimF2 ∩ F 2 = 1←→
{

span{p∞, F2} ∩Q is two

distinct lines, F2 6⊂ P ∩Q

}
.

For the flag domain whose points are 0 ⊂ F1 ⊂ F2 with F2 ∈ Ď and dimFi = i, we

will break the three cases for Ď down into sub-cases.
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Case 1: There are no sub-cases;

Case 2:
GR-side KC-side

signature H
∣∣
F1

can dimF1 ∩ P can

be (1, 0) or (0, 0) be 0 or 1

Case 3:
GR-side KC-side

dimF1 ∩ F 1 can dimF1 ∩ P can

be 0 or 1 be 0 or 1

As previously noted, the root diagram is

•

•

•

•

•�
�
�
�

@
@
@
@

•

•

•

•

D2

D1

and the two inequivalent complex structures on GR/T are given by the two marked Weyl

chambers.

Relationship between Matsuki duality and representation theory

There is an extension of Matsuki duality to sheaves [MUV]. Because of the realization

of certain Harish-Chandra modules as cohomology groups of homogeneous line bundles

over open GR-orbits in a flag manifold it is reasonable to surmise that some sort of dual

objects can be realized as cohomology groups associated to line bundles over closed KC-

orbits in the same flag manifold. This is in fact the case; the basic reference is [HMSW]

with an exposition given in [Sch3]. Referring to these works for precise statements and

the definitions of Beilinson-Bernstein localization and Zuckerman modules which will be

used below, we may very informally express a special case of the duality as follows.

Between the open GR-orbit D and the closed KC-orbit Z there is a du-

ality between the Harish-Chandra modules associated to Hd(D,Lµ) and

to Hn−d
Z (Ď, Lµ ⊗ ωĎ).

Here, H∗Z(Ď,F) denotes the local cohomology of the coherent sheaf F along the closed

subvariety Z. The general duality result involves D-modules, but since Z is closed and
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smooth the cohomology of D-modules may be replaced by local cohomology. The result

holds under an assumption of regularity; the condition that µ + ρ is regular and anti-

dominant is sufficient. We will illustrate it in two examples where one may verify that

it also holds when µ + ρ is in the closure of the anti-dominant Weyl chamber, the case

of particular interest in these lectures.

SL2 example

In this case, D = H and Lµ = ω
⊗n/2
H , n ≥ 1 as explained in Lecture 1. The Zuckerman

module associated to H0(H, ω
⊗n/2
H ) consists of finite germs f of sections about the closed

KC-orbit i

f =
m∑

k=0

ak(τ − i)kdτ⊗n/2.

The local cohomology group is

H1
Z(Ď, ω

⊗n/2
Ď
⊗ ωĎ) ∼= H0

(
Ď,H1

Z(ω
∗⊗n/2
Ď

⊗ ωĎ)
)

∼= H1
Z,i(ω

∗⊗n/2
Ď

⊗ ωĎ)

where HZ(∗) denotes the local cohomology sheaf and HZ,i(∗) is the stalk of that sheaf

at i. Elements of this are

f =
m∑

l=0

bl(τ − i)−l−1(dτ)−n/2 ⊗ dτ,

and the duality pairing is

ψ ⊗ f → Resi(fψ) =
∑

k

akbk.

We note that each of H0(H, ω
⊗n/2
H ) and H1

Z(Ď, ω
∗⊗n/2
Ď

) are (gC, KC) modules, where

gC ∼= sl2(C) acts as holomorphic vector fields on P1.

SU(2, 1) example

We take for D the non-classical complex structure on SU(2, 1)/TS and for Z = Z(P,L)

the KC-orbit of the point (p, l)

s
P

s p l

L
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where

• P =
[

0
0
1

]
∈ B ⊂ P2;

• L = [0, 0, 1] ∈ P̌2.

We label the above picture of the KC-orbits as

Q

������

333333

E1

333333
E2

������

Z

where Q is the open KC-orbit, E1 and E2 are the two codimension-one KC-orbits and

Z = E1 ∩ E2.

We observe from the picture that

Each of E1, E2 is a bundle over P1 with fibres C, and E1, E2 are smooth

and meet transversely along Z.

We may also see from the picture that the normal bundle

NZ/D
∼= OZ(1)⊕ OZ(1)

which has the geometric meaning

=





hold l

fixed and

vary p




⊕





hold p

fixed and

vary l




.

35

Set

r = − deg(Lµ
∣∣
Z

)− 2 = 0

where the inequality follows from our assumptions on µ + ρ (cf. the appendix to Lec-

ture 9). The Zuckerman module associated to H1(D,Lµ) are finite sums of the K-type

35K = U(2) and NZ/D is a K-homogeneous vector bundle. The above isomorphism is a splitting as
a SU(2)-homogeneous bundle. The structure as a U(2)-homogeneous bundle is more subtle and will be
presented in the appendix to Lecture 9. For present purposes this is not needed.
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with elements

f ∈
n
⊕
m=0

H1
(
Z, SymmN∗Z/D(−r − 2)

)

∼ =

n
⊕
m=0

H0
(
Z, SymmNZ/D(r)

)
.

We want to see what this means in local coordinates. For this we choose a point p ∈ Z
and local coordinates x, y, z such that p is the origin and Z is given by x = y = 0. For

any locally free coherent sheaf F → Z an element g ∈ H1(Z,F) may be written relative

to the Čech covering

U0 = {p 6= 0}
U1 = {neighborhood of p}

of Z as g = δG where G ∈ Γ(U0 ∩ U1,F) ∼= Γ(∆∗,F) has a pole at p.36 With this

notation, the f above is given by

f =
∑

{ma+b=m

δf̃a,b(z)dxadyb

where, after locally trivializing OZ(1),

f̃a,b(z) =
∑

c>0

f̃a,b,cz
−c

is a finite Laurent series.

On the other hand, a standard result in duality theory gives in this case that

H2
Z(Ď,OZ(r)⊗ ωĎ) = H0

(
Ď,H2

Z(OZ(r)⊗ ωĎ)
)
.37

Sections on the RHS are locally

ψ =
∑

{ma+b=m

ψa,b(z)

(
∂

∂x

)a(
∂

∂y

)b
dx ∧ dy ∧ dz

where the ψa,b(z) is a holomorphic function. We set

F =
∑

f̃a,b(z)xayb;

36This is because H1(Z,F(kp)) = 0 for k � 0 where F(kp) are the sections of F with a pole of order
k at p.

37In general there is a spectral sequence abutting to H∗Z(Ď,F) and with E2-term Hq(Ď,Hp
Z(F)). In

the case at hand this spectral sequence collapses to give the stated result.
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i.e., replace dxa by xa and dyb by yb, and then set

Ψ =
∑

{ma+b=m

ψa,b(z)x−ay−bdx ∧ dy ∧ dz,

i.e., replace
(
∂
∂x

)a
by x−a and

(
∂
∂y

)b
by y−b. When this is done the pairing is

ψ ⊗ f → Res(FΨ)

where the RHS is the Grothendieck residue symbol, which in this case is just the iterated

1-variable residue.
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Appendix to Lecture 6: The Iwasawa decomposition and applications

Many of the results about the cycle space U, especially its GR-orbit structure, may be

best interpreted using the Iwasawa decomposition. In this appendix we shall recall this

decomposition and shall illustrate its application in our running examples.

We shall work at the level of Lie algebras. For this we let

• gR = k⊕ p be a Cartan decomposition with Cartan involution θ;

• A ⊂ p a maximal abelian sub-algebra;

• B = Cartan-Killing form.

We recall that for X, Y ∈ gR, X 6= 0

• B(X, Y ) = B(θX, θY ) and B(X, θX) < 0.

Setting Bθ(X, Y ) = B(X, θY ), for H ∈ A the transformations AdH are a commuting

family of self-adjoint transformations on gR, and hence they may be simultaneously

diagonalized with real eigenvalues. Setting

gλ = {X ∈ gR : (adH)X = λX for all H ∈ A} ,

the non-zero λ’s give the restricted root system Φ(gR,A) with the properties

(i) gR = g0 ⊕
(

⊕
λ∈Φ(gR,A)

gλ
)

where g0 = ZgR(A);

(ii) θgλ = g−λ;

(iii) g0 = m⊕ A orthogonally, where m = Zk(A) is the centralizer of A in k;

(iv) [gλ, gµ] ⊆ gλ+µ.

Φ(gR,A) contributes an abstract root system and we choose a set Φ+(gR,A) of positive

roots (e.g., by using a lexicographic ordering on A∗).

Definition: We set n = ⊕
λ∈Φ+(gR,A)

gλ.

In this appendix the notation n replaces the notation n = ⊕ (negative root spaces for

(gC, h)) used elsewhere in these talks.

We have from (i), (ii) above

(∗) gR = A⊕m⊕ n⊕ θn.

From this we may infer the Iwasawa decomposition

gR = k⊕ A⊕ n.

Proof. We first check that the sum is direct. If X ∈ k ∩ (A ⊕ n), then θX = X while

θ = − id on A and θn ∩ n = (0). To see that the sum spans gR, we use (i) above and
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g0 = A⊕m to write X ∈ gR as

(∗∗) X = H︸︷︷︸
A

+X0 +
∑

λ∈Φ+(gR,A)

(X−λ + θX−λ)

︸ ︷︷ ︸
k

+
∑

λ∈Φ−(gR,A)

(Xλ − θX−λ)
︸ ︷︷ ︸

n

where the terms above the brackets belong to the indicated sub-spaces. Here, H is the

component of X in A, X0 ∈ m and Xλ is the component of X in gλ for λ ∈ Φ(gR,A).

This establishes the Iwasawa decomposition. �

To relate the expression (∗∗) for X to the decomposition (∗) we write more simply

X = H︸︷︷︸
A

+ X0
︸︷︷︸
m

+
∑

λ∈Φ+(gR,A)

Xλ

︸ ︷︷ ︸
n

+
∑

λ∈Φ+(gR,A)

X−λ

︸ ︷︷ ︸
θn

.

Example: SU(2, 1). We take A to be spanned by H =
(

0 0 1
0 0 0
1 0 0

)
. Then using the notation

in the lecture, the elements of the orthogonal H⊥ under B are

A =



a11 a21 iα

a12 a22 c

−iα c̄ e


 , α ∈ R.

From

[H,A] =



−2iα c̄ e− a11

−c 0 −a12

−(e− a11) a21 2iα




we see that non-zero restricted roots have a22 = 0. The equation [H,A] = λA then gives

{
−2iα = λa11, 2iα = λe⇒ 4λ2α = α

−c = λa12, −a12 = λc⇒ λ2c = c.

The possible eigenvalues λ are then given by

{
α 6= 0⇒ c = a12 = 0 and λ2 = 4

α = 0⇒ a11 = e = 0 and λ2 = 1.
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We take as positive restricted roots λ = 2 and λ = 1. As root vectors we may then take

λ = 2



i 0 i

0 0 0

−i 0 −i




λ = 1




0 −1 0

−1 0 1

0 1 0


 and




0 −i 0

i 0 i

0 −i 0




and then

n =








iα β − iγ iα

−β + iγ 0 β + iγ

−iα β − iγ −iα


 : α, β, γ ∈ R




.

Finally

m =







iα 0 0

0 −2iα 0

0 0 iα


 : α ∈ R




.

SO(4, 1): We have

gR =

{


0 tb a

−b A c

a︸︷︷︸
1

tc︸︷︷︸
3

0︸︷︷︸
1


 : a ∈ R and b, c ∈ R3, A ∈ so(3)R

}

.
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By calculations similar to the above we find that λ2 = 1, taking λ = 1 to correspond to

the positive root we have

A =








0 0 a

0 0 0

a 0 0


 : a ∈ R





k =








0 tb 0

−b A 0

0 0 0


 : A+ tA = 0





n =








0 −tb 0

b 0 b

0 tb 0


 : b ∈ R3





m =








0 0 0

0 A 0

0 0 0


 : A+ tA = 0




.

First application: The tangent space to GR-orbits in U (based on [FHW])

Letting u0 ∈ U be our reference point corresponding to the identity coset in GR/K ⊂
U, for H ∈ A we set

u = exp(iH) · u0 ∈ U.

It will be convenient to use the notations

• Ou = the orbit GR · u ⊂ U;

• gR,u = Lie algebra of the isotropy subgroup GR,u ⊂ GR of u.

Then the real tangent space

Tu,ROu = gR/gR,u.

Letting Ju be the almost-complex structure acting on Tu,RU we will determine gR,u and

Ju. We note that since the vector fields given by the action of gC span Tu,CU we have

Tu,R = Tu,ROu ⊕ JuTu,ROu.

The intersection

Tu,ROu ∩ JuTu,ROu =: TCR
u Ou

is by definition the Cauchy-Riemann tangent space. See the note at the end of this

subsection for the definition of the intrinsic Levi form and an argument that it is non-

degenerate on this space.

The basic geometric observation is that
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The GR-orbits are transverse in U to the submanifold K · exp(iω0) · u0.

Here in the tangent space to U at u0 we have the picture

ip = Tu0RK · exp(iω0) · u0

p = Tu0,ROu0 ,

which using gc = k⊕ ip and AdK ·A = p gives that the tangent space to K ·exp(iω0) ·u0

is ip. It follows from this observation that, as previously noted, the Lie algebra of the

isotropy subgroup GR,u at exp(iH) · u0 depends only on the centralizer of H in k, with

the extremes being

• gR,u0 = k (H = 0);

• gR,u = m (H generic).

We now shall make this precise.

For X ∈ gR we let X̂ denote the corresponding vector field on U with value X(u) ∈
Tu,RU. Then the basic formula, which results from Ad · exp = eAd and θH = −H is

(∗∗∗) X ∈ gλ ⇒
{
X̂(u) = e−i〈λ,H〉 exp(iH)∗X̂(u0)

θ̂X(u) = ei〈λ,H〉 exp(iH)∗θ̂X(u0).

It follows also that

• 〈λ,H〉 6= 0⇒ X̂(u) and θ̂X(u) span a complex line in Tu,ROu;

• 〈λ,H〉 = 0⇒ X̂(u) = −θ̂X(u).

The latter equation follows by adding the equations in (∗∗∗) and using that X+θX ∈ k,

so that (X̂ + θ̂X)(u0) = 0.

Definition: We set

n0
H = ⊕{

λ>0
〈λ,H〉=0

gλ

n1
H = ⊕{

λ>0
〈λ,H〉6=0

gλ.

Then we observe the properties

• n0
H and n1

H are sub-algebras;

• n = n0
H + n1

H is a semi-direct sum and n1
H is an ideal in n;

• A + n0
H + θ(n0

H) is the normalizer of H in gR;

• gR,u = Zk(H) = m + mH , where mH ⊂ k is the span of the X + θX for X ∈ n0
H .

In particular, for the real codimension of Ou in U

codimH Ou = dimA + dim n0
H .
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Proposition: For the real tangent space Ou we have

Tu,ROu
∼= A⊕ n0

H ⊕
(
n1
H ⊕ θn1

H

)
.

The Cauchy-Riemann part of the tangent space is the right-hand term in the parenthesis.

Here the second term in the direct sum is equal to {X − θX : X ∈ n0
H}. In one extreme

case when H = 0, this term is isomorphic to n, and then

Tu,ROu0
∼= A⊕ n

as should be the case from the Iwasawa decomposition in the form GR = NAK. In the

other extreme case when H is regular

Tu,ROu
∼= A⊕ (n⊕ θn).

Examples: In the two above examples we have only the two respective cases for the

real codimension

H = 0⇒ codimUOu0 = dim ip =

{
4

6

H 6= 0⇒ codimUOu = 1.

Note on Levi geometry: LetM be a complex manifold and S ⊂M a real submanifold.

At a point x ∈ S, the Cauchy-Riemann part of the tangent space is

TCR
x S = TxS ∩ JxTxS,

where Jx is the complex structure. The intrinsic Levi form LS,x

LS,x : TCR
x S ⊗ TCR

x S → TxS/T
CR
x S

is defined by

LS,x(u, v) = [ũ, Jṽ](x) modTCR
x S.

Here, ũ, ṽ are local vector field extensions of u, v; they are bracketed and then the bracket

is evaluated at x and projected to TxS/T
CR
x S. Three general properties are

(i) iff S is a hypersurface defined by g = 0, then up to a scale factor

LS,x = ±i∂∂g
∣∣
TCR
x S

;

(ii) if S ⊂ S ′, then

TCRS = TS ∩ TCRS ′,

and there is an obvious functoriality property relating LS and LS′ ;

(iii) in particular, if S is continued in a hypersurface S ′ = {g = 0} in which i∂∂g
∣∣
TCR
S′

is positive definite, then LS is non-degenerate.
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This is the case for the GR-orbits Ou, since by [AkG] there is a biholomorphism

between the maximal Grauert tube of GR/K in TGR/K and U, and the norm function

ρ2 on TGR/K is GR-invariant and strictly plurisubharmonic.

Second application: The tangent space to GR-invariant hypersurfaces in U

(result from [BHH])

The Stein property of Γ\U, for Γ co-compact and discrete in GR, is central to the study

of automorphic cohomology using Penrose transforms. As discussed in the lecture, its

proof is based on constructing strictly plurisubharmonic exhaustion functions f of U

modulo GR. Such a function f will have as level sets

Uc = {u ∈ U : f(u) = c}
which are GR-invariant hypersurfaces in U. As discussed in the lecture, if fω0 is a strictly

convex function defined in ω0 and invariant under the Weyl group NK(A)/ZK(A), then

fω0 uniquely determines a GR-invariant function on U = GR exp(iω0) · u0.

One wants to show that

such a function f is strictly plurisubharmonic.

The details of this are given in [FHW], and we shall only comment on the main points.

For this we let N1
H be the complex Lie group with Lie algebra n1

H + in1
H . Then from the

proposition one may infer that

TCR
u Ou = Tu(N

1
H · u).

This does not mean that N1
H · u is contained in Ou, which is impossible since LOu is

non-degenerate.

Next, and this is the key point where the convexity of the function fω0 enters, using

the identification of U with the maximal Grauert tube of GR/K in TGR/K, along the

0-section the almost complex structure is given by the tautological identification of

TxGR/K with the fibre of the Grauert tube at x. When this is done, using the GR-

invariance of f the complex Hessian of f at u0 is identified with the real Hessian of

the restriction of f to that fibre Tu0GR/K ∼= p. This restriction is strongly convex on

f
∣∣
ω0

= fω0 , and using the K-invariance and AdK · A = p it follows that f is strictly

convex on Tu0GR/K.

The above is only intended to indicate the ingredients in the argument. A final

remark is that in the classical case when U ∼= B × B where B is an HSD, then Γ\U is

a holomorphic fibre space over the projective algebraic variety Γ\B with the HSD B as

fibre. It may be that a proof that Γ\U is Stein may be given in this setting.
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Addendum to Lecture 6:

On the structure of the GR and KC-orbits

From correspondence with Mark it seems possible to give a more detailed description

than in the notes. Here we will discuss only the GR-orbits. Let x ∈ Ď = GC/B. Then

by Bruhat’s lemma we may choose a σ-stable Cartan sub-algebra

hx = bx ∩ σbx.
From [K1], pages 386 and 458 we may conjugate hx = hx ∩ σhx in GR to be θ-stable

(this may move x in the GR-orbit). We shall refer to this hx as a (σ, θ)-stable Cartan

subalgebra.

We denote by Φx the set of roots of (gC, hx) and by Φ+
x the positive roots determined

by bx. By (σ, θ) stability we have
{
hx,R = tx ⊕ Ax

tx = hx,R ∩ k, AX = hx,R ∩ p.

Dropping now the subscripts x, using this decomposition for α ∈ Φ we have

α = iα1 + α2

where α1 ∈ t∗, α2 ∈ A∗ are both real. Let X ∈ gα and write{
X = X1 +X2

X1 ∈ kC, X2 ∈ pC.

Then setting θα = iα1 − α2 = −α
X1 −X2 ∈ gθα.

We note that

α2 6= 0⇒ X1 6= 0,

since if v1 = 0 then X ∈ gα ∩ gθ(α) = 0. From this we may group the roots as follows:

complex roots α1 6= 0, α2 6= 0

real roots α1 = 0

imaginary roots a2 = 0
��

��
compact

PPPP non-compact

where the compact, non-compact means that the root vector is in k, A respectively.38

We note that

38If hR is maximally non-compact, then any imaginary root is compact.
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• α ∈ Φ⇒ ±iα1 ± α2 ∈ Φ; i.e., Φ is stable under σ, θ;

• thus the complex roots come in quartets, and the real an imaginary roots come

in pairs;

• for any choice of Φ− there are exactly 2 roots from each quartet and exactly 1

root from each pair in Φ−. Moreover,

• for any quartet, there is either an α, σ(α) or and α, θ(α) pair.

For the isotropy algebra we have α, σ(α) ∈ Φ− ⇔ α ∈ Φ− ∩ σΦ− and

vx,R = bx ∩ gR = hx,R + ⊕
α∈Φ−∩σΦ−

(gα + gσ(α))R

where

dimR(gα + gσ(α))R =

{
1 α = σ(α)

2 α 6= σ(α).

This again gives for the real codimension

codimGR · x = #
(
Φ− ∩ σΦ−

)
.

A couple of examples will illustrate the above. We will restrict to non-open GR-orbits.

SU(2, 1) : The only possibility is

hx,R = tx ⊕ Ax

where each summand has dimension 1. We may take as above

tx = span



i 0 0

0 −2i 0

0 0 i


 =: e1

Ax = span




0 0 1

0 0 0

1 0 0


 =: e2.

The roots are

±2e∗2, ±3ie∗1 + e∗2
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with the picture (not the same as the usual picture when the roots are all imaginary —

the open orbit case)

θ

?

6

-

6

ie∗1

s
s

s
s

s

s
e∗2

The choices of Φ− are

(a)

r
r

r

r
r
r

−

−

−

(b)

r
r

r

r
r
r

−

−

−

(c)

r
r

r

r
r
r
−

−

−

Here conjugation is reflection in the e∗2 axis and the action of the Weyl group for h is

reflection in the ie∗1 axis. Then

for (a), Φ− = σΦ− ↔ codimension-3 orbit

for (b), (c), #
(
Φ− ∩ σΦ−

)
= 1↔ codimension-1 orbits.

SO(4, 1) : Here all possibilities occur. As before in the non-open orbit case we have

hx,R = tx ⊕ Ax
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where each summand has dimension 1. Taking now

e1 =





0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 −1 0 0

0 0 0 0 0





e2 =




0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0




the roots are

±2ie∗1 imaginary

±2e∗2 real

±2ie∗1 + 2e∗2 complex.

With the root picture

θ

?

6

r
r
r

-

6

ie∗1

r

r
r

r e∗2
r
r

the possibilities for Φ− are
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(a)

r r r
r r r
r r r

f f f
− − −

−

(b)

r r r
r r r
r r r

f
− −

−

−

where the roots in Φ− ∩ σΦ− are circled. For the non-open GR-orbits, there is one each

of codimension 1,3.

There is a similar story for the KC-orbits that we will not be able to give here. An

interesting consequence is the “conservation law”
1
2

codimRGR · x+ codimCKC · x is independent of Φ−.

In more detail, if

q = # quartets

r = # of real pairs

ic = # of imaginary compact roots

lc = dimR tx, lnc = dimR Ax,

and if we break up

q = qσ(Φ−) + qθ(Φ
−)

where

qσ(Φ−) = # of α, σ(α) pairs in Φ−

qθ(Φ
−) = # of α, θ(α) pairs in Φ−

then

codimRGR · x = r + 2qσ(Φ−)

codimCKC · x = |Φ−| − dim kC + lc + ic + qθ(Φ
−)

and the sum is independent of the choice of Φ− (|Φ−| = dim Ď). We also note that

dimR T
CR
x GR · x = 2qσ(Φ−).

The conservation law may be written more succinctly as

codimRGR · x+ codimRKC · x = dimR Ď + dimR(k/tx).
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Lecture 7

Geometry of flag domains: Part II

Correspondence spaces: The basic diagram

In this lecture we shall first define the correspondence space W associated to a real,

semi-simple Lie group GR containing a compact maximal torus T . This will then lead

to the basic diagram given below. Next we shall give the result relating the cohomology

groups associated to the spaces in the basic diagram. The main point here is to give

different ways of realizing higher degree sheaf cohomology of holomorphic line bundles

over D by global, holomorphic data on the associated spaces.

As a first step towards the definition of W we shall define its dual W̌, and before doing

this we shall make the following change of notation from Lecture 6:

Ǔ = GC/KC.

Then Ǔ is an affine algebraic variety. For a non-classical flag domain D ⊂ Ď with

distinguished maximal compact subvariety Z0 ⊂ D where Z0 = KC · x0 with x0 ∈ D

and Z0 the distinguished K-orbit under Matsuki duality, Ǔ is a smooth subvariety in

the component of the Hilbert scheme of Ď containing the point corresponding to Z0.

Example: For G = SO(4, 1) with Q =
(
I4
−1

)
we have

Ǔ = {E ∈ Gr(4,C5) : QE non-singular}
where QE = Q

∣∣
E

. Identifying C5 with C5∗ using Q, there is an equivalent identification

Ǔ = {[u] ∈ P4∗ : Q(u, u) 6= 0},
where we still denote by Q the corresponding quadratic form on C5∗ . Here E = [u]⊥,

and in the second description we have

Ǔ = P4\(non-singular quadric),

and the distinguished point u0 = [0, . . , 0, 1].

Returning to the general discussion, we have Ď = GC/B where B is a Borel subgroup

containing the Cartan subgroup H = TC whose Lie algebra h = tC. Finally we have the

Borel subgroup BK =: B ∩KC of KC whose Lie algebra is

bK = h⊕ n−K

where n−K = ⊕
α∈Φ+

c

g−α is the direct sum of the negative compact root spaces. We set

• W̌ = GC/H = enhanced flag variety

• Ǐ = GC/BK .
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The dual of the basic diagram to be defined below is

W̌

��

Ǐ

����������

��@@@@@@@@

Ď Ǔ.

It has the properties:

(i) the fibres of Ǐ→ Ď and of W̌→ Ǐ are contractible affine algebraic varieties;

(ii) the fibres of Ǐ→ Ǔ are projective algebraic varieties; and

(iii) the fibres of W̌→ Ǔ are affine algebraic varieties.

Here “dual” means that this is a diagram relating the compact dual Ď with Ǔ. The

basic diagram as defined below will be the restriction of the above diagram to the part

lying above D.

Discussion (see [FHW] and [GG] for detailed proofs): From

b = bK ⊕ p−

where bK = b ∩ kC as above we have that

exp : p−
∼−→ B/BK

where B/BK , a typical fibre of Ǐ→ Ď, is affine and contractible. A similar observation

holds for the typical fibre BK/H of W̌ → Ǐ. A typical fibre of Ǐ → Ǔ is Z0 = KC/BK .

Finally, a typical fibre of W̌→ Ǔ is KC/H, the enhanced flag variety for KC/BK .

Definition: The correspondence space W is the inverse image of U in the diagram

W

��

⊂ W̌

��

U ⊂ Ǔ.

The term correspondence space derives from the universality property of U: Given

open GR-orbits Dw, Dw′ in Ď we have

W

���������

��:::::::

Dw Dw′ .
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Moreover, from (i) above the fibres of each map are contractible affine algebraic varieties.

This diagram will be used to relate the cohomologies Hq(Dw, Lµ) and Dq′(Dw′ , L
′
µ′) via

Penrose transforms which will be defined below.

From Lecture 6 and (iii) above we have

W is a Stein manifold.

In fact, W fibres over the Stein manifold U with affine algebraic varieties as fibres. Since

U has the function-theoretic characteristics of a bounded domain of holomorphy, we see

that W has a mixed algebro-geometric/complex function-theoretic character.

Definition: For D a non-classical flag domain the basic diagram is the open subset

of the above diagram containing the ̂’s on the terms

W

π

�����������������

π′

��0
00000000000000

πI
��
I

πD

~~}}}}}}}}
πU

  BBBBBBBB

D U.

The intermediate space

I = {(x, u) : x ∈ Zu} ⊂ D × U

is, for evident reasons, called the incidence variety. From ([FHW], (6.23)), in case

G is of Hermitian type the fibres of I → D are contractible. This covers the main

examples discussed in these lectures. The result seems to be true in general, but is more

complicated and will be discussed elsewhere.

Because of the universality of W there are basic diagrams as above for all open GR-

orbits in Ď.

Example: SU(2, 1). We may picture W̌ as the set of projective frames

p′
s

s
p′′

s
p

These are sets of triples of independent points in P2.
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Then W is the sub-set of projective frames

p′s
s
p′′

s
p

p′ ∈ B, pp′′ ⊂ Bc

The maps of W to D, D′, D′′ are

p, p′, p′′ →





(p, pp′)∈ D
(p′, p′p)∈ D′
(p, pp′′)∈ D′′.

The incidence variety I is the subset of {(p, l), (p′, L)} ∈ D×U given by the configurations

p′
p

L

l

The map W→ I is given by

p, p′, p′′ → above figure when L = pp′′.
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The maps I→ D, I→ U are

p′

p

L

l

�
�
�
��

πD
A
A
A
AU

πU

p′ p

L

l
p

l

Here, we recall the compact subvariety Z(p′, L) ⊂ D given by the set of all points {(p, l)}
in the lower right hand figure.

All of the stated properties of the basic diagram may be readily verified from the

above pictures. For example, the fibre of I→ D is given by holding p, l fixed. Then

{
p′ ∈ l ∩ B ∼= ∆

L = lines through p in Bc ∼= ∆.
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Example: Sp(4). For W̌ we have the description as the set of Lagrange quadrilaterals

p3 p4

p1 p2

given by projective frames p1, p2, p3, p4 in P3 and where the dashed lines are all La-

grangian. The diagonal lines are not Lagrangian. The correspondence space W is the

open subset of W̌ of all Lagrange quadrilaterals

p3 > 0

p4
E ′

p1 p2< 0

(1, 1) (1, 1)

where the Hermitian form has the indicated signature on the Lagrangian lines.

The maps of W to one of the two non-classical domains D and to one of the two

classical domains D′ are given by

p1, p2, p3, p4 -





















s s
s p3

p1 p2

where (p1, p1p3) ∈ D and (p1, p1p2) ∈ D′. The map of W to U is given by

p1, p2, p3, p4 → E,E ′
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where E,E ′ are the pair of Lagrangian lines in the above figure where the Hermitian

form is negative, respectively positive definite.

Again all of the stated properties in the basic diagram may be directly verified. We

note that it is frequently easier to verify a property of W → D by factoring it into

W→ I followed by I→ D.

In the study of Penrose transforms we shall use the diagram

W

��
J

~~||||||||

!!CCCCCCCCC

Dw Dw′

where J ⊂ J̌ =: GC/P where P ⊂ GC is a parabolic subgroup containing B and B′. The

reason that such diagrams arise is that the basic operation in passing from the complex

structure Dw′ to the complex structure Dw will be

one non-compact simple β root changes sign.

Thus, w−1w′ = sβ is the reflection in the root plane corresponding to β. For example,

in the SU(2, 1) example passing from the classical complex structure D′ given above to

the non-classical complex structure given by

• •+
+
•

+
•

••
- • •+

+

•
+
•

••

This process is reminiscent of Bott’s original proof of the BWB (cf. [Sch2]); as we shall

see in the appendix to Lecture 8 this is not accidental.

In general, the Levi component of P will correspond to a subset Ψ ⊂ Φ+ such that

both Ψ and the complement Φ+\Ψ are closed under addition. The nilpotent radial of

the Lie algebra of P will be ⊕
α∈Φ+\Ψ

g−α.

The theorem of [EGW]

Although fairly simple to state and prove, this result will for us have multiple appli-

cations. Let M,N be complex manifolds and

π : M → N
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a holomorphic submersion. We identify holomorphic vector bundles and their sheaves

of sections. For F → N a holomorphic vector bundle we let

• π−1F be the pullback to M of the sheaf F ;

• π∗F be the pullback to M of the bundle F .

We may think of π−1F ⊂ π∗F as the sections of π∗F that are constant along the fibres

of M → N .

Next we let Ωq
π be the sheaf over M of relative holomorphic q-forms. We have

0→ π∗Ω1
N → Ω1

M → Ω1
π → 0,

and this defines a filtration FmΩq
M with

Ωq
π
∼= Ωq

M/F
qΩq

M .

In local coordinates (xi, yα) on M such that π(xi, yα) = (yα), FmΩq
M are the holo-

morphic differentials generated over Ωq−m
M by terms dyα1 ∧ · · · ∧ dyαm . Thus FmΩq

M =

image
{
π∗Ωm

N ⊗ Ωq−m
M → Ωq

M

}
. From this description we see that we have

d : FmΩq
M → FmΩq+1

M ,

and consequently there is an induced relative differential

dπ : Ωq
π → Ωq+1

π .

Setting Ωq
π(F ) = Ωq

π ⊗OM π∗F , since the transition functions of π∗F may be taken to

involve only the yα’s, we may define

dπ : Ωq
π(F )→ Ωq+1

π (F )

to obtain the complex (Ω•π(F ); dπ). Using the holomorphic Poincaré lemma with holo-

morphic dependence on parameters one has the resolution

0→ π−1F → Ω0
π(F )

dπ−→ Ω1
π(F )

dπ−→ Ω2
π(F )→ · · · .

Denoting by H∗(M,Ω•π(F )) the hypercohomology of the complex (Ω•π(F ), dπ), from this

resolution we have

H∗(M,π−1F ) ∼= H∗(M,Ω•π(F )).

We denote by

H∗DR

(
Γ(M,Ω•π(F )); dπ

)

the de Rham cohomology groups arising by taking the global holomorphic sections of

the complex (Ω•π(F ); dπ).

Theorem ([EGW]): Assume that M is Stein and the the fibres of M → N are con-

tractible. Then

H∗(N,F ) ∼= H∗DR

(
Γ(M,Ω•π(F )); dπ

)
.
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Discussion: Using the standard spectral sequence associated to the above resolution of

π−1F

Ep,q
2 = Hq

(
Hp(M,Ω•π(F )); dπ

)
⇒ Hp+q

(
M,Ω•π(F )

)

and the assumption that M is Stein to have Hp(M,Ω•π(F )) = 0 for p > 0 gives

H∗(M,π−1F ) ∼= H∗DR

(
Γ(M,Ω•π(F )); dπ

)
.

Next, in the situations with which we shall be concerned, the submersion M → N will

be locally over N a topological product. Then by the contractibility of the fibres the

direct image sheaves

Rq
π(π−1F ) = 0 for q > 0.

The Leray spectral sequence thus gives

Hq(N,F ) ∼= Hq(M,π−1F );

here the LHS is Hq(N,R0
π(π−1F )) = Hq(N,F ). Combining the above isomorphisms

gives the theorem. �

From what we have seen above the [EGW] theorem applies to W→ D and to give

Hq(D,Lµ) ∼= Hq
DR

(
Γ(W,Ω•π(Lµ)); dπ

)
.

In this way the coherent cohomology Hq(D,Lµ) is realized by global, holomorphic data.

In our examples there will be canonical, or “harmonic,” representatives of the de Rham

cohomology groups.

Quotienting by a discrete group

Let Γ ⊂ GR be a discrete, co-compact and neat subgroup. A principal motivation

for [GGK2] was to understand some of the geometric and arithmetic properties of the

automorphic cohomology groups Hq(Γ\D,Lµ), objects that had arisen many years ago

[GS], [WW1], [WW2], [Wi1] but whose above mentioned properties had to us remained

largely mysterious until the works [C1], [C2], and [C3]. In studying the automorphic

cohomology groups it is important to be able to take the quotient of the basic diagram

by Γ, the quotient being

Γ\W

π

��

















πI
��

π′

��44444444444444444

Γ\I
πD

{{xxxxxxxx
πU

##GGGGGGGG

Γ\D Γ\U.
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Here we note that the group GR acts equivariantly on the diagram, and so the quotient

diagram is well-defined. The basic result concerning it is

Theorem: Γ\W is Stein, and the fibres of π, πD and πI are contractible.

Proof. We first note that no γ ∈ Γ, γ 6= e, has a fixed point acting on D or on U. For

D this is because the isotropy subgroup of GR fixing any point x ∈ D is compact. For

u ∈ U, if γ fixes u then it maps the compact subvariety Zu ⊂ D to itself, so again γ is

of finite order. It follows that the above fibres are biholomorphic to those in the basic

diagram before quotienting by Γ.

The next, and crucial, step is the result that there exists strictly plurisubharmonic

functions on U that are exhaustion functions modulo GR. As in the second proof that

U is Stein discussed in Lecture 6, this induces a strictly plurisubharmonic exhaustion

function of Γ\U, which is therefore a Stein manifold. Then Γ\W → Γ\U is a fibration

over a Stein manifold with affine algebraic varieties as fibres, which implies that Γ\W is

itself Stein. �

The proof of the result on H∗(D,Lµ) then applies verbatim to give

H∗(Γ\D,Lµ) ∼= H∗DR

(
Γ(Γ\W,Ω•π(Lµ)); dπ

)
.

The double appearance of the notation Γ in the RHS is unfortunate, but we hope that

the meaning is clear.

Relating cohomologies on W and U

To state the main result we first define bundles

F p,q
µ → U

as follows: For u ∈ U let Zu ⊂ D be the corresponding maximal compact subvariety.

Let F p,q
µ = Rq

πU
(Ωp

πD
(Lµ)). Then the fibre

F p,q
µ,u = Hq(Zu,Λ

pNZu\D(Lµ)).

Theorem ([GG]): There exists a spectral sequence with
{
Ep,q

1 = H0(U, F p,q
µ ), and

Ep,q
∞ = GrpHp+q

DR

(
Γ(W,Ω•π(Lµ)); dπ

)
.

Using our earlier result on the relation between Hq(D,Lµ) and Hq
DR

(
Γ(W,Ω•π(Lµ)); dπ

)

we have the following result:

Corollary: There exists a spectral sequence with{
Ep,q

1 = H0(U, F p,q
µ )

Ep,q
∞ = F pHp+q(D,Lµ).
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If H0(Z,Λq+1NZ/D(Lµ)) = · · · = Hq−1(Z,Λ2NZ/D(Lµ)) = 0, then

Hq(D,Lµ) ∼= ker
{
H0(U, F 0,q

µ )
d1−→ H0(U, F 1,q

µ )
}
.

The latter is related to section 14.3 in [FHW]. Under the vanishing condition in the

corollary, the coherent cohomology Hq(D,Lµ) is, in a different way from above using

the EGW theorem, realized as a global, holomorphic object. The vanishing condition is

satisfied for µ anti-dominant and sufficiently far from the walls of the Weyl chamber.

The differentials dr are linear, first order differential operators. Below we will comment

further on d1.

Proof. Referring to the basic diagram we have on W the exact sequence of relative

differentials

0→ π∗IΩ1
πD
→ Ω1

π → Ω1
πI
→ 0.

This induces a filtration on Ω•π, and hence one on the complex

Γ
(
W,Ω•π(Lµ)); dπ

)
.

This filtration then leads to a spectral sequence abutting to

H∗DR(Γ(W,Ω•π(Lµ)); dπ).

We will identify the E1-term with that given in the statement of the theorem.

The first observation is that in this spectral sequence we have
{
Ep,q

0
∼= Γ

(
W,Ωp

πI
⊗ π∗IΩq

πD
(Lµ)

)

d0 = dπI .

Thus {
Ep,q

1
∼= Hq

DR

(
Γ(W,Ω•πI ⊗ π∗IΩp

πD
(Lµ)); dπI

)

d1 is induced by dπD .

By [EGW] applied to W
πI−→ I we have

{
Ep,q

1
∼= Hq

(
I,Ωp

πD
(Lµ)

)

d1 is induced by dπD .

Since U is Stein, the Leray spectral sequence applied to I
πU−→ U and Ωq

πD
(Lµ) gives

{
Ep,q

1
∼= H0

(
U, Rq

πU
Ωp
πD

(Lµ)
)

d1 is induced by dπD .

It remains to establish the identification

Rq
πU

Ωp
πD

(Lµ) ∼= F p,q
µ .
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This will be done by identifying the various tangent spaces at the reference point

(x0, u0) ∈ I. For this we continue to identify locally free sheaves F with vector bundles

and denote by Fp the fibre at the point p. We then have the identifications

• Tx0D = n+;

• Tx0Z = n+
c ;

• NZ/D,x0 = p+;

• Tu0U = p+ ⊕ p−;

• T(x0,u0)I ⊂ n+ ⊕ p+ ⊕ p−.

In this last identification we write n+ = n+
c ⊕ p+ and then we have

• T(x0,u0)I = n+
c ⊕ p+ ⊕ p−

where the inclusion n+
c ⊕p+⊕p− ⊂ n+

c ⊕p+ ⊕ p+

︸ ︷︷ ︸⊕ p− is given by the diagonal mapping

in the term over the bracket. It follows that

• Ω1
πD,(x0,u0) = p−∗ ∼= p+ = NZ/D,x0

where the isomorphism is via the Cartan-Killing form. �

The proof also allows us to identify the symbol σ(d1) of the differential operator d1,

as follows: Recall that

σ(d1) : F 0,d
µ,u0
⊗ T ∗u0

U→ F 1,q
µ,u0

,

or using the definition of the F p,q
µ

σ(d1) : Hq(Z,Lµ)⊗ T ∗u0
U→ Hq(Z,NZ/D(Lµ)).

Using the identification T ∗u0
U ∼= p∗ ∼= p we have the mapping

p→ H0(Z,NZ/D)

given geometrically by considering X ∈ p ⊂ g as a holomorphic vector field along Z and

then taking the normal part of X. Combining this with the evident map

Hq(Z,Lµ)⊗H0(Z,NZ/D)→ Hq(Z,NZ/D(Lµ))

gives the symbol map. We will give a proof of this below.

Remark on the above corollary: Under the assumptions in the corollary, the E1

term of the spectral sequence looks like

∗ ∗ ∗
0 0 · · · 0

· · ·
· · ·
0 0 · · · 0
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and we have an exact sequence of GR-modules

0→ Hd(D,Lµ)→ H0(U, F 0,d
µ )

d1−→ H0(U, F 1,d
µ )→ · · · → H0(U, F n−d,d

µ )→ 0

where dim d = n. As noted above the symbol of the first d1 is a bundle map whose value

at uo is

F 0,1
µ,u0
→ F d

µ,u0
⊗ (p+ ⊕ p−),

which looks very much like the complexification to the Grauert tube U ⊂ GC/KC of

the Dirac operator over GR/K ⊂ U used by Atiyah-Schmid [AS]. We have not checked

whether or not this is so.

By localizing the above exact sequence and using that U is Stein, one obtains over U

exact sheaf sequence

F 0,d
µ

d1−→ F 1,d
µ

d1−→ · · · d1−→ F n−d,d
µ → 0.

This is reminiscent of the Spencer sequence giving an involutive resolution of the sheaf

whose sections are the localizations ofHd(D,Lµ) along the maximal compact subvarieties

in the cycle space. Again we have not checked this.

Finally, the assumption that µ is “sufficiently regular” is a common one in the theory.

As previously noted, it is necessary when vanishing theorems are used, since the curva-

ture calculations that are used apply also to quotients by co-compact discrete subgroups

Γ ⊂ GR. Many results in the theory are proved first in the sufficiently regular case, and

then extended to the general case using Zuckerman translation and Casselman-Osborne

([Sch2]). We will comment further on this.

n-cohomology interpretation

A familiar theme in the study of cohomology of homogeneous spaces and their quo-

tients is to represent that cohomology by Lie algebra cohomology. As we have noted

in an earlier lecture, for flag domains one considers n-cohomology where n is the direct

sum of the negative root spaces. Even though W is not a homogeneous space for GR,

we will show that the global de Rham cohomology groups H∗DR

(
Γ(W,Ω•π(Lµ)); dπ

)
can

be realized as n-cohomology for a certain GR-module OGW. Using this interpretation

we will then observe that our spectral sequence is just the Hochschild-Serre spectral

sequence.
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The definition of OGW is as follows: From the earlier basic diagrams we obtain

GW

��

⊂ GC

f
��

W

πI
��

π

��

⊂ GC/H

��
I

πD
��

⊂ GC/BK

��
D ⊂ GC/B.

Definition: GW = f−1(W) is the open subset of GC lying over W in the above diagram,

and

OGW = Γ(GW,OGW
)

is the algebra of holomorphic functions on GW.

Now OGW is a somewhat strange object, but it is not as intractable as the definition

might suggest. Since GW ⊂ G is GR-invariant, OGW is a GR-module and therefore

n-cohomology with coefficients in OGW is well-defined.

In fact, since

D = GR · x0 ⊂ G/B

and

W = {g ∈ GC : gK · x0 ⊆ D} /H
we have

GRW ⊆W, WK ⊆W.

Thus, GR and K act on OGW by
{

(gf)(h) = f(gh) g ∈ G0, f ∈ OGW, h ∈ GW

(fk)(h) = f(hk−1) k ∈ K.
Because GW ⊂ GC is an open set, the Lie algebra g, viewed as right invariant vector

fields on GC, acts on OGW on the left. When g is viewed as left invariant vector fields it

acts on OGW on the right. These two actions commute, and we will use the right action

of n to define H∗(n,OGW). These groups then have an action on GR on the left and an

action of the Cartan subgroup H on the right.

Theorem: (i) There is a natural isomorphism

H∗DR

(
Γ(W,Ω•π(Lµ)); dπ

) ∼= H∗(n,OGW)−µ.
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(ii) The Hochschild-Serre spectral sequence associated to the sub-algebra nK ⊂ n coin-

cides with the spectral sequence given in the earlier theorem.

Proof. The notation ( )−µ on the RHS of the above isomorphism means the following:

The Cartan subgroup H acts on the right on GW and therefore acts on the complex

(Λ•n∗ ⊗ OGW, δ) that computes Lie algebra cohomology. Then H∗(n,OGW)−µ is that

part of H∗(n,OGW) that transforms by the character χ−1
µ of H corresponding to the

weight −µ. This enters the picture because holomorphic sections of π∗Lµ → W are

given by holomorphic functions on GW that transform by χ−1
µ under the right action

of H.

The proof of (i) in the above theorem is essentially the observation from the proof

of the earlier theorem, and using the identifications there, that we have the natural

identification complexes

Γ
(
W,Ω•π(Lµ); dπ

) ∼= (Λ•n∗ ⊗ OGW; δ)−µ.

Here “natural” means that the action of GR on the LHS is given by the GR-module

structure of OGW.

Turning to (ii) in the theorem, here the basic observation is that when pulled back

to GW, the exact sequence used in the earlier argument is the dual to the restriction to

GW ⊂ GC of the exact sequence of homogeneous vector bundles over G/H given by the

exact sequence of H-modules

0→ nK → n→ p− → 0.

From this we may infer (ii) in the theorem. �

We note that using the above identifications and p−∗ ∼= p+ via the Cartan-Killing

form,

Ep,q
1 = Hq(nK ,Λ

pp+ ⊗ OGW)−µ.

Using this interpretation we shall now compute the symbol σ(d1) of

d1 : H0
(
U, Rq

πU
Ωp
πD

(Lµ)
)
→ H0

(
U, Rq

πU
Ωp+1
πD

(Lµ)
)
.

Following the identification there of the fibre of the vector bundle F p,q
µ,u0
→ U and tangent

space Tu0U at the reference point, and identifying Zu0 with Z to simplify the notation,

the symbol σ(d1) of the 1st-order linear differential operator is a map

σ(d1) : Hq
(
Z,ΛpNZ/D(Lµ)

)
⊗ p∗ → Hq

(
Z,Λp+1NZ/D(Lµ)

)
.

Theorem: With the identifications p∗ ∼= p given by the Cartan-Killing form and inclu-

sion p ↪→ H0(Z,NZ/D) the symbol is given by

σ(d1)ϕ⊗X = ϕ ∧X.
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Here, on the LHS we have X ∈ p and ϕ ∈ Hq(Z,ΛpNZ/D(Lµ)), and on the RHS X is the

corresponding normal vector field in H0(Z,NZ/D). The map is Hq(Z,ΛpNZ/D(Lµ)) ⊗
H0(Z,NZ/D)→ Hq(Z,Λp+1NZ/D(Lµ)) induced by ΛpNZ/D ⊗NZ/D → Λp+1NZ/D.

Proof. To compute the symbol on ϕ ⊗ X, we take a section f of F p,q defined near u0

with f(u0) = 0 and whose linear part is ϕ⊗X. Then by definition

σ(d1)ϕ⊗X = (d1f)(u0).

We shall give the computation when p = 0, q = 1 as this will indicate how the general

case goes. Pulled back to GW we may write

f =
∑

α∈Φ+
c

fαω
−α

where the fα are holomorphic functions that vanish along the inverse image of Zu0 . Then

d1f =
∑

{
α∈Φ+

c

β∈Φ+
nc

(fαX−β)ω−β ∧ ω−α +
∑

α∈Φ+
c

fαdπω
−α.

The second term vanishes along the inverse image of Zu0 . As for the first term, under

the pairing (
normal vector fields

to Zu0

)
⊗
(

holomorphic functions

vanishing along Zu0

)
→ OZ0

when evaluated along Zµ0 the first term is the value along Zu0 of
∑

{
α∈Φ+

c

β∈Φ+
nc

(fαX−β)Xβ ⊗ ω−α

where Xβ ⊗ ω−α ∈ p+ ⊗ n∗ and
∑
fαX−β

∣∣
Z0
∈ OZ0 . �

Discussion: The GR-module OGW is certainly not a Harish-Chandra module, but

it does have an interesting structure, reflecting the fact that W is a mixed algebro-

geometric/complex analytic object, as we now explain. The fibres of

GW

g

��

⊂ GC/H

��
U ⊂ GC/KC

are affine algebraic varieties isomorphic to the enhanced flag variety KC/H. We may

smoothly and equivariantly compactify GC/H so that each fibre g−1(u), u ∈ U, is

the complement of a divisor with normal crossings. Then we may consider the GR-

invariant sub-algebra OGalg
W ⊂ OGW of functions that are rational along each fibre, and
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by truncating Laurent series we may write OGalg
W as the union of GR-submodules that

are fibrewise K-finite acting on the right. Thus as a GR-module over the GR-module

O(U) = Γ(U,OU) we see that OGW has a reasonable structure.

As for the GR-module O(U), we have noted above that U has the function-theoretic

characteristics of a bounded domain of holomorphy (contractible, Stein, Kobayashi hy-

perbolic). In fact, for GR of Hermitian type, U ∼= B × B where B is an Hermitian

symmetric domain and where GR acts diagonally. Again, O(U) is not a HC-module but

it seems to be a reasonable object. Here we shall illustrate it in the case of SU(2, 1).

Examples: We represent elements of GC = SL(3,C) as

g =



z1 w1 u1

z2 w2 u2

z3 w3 u3


 = (z, w, u).

Taking as Hermitian form H = diag(1,−1, 1), GW ⊂ GC is defined by the conditions
{
H(w) < 0

H(z ∧ u) > 0.

The map GW →W is given by

(z, w, u)→ s
w

BB

BB

BB s u
BB

BB

BB sz

the dashed line indicating that the line zu lies in Bc. The space OGW is spanned by the

functions

wi1w
j
2w

k
3(z2u3 − z3u2)l(z3u1 − z1u3)m(z1u2 − z2u1)nzp1z

q
2z
r
3u

a
1u

b
2u

c
3

where

i, j, i+ j + k, l,m, l +m+ n, p, q, r, a, b, c ≥ 0.

There are relations among the generators, such as(
z2u3 − z3u2

z1u2 − z2u1

)
(z1u2 − z2u1) = z2u3 − z3u2.
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Appendix to Lecture 7: The BWB theorem revisited

We shall interpret the BWB theorem in the context of the EGW theorem. Using this

interpretation we shall introduce the Penrose transforms in this situation; in fact, this

construction leads to yet another proof of the BWB theorem. The bottom line of the

discussion will be this:

For a flag domain Ď = GC/B, the various manifestations of an ir-

reducible finite dimension GC-module as cohomology groups Hq(Ď, Lµ)

are realized geometrically by Penrose transforms between these groups.

We shall use the piece

GC

��

W̌

π
��

= GC/H

Ď = GC/B

of the diagram at the beginning of the lecture. By the EGW theorem we have

Hq
(
Ď, Lµ

)
= Hq

DR

(
Γ(W̌,Ω•π(Lµ)); dπ

)
.

Here, as in the discussion of n-cohomology given in Lecture 5 and above, we may pull

everything up to GC to obtain an isomorphism of GC-modules

Hq
DR

(
Γ(W̌,Ω•π(Lµ)); dπ

) ∼= Hq(n,OGC)−µ.

On the RHS OGC is the algebra of holomorphic functions on GC. Denoting by O
alg
GC

the

algebra of holomorphic, rational, functions it seems reasonable that using GAGA type

arguments the inclusion O
alg
GC

↪→ OGC induces an isomorphism on n-cohomology, and we

shall assume this. Then the algebraic version of the Peter-Weyl theorem gives

O
alg
GC

= ⊕
λ∈ĜC

V λ ⊗ V λ∗ ,

where the RHS are the finite direct sums of the GC-modules Hom(V λ, V λ) ranging over

the equivalence classes of irreducibles V λ indexed by their highest weights. Putting

things together yields

Hq(Ď, Lµ) ∼= ⊕
λ∈ĜC

V λ ⊗Hq(nc, V
λ∗)−µ.

Here we are conforming to the notation nc for the direct sum of all of the negative root

spaces. This is the same n as above — the subscript “c” is used to signify that we are

working with the compact real form of GC. By Kostant’s theorem, the only non-zero
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term on the RHS occurs when µ+ρ is non-singular, q = qc(µ+ρ) and λ = w(µ+ρ)−ρ.

Thus for this λ

Hqc(µ+ρ)(Ď, Lµ) ∼= V λ ⊗Hqc(µ+ρ)(n, V λ∗)−µ.

We also have for this λ

H0(Ď, Lλ) ∼= V λ ⊗H0(n, V λ∗) ∼= V λ ⊗ Cv−λ

where v−λ is a non-zero lowest weight vector for V λ∗ . This leads to a diagram of GC-

modules

H0
DR

(
Γ(W̌,Ω•π(Lλ)); dπ

) Θµ // H
qc(µ+ρ)
DR

(
Γ(W̌,Ω•π(Lµ)); dπ

)

∼ = ∼ =

H0(Ď, Lλ)
P //_________ Hqc(µ+ρ)(Ď, Lµ)

where the top row is multiplication by

Θµ =: v−λ ⊗ κµ
where κµ is the Kostant form from the appendix to Lecture 5 and where vλ ∈ V λ is

a highest weight vector and 〈vλ, v−λ〉 = 1. The vertical isomorphism are given by the

EGW theorem, and the bottom dotted arrow is by definition a Penrose transform. This

diagram and interpretation is what is meant in the italicized statement at the beginning

of this appendix.

We note that when we are using n-cohomology to represent ∂-cohomology as was done

in Lecture 5, the ω−α for α ∈ Φ+ are the pullbacks to GR of (0, 1) forms on D; i.e.,

ω−α = ±ωα where ωα is dual to Xα ∈ T 1,0
e D.

However, here the ω−α for α ∈ Φ+ are the pullbacks to GC of holomorphic relative

differentials; i.e.,

ω−α ∈ Ω1
π.

The Lie algebra cohomology calculations are formally the same; the interpretation is

different.

Using this we shall now give the proof, promised in the appendix to Lecture 5, that

the Kostant form is closed. In the present notation we have to show that

dπκµ = 0.

We first show that

dπω
−〈Ψw〉 = 0.



164 Phillip Griffiths

For this we use the Maurer-Cartan equation, which gives

dω−α ≡
(−1

2

)∑

β,γ

cαβγω
−β ∧ ω−γ mod h∗ ∧ g∗C.

Here,

cαβγ 6= 0⇒ α = β + γ.

Passing to relative differentials means that we set

ωβ ≡ 0 if β ∈ Φ+.

Then

dπω
−α =

(−1

2

) ∑

β,γ∈Φ+

cαβγω
−β ∧ ω−γ.

If Ψw = {ψ1, . . . , ψq} ⊂ Φ+, this gives

dπω
−〈Ψw〉 =

(−1

2

)∑

j

(−1)jc
ψj
βγω

−β ∧ ω−γ ∧ ω−ψ1 ∧ · · · ∧ ω̂−ψj ∧ · · · ∧ ω−ψq

where the sum is over β, γ ∈ Ψc
w = Φ+\Ψw. Since by (ii) in the properties of Ψw in

Lecture 5, Ψc
w is closed under addition, we have c

ψj
βγ = 0, as desired.

We next compute dπv
∗
w(−λ):

dπv
∗
w(−λ) =

∑

β∈Φ+

X−β · v∗w(−λ) ⊗ ω−β.

The only terms that will contribute to dπκµ = dπ(v∗w(−λ) ⊗ ω−〈Ψw〉) are the

X−βv
∗
w(−λ), β ∈ Ψc

w.

To see this, we have Φ+ = Ψw ∪ Ψc
w (disjoint union). For every α ∈ Φ+, since v∗−λ is a

lowest weight vector

X−αv
∗
−λ = 0.

It follows that for every β ∈ wΦ+

X−β · v∗w(−λ) = 0.

But β ∈ Ψc
w ⇒ β ∈ wΦ+ and we are done.

Finally, using the above diagram a proof of BWB may be given as follows:

• the first statement (i) in the theorem follows from our earlier curvature calcula-

tions and the Kodaira vanishing theorem, as was the case in the original proof

by Bott;

• the Kostant form κµ is harmonic in the sense of EGW, from which it follows

that the Penrose transform is injective;
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• finally, by the Hirzebruch-Riemann-Roch theorem the bottom two groups have

the same dimension.

We mention this argument here because a similar one will be used later in a more

involved setting.
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Lecture 8

Penrose transforms in the two main examples

In this and the next lecture we shall study automorphic cohomology defined on quo-

tients by a co-compact, neat arithmetic subgroup Γ ⊂ G for the flag domains associated

to U(2, 1)R/T and Sp(4)R/T . Specifically, with the notation

• X = Γ\D where D is non-classical,

• X ′ = Γ\D′ where D′ is classical,

• WΓ = Γ\W

we will use the correspondence diagram

WΓ

π

��������
π′

��888888

X X ′

and the EGW theorem to construct Penrose transforms

H0(X ′, L′µ′)
P−→ H1(X,Lµ)

where µ′, µ are certain weights related by

µ′ + ρ′ = µ+ ρ,

and where P is an isomorphism taking Picard modular forms, respectively Siegel modular

forms to the non-classical automorphic cohomology group H1(X,Lµ).39 This will be done

by constructing an injective Penrose transform map

H0(D′, L′µ′)→ H1(D,Lµ)

and then passing to the quotient by Γ. There the Penrose will still be injective and then

by equality of dimensions it will be an isomorphism. In this lecture we shall discuss the

proof of the result for D′ and D and in the next we shall treat it for X ′ and X.

39Here, non-classical means that D is non-classical. It seems plausible, but has not yet been proved
in generality that X is not an algebraic variety (cf. Lecture 10). Nevertheless, certain of its coherent
cohomology groups are naturally isomorphic to those of a projective algebraic variety.
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For easy reference the homogeneous complex structures we shall use are illustrated by

the following root diagrams:40

+

+

+ +

+

D D′

−α2=e∗2−e∗3

α1=e∗2−e∗1

α1+α2=e∗3−e∗1

−α1−α2=e∗1−e∗3
−α2=e∗2−e∗3

α1=e∗2−e∗1
SU(2, 1)

+

+

+

+

+

+

+
+

D D′

Sp(4)

−2e2

e1 − e2

2e1

e1 + e2

2e2

e1 + e2

2e1

e1 − e2

In the above the positive roots are labelled with a + and the compact roots are denoted

• . Note that

we are in the non-classical case if, and only if, the positive compact root

is not simple.

This is the case when the cohomology group H1(D,L−ρ) is a Harish-Chandra module

corresponding to a TDLDS with infinitesimal character χ0 and given by the data (0, C)

where C is the positive Weyl chamber, the case of particular interest in these lectures.

40In these lectures we will fairly consistently use the notations e∗i − e∗j for the weights in the SU(2, 1)
case. We have included here, and have used in Lecture 4, the alternative α1, α2 notation as this is used
in [GGK2] where detailed proofs of several of results discussed below are given.



168 Phillip Griffiths

Line bundles for SU(2, 1)

We use the following notations:

• C3 = column vectors with standard basis e1 =
(

1
0
0

)
, e2 =

(
0
1
0

)
, e3 =

(
0
0
1

)
;

• H is the Hermitian form with matrix
(

1
1
−1

)
and where

H(u, v) = tv̄Hu;

• setting H(u) = H(u, u), the unit ball B ⊂ P2 is defined

H(u) < 0.

• e∗1, e∗2, e∗3 is the dual basis to e1, e2, e3, considered as row vectors;

• the maximal torus T of SU(2, 1)R is



g =



e2πiθ1

e2πiθ2

e2πiθ3








;

• the isomorphism between T and t/Λ is given by

g → θ =



θ1

θ2

θ3


 = θ1e1 + θ2e2 + θ3e3;

Here, t ∼= R3 and Λ ∼= Z3;

• the inclusion SU(2, 1)R ↪→ U(2, 1)R induces

tS ↪→ t

where TS =: T ∩ SU(2, 1)R = tS/ΛS;

• tS = spanR{u1, u2} where
{
u1 = e1 − e2

u2 = e2 − e3;

• tS ⊂ t is defined by the equation

e∗1 + e∗2 + e∗3 = 0.

In the above root diagram for su(2, 1) we are thinking of the e∗i as linear functions on

tS. In the literature the roots of su(2, 1) are frequently denoted by ei − ej, but for

reasons that will appear below in this case we feel it is better to use e∗i − e∗j in order to

notationally distinguish between tS and t∗S.
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Homogeneous line bundles for D

The reference flag for D is [e1] ⊂ [e1, e3] ⊂ C3 (note the ordering), where [ ] denotes

linear span. Then [e1, e3] is given by the line [e2]⊥ ⊂ C3. The picture is

��
�
��

�
��

�
��

�
��

�

[e3]
s

s[e1]

s [e2]

We have chosen the indexing this way so as to have for the maximal compact subgroup

K ⊂ SU(2, 1)

K =

{(
A 0

0 a

)
: A ∈ U(2), a = detA−1

}
.

We shall consider three types of SU(2, 1)R-homogeneous line bundles over D:

(a) F(a,b) = restriction to D of the line bundle OP2(a)� OP2∗ (b) over P2 × P2∗;

(b) Lk obtained from the character corresponding to the weight k = (k1, k2, k3) ∈
Hom(Λ,Z);

(c) the Hodge bundles Vp,q for the PHS of weight n = 3 with Hodge numbers

h3,0 = 1, h2,1 = 2 described in Lecture 3.

We note that

Lk
∼= Lk+ as homogeneous lines bundles ⇔ k = k′ +m(1, 1, 1) for m ∈

(
1

3

)
Z.

The 1/3 appears because the root lattice R and weight lattice P are related by

P/R ∼= Z/3Z.

We say that k is normalized if k1 + k2 + k3 = 0. Given any k′ we may uniquely chose m

as above so that k is normalized. The relation between (a) and (b) is

F(a,b) = L( 2a+b
3 )(e∗2−e∗1)+(a−b3 )(e∗3−e∗2) = L( 2a+b

3 )α1+(a−b3 )α2
.

Proof. The fibre F(−1,0) at the reference flag is the line [e1] on which T acts by the

character e2πiθ1 corresponding to the weight e∗1 = (1, 0, 0). Thus F(−1,0) = Le∗1 . Similarly,

the fibre of F(0,−1) is the line [e2]⊥ ⊂ C3 on which T acts by the character whose

corresponding weight is −e∗2. Thus

F(a,b) = L−ae∗1+be∗2
.
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For k′ = (−a, b, 0), m = 1/3(a− b) and the normalized weight is

k =
1

3
(−2a− b, 2b+ a, a− b)

=
1

3
(−2a− b, 2a+ b, 0) +

1

3
(0,−a+ b, a− b),

which gives the result. �

A similar argument gives for the Hodge bundles



V3,0
+ = L(1,0,0)

V 2,1
+ = L(0,0,1)

V 1,2
+ = L0,1,0).

We picture Weyl chambers in the usual way

C

We note that for µ with µ+ ρ ∈ C we have q(µ+ ρ) = 1, and hence

H1
(2)(D,Lµ) 6= 0.

Although this is not the anti-dominant Weyl chamber it is the one that will play a

central role in the Penrose transform discussed below.

Homogeneous line bundles for D′

Here the reference flag is [e3] ⊂ [e3, e1] ⊂ C3. The picture is the same as above but

where now the pair (p, l) ∈ Ď has p = [e3] ∈ B. A similar argument to the one above

gives

F ′(a′,b′) = L′
( b
′−a′
3 )(e∗2−e∗1)+(−2a′−b′

3 )(e∗3−e∗2)
= L′

( b
′−a′
3 )α1+(−2a′−b′

3 )α2
.

For the PHS of weight n = 3 with h1,0 = 3 we have

V1,0
+ = F ′(−1,0).
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We recall the holomorphic fibration

D′ → B

of D′ over the unit ball given by the picture

��
��

�
��

�
��

�
��

�
��

�

[e3]
s

l

- s
[e3]

The homogeneous line bundles on B are the L′k′ for which k′ is orthogonal to the compact

root e∗2 − e∗1 . By the above these are the line bundles

F ′(a′,−a′)

when b′ = a′. Of particular importance is the pullback ω′B to D′ of the canonical bundle

ωB. We have

ω′B = L′2e∗3−e∗1−e∗2 = V1,0⊗ 3
+

which, setting ω′1/3B = V1,0
+ , gives

ω′
⊗k/3
B = ⊗kV1,0

+ = F ′(−k,0).

For D′ we have

ρ′ = e∗2 − e∗3.
We picture a Weyl chamber as follows:

C′

ω′B∗
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This C′ is the same Weyl chamber as that labelled C for D. This Weyl chamber is not

the dominant one for the complex structures on either D or D′. The roots are marked

with • and • and the weight corresponding to ω′B with a ∗. Note that ∗ is perpendicular

to the compact root since ω′B is the pullback of a line bundle over GR/K. We also note

that

• for µ ∈ C′, q(µ) = 0.

• if ω′⊗k/3B ⊗ Lρ′ = L′µ′k
, then µ′k ∈ C′ for k = 3.

By Schmid’s theorems this gives

H0
(2)(D

′, ω′
⊗k/2
B ) 6= 0 for k = 3.

These are among the holomorphic discrete series (HDS) for SU(2, 1)R, and may be

thought of as an analogue of the D+
n , n = 2, in Lecture 1. We note that this is a Weyl

chamber where for µ+ ρ, µ′ + ρ′ in it we have H1
(2)(D,Lµ) 6= 0, H0

(2)(D
′, Lµ′) 6= 0.

Holomorphic line bundles for D′′

Here the classical complex structure is given by

•

•
+

•
+

••
+ •

The map

E
E
E
E
E
E
E
E
E
E
E
EE

s [e2]

s [e1]

-

E
E
E
E
E
E
E
E
E
E
E
EE

gives a holomorphic fibration D′′ → Bc. The above discussion for D′ may be repeated

for D′′, and the results will be used below.

Line bundles for Sp(4)

The discussion is similar to, but simpler (no 1/3’s), than that for SU(2, 1), so we will

just summarize what comes out.
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We recall our notations:

• Ď consists of all Lagrangian flags F • = {F 1 ⊂ F 2 ⊂ F 3 ⊂ C4} where dimF i = i

and F 1⊥ = F 3, F 2⊥ = F 2;

• F(a,b) → Ď is defined to be the homogeneous line bundle whose corresponding

weight is ae1 + be2;

• our reference flag is

[v−e1 ] ⊂ [v−e1 , v−e2 ] ⊂ [v−e1 , v−e2 , ve2 ] ⊂ [v−e1 , v−e2 , ve2 , ve1 ].

At the reference flag the fibre

F(1,0) = [v∗−e1 ]↔ e1

F(0,1) = [ve2 ] ↔ e2.

Our reference point in D is [v−e1 ], [v−e1 , ve2 ]

s

s [ve2 ]

[v−e1 ] < 0

(1, 1)

where the < 0 and (1, 1) denote the sign of the Hermitian form on the point [v−e1 ] and

line [v−e1 , ve2 ] respectively. Thus for the Hodge bundles over D
{
V3,0 = F(−1,0)

V2,1 = F(0,1).

Turning to D′, keeping the same reference flag as above we have at the reference point

of D′ the flag [v−e1 ], [v−e1 , v−e2 ]

s s
v−e2v−e1

which gives {
F ′(1,0) = [v∗−e1 ]↔ e1

F ′(0,1) = [v∗−e2 ]↔ e2.

The Hodge-theoretic interpretation of D′ we shall use is:

• H is the space of PHS’s of weight n = 1 given by Lagrangian 2-planes F 2 ⊂ C4

with H < 0 on F 2;

• D′ is the set of Hodge flags F 1 ⊂ F 2 lying over points of H.
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Thus D′ is a P1-bundle over an HSD. Denoting by ω′H the pullback to D′ of the canonical

bundle ωH, arguing in a similar way to the SU(2, 1) case we find that

ω′H = F(−3,−3).

In the Weyl chamber diagram

*
*

*

*

C′

k=1

k=2

k=0

the shaded one is where for µ+ ρ ∈ C, µ′ + ρ′ ∈ C′ we have

H1
(2)(D,Lµ) 6= 0, H0

(2)(D
′, Lµ′) 6= 0.41

Note that for k ≥ 3 we have

ω′
⊗k/3
H ⊗ Lρ′ ∈ C′.

The picture of the corresponding weights are the ∗’s above.

Penrose transforms for SU(2, 1)

We now come to one of the main results in this lecture series. In the diagram from Lec-

ture 7, and where D,D′ are the non-classical, respectively classical complex structures

on SU(2, 1)/TS,

W

π

��						
π′

��666666

D D′

we will first show that over W
{
π∗F(1,−1)

∼= π′∗F ′(−1,0)

π∗F(0,−1)
∼= π′∗F ′(0,−1).

41Here, as in the SU(2, 1) case, we are using the notation C and C′ for the same Weyl chamber, the
point being to indicate whether we have D or D′ in mind.
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Then taking ω = ω−α where α = e∗3 − e∗1 we will have a commutative diagram

H0
DR

(
Γ(W,Ω•π′(F

′
(a′,b′))); dπ

) ω // H1
DR

(
Γ(W,Ω•π(F(a,b))); dπ

)

∼ = ∼ =

H0(D′, F ′(a′,b′))
P // H1(D,F(a,b))

where {
a = −a′ − 2

b = a′ + b′ + 1.

This defines the Penrose transform and the main result is the

Theorem: The Penrose transform

H0(D′, F ′(−3−l,0))→ H1(D,F(l+1,−2−l))

is injective for l ≥ 0.

We have seen above that

ω′B = F ′(−3,0)

so the LHS above is

H0
(
D′, ω′

⊗(l/3+1)
B

) ∼= H0
(
B, ω⊗(l/3+1)

B
)
.

The Γ-invariant sections will be Picard modular forms of weight l/3+1, a classical object.

We will see that the quotient by Γ of the above diagram and maps gives an isomorphism

H0(X,F ′(−3−l,0))
∼−→ H1(X,L(l−1,−2−l))

relating the classical object on the left to the non-classical one on the right.

We will not have time to give the details of the proof in the lecture. These appear

in the appendix to the lecture; here we will comment on the essential ideas behind the

argument.

Relation of the line bundles on D and D′ pulled back to W

This is given by {
π′∗F ′(−1,0)

∼= π∗F(1,1)

π′∗F ′(0,−1)
∼= π∗F(0,−1).

Here the isomorphisms are as homogeneous line bundles over W. These follow from

π∗F(−1,0)
∼= Le∗1 , π∗F(0,−1) = L−e∗2

π′
∗
F ′(−1,0)

∼= Le∗3 , π′
∗
F ′(0,1) = L−e∗2 .

A consequence is

π′
∗
F ′(a′,b′)

∼= π∗F(−a′,a′+b′).
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Geometric interpretation of the form ω

This contains the essential geometric idea in the construction. We will identify

SU(2, 1)C ∼= SL(3,C) with the set of frames in C3. For f1, f2, f3 independent column

vectors we set them side by side to form a matrix

(f1 f2 f3) = g ∈ SL(3,C).

The equations of a moving frame

dfi =
∑

j

ωji fj

have as coefficients the entries in the Maurer-Cartan matrix

ω1

1 ω1
2 ω1

3

ω2
1 ω2

2 ω2
3

ω3
1 ω3

2 ω3
3


 = g−1dg.

Here the fi are viewed as vector-valued maps fi : SL(3,C) → C3. The forms ωji are

linearly independent subject to the relation ω1
1 + ω2

2 + ω3
3 = 0. Geometrically the ωii

each reflect the scaling action of the corresponding weight as we move in the fibres of

SL(3,C)→W. For α = e∗3 − e∗1
ω−α = ω1

3.

The root e∗3− e∗1 is the one that changes sign when we pass from D′ to D. Geometrically

ω1
3 measures how e3 moves along the line e3e1.

The passage from D′ to D is given symbolically by

([e3], [e3, e1])→ ([e1], [e3, e1]).

We hope that this gives some intuitive indication of the geometry behind the Penrose

transform.

Next we note that

ω is a holomorphic section of Ω1
π ⊗ π∗F(−2,1) →W.

Assuming this and combining it with the boxed isomorphism above we see why the

Penrose transform takes

π′
∗
F ′(a′,b′) → π∗F(−a′−2,a′+b′+1).

For the proof of the italicized statement we use

• the Maurer-Cartan equations

dωki =
∑

j

ωji ∧ ωkj
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which result from d2fi = 0;

• Ω1
π means that we mod out by ω2

1, ω
3
1, ω

2
3, which we write as ≡π 0.

More precisely, working in the open set GW ⊂ SL(3,C) lying over W, the 1-forms

ω2
1, ω

3
1, ω

2
3 are semi-basic for the projection GW → D. Note that

{
ω2

1 = ω3
1 = 0⇒ the point [e1] doesn’t move

ω2
3 = 0⇒ the line [e3, e1] doesn’t move.

Thus the integral manifolds of this (integrable) Pfaffian system define the fibres of

W
π−→ D. This is the meaning of the last bullet above.

Remark: In general, for a submersion f : M → N , we recall that differential forms

ψ on M are semi-basic differential form if the contraction Xcψ = 0 for any vertical

tangent vector field X (i.e., f∗X = 0). The sub-bundle of T ∗M given by semi-basic

1-forms satisfy the Frobenius integrability condition, and the leaves of the foliation of

M they define are the fibres of the above submersion.

For the proof of the italicized statement we have from the Maurer-Cartan equation

dω1
3 ≡π

(
ω3

3 − ω1
1

)
∧ ω1

3

≡π
(
−2ω1

1 − ω2
2

)
∧ ω1

3

using ω1
1 +ω2

2 +ω3
3 = 0. This says that ω1

3 scales by the character with weight −2e∗1− e∗2
as we move in the fibres of GW →W, which was to be shown.

We next let F be a holomorphic function on GW that is the pullback of a holomorphic

section of L′µ′ → D′. We claim that

dF ≡ 0 mod
{
ω1

1, ω
2
2, ω

3
3, ω

2
1, ω

1
3, ω

2
3

}
.

The reason is that first the coefficients of the ωii give the scaling action corresponding to

the weight. Next, the 1-forms ω2
1, ω

1
3, ω

2
3 are semi-basic for W

π′−→ D, which implies the

claim.

Since ω2
1, ω

2
3 ≡π 0, we infer that

dπFω
1
3 = 0.

This proves that the map

H0
DR

(
Γ(W,Ω•π′(F

′
µ′))dπ′

) ω−→ H1
DR

(
Γ(W,Ω•π(Fµ)); dπ

)

is well defined, where the weight µ is determined by the scaling action of Fω1
3. The

difficult part of the proof of the result stated above is to show that for the range of

indices stated in the theorem the Penrose transform is injective. That is

Fω = dπG⇒ G = 0
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where G ∈ Γ(W, π−1Fµ).

The geometric idea behind the proof of this statement is the following: Recall that W

consists of all configurations {p, P, q} in the figure

��
��

�
��

�
��

�
��

�
��

�
��

�

P s
sp l

sq , pq ⊂ Bc

The transformation from D′ to D does not involve q; intuitively, P moves along the fixed

line l to p. This suggests that we consider the quotient space J of all configurations

��
�
��

�
��

�
��

�
��

�
��

�
��

P s
s
p

l

There is an evident diagram

W

τ
��

π

�����������������

π′

��0
00000000000000

J

σ~~~~~~~~~~

σ′   AAAAAAAA

D D′

where {
σ(P, p, l) = (p, l)

σ′(P, p, l) = (P, l).
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The variety J is not Stein — it contains the compact subvarieties ZL ∼= P1 given by

fixing Q ∈ B, taking a line L ⊂ Bc and looking at all the configurations (Q, p,Qp) ∈ J

s
��

��
��

��
��

��
��

��
��

��
��

��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

sp

Q

L

However, the fibres of W
τ−→ J and J

σ−→ D are contractible, so at least part of the proof

of the EGW theorem applies. When one works out what this means one finds that

• Fω lives on J; i.e., on W it is the pullback under τ of a form on J;

• dπG = Fω ⇒ G lives on J.

Then from the second statement one may restrict G to be section of line bundles over

the space of all ZL ∼= P1 described above. Under the conditions in the statement of the

theorem these line bundles turn out to have negative degree; hence G = 0.

We shall not give the details here (cf. the appendix to this lecture) but will also use

the following result:

H0(D,F(k−2,1−k)) = 0 for all k ∈ Z.

Penrose transforms for Sp(4)

The discussion largely parallels that for SU(2, 1), the end result being

Theorem: The Penrose transform

P : H0(D′, L′(a′,b′))→ H1(D,L(a,b))

is defined as in the SU(2, 1) case where a = a′, b = b′ + 2. It is injective when a < b.

We recall that the line bundles F (a, b) and F ′(a′,b′) were defined by the respective

weights ae1 + be2, a′e1 + b′e2, from which it follows that in the diagram

W

π

��						
π′

��666666

D D′
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we have

π∗F(a,b)
∼= π′

∗
F ′(a′,b′).

The Sp(4) case is in this way notationally simpler than the SU(2, 1) case.

Next we recall that W may be pictured as Lagrange quadrilaterals

s

s s

s
p1 E12

< 0

p2

(1, 1)

p4> 0p3

(1, 1) E13

where the symbols > 0, < 0, (1, 1) indicate the signature of the Hermitian form on the

Lagrange lines. The maps in the above diagram are given by

{
π(p1, p2, p3, p4) = (p1, E13)

π′(p1, p2, p3, p4) = (p1, E12)

or pictorially

�
�
�
�
�
�
�
�

s
p1 E12

D′

D E13

The passage from D′ to D is given by

p2 → p3.

Thus the component of the Maurer-Cartan matrix of a moving frame that reflects this

transformation is

ω3
2.
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The space J that encodes the passage from D′ to D is the set of configurations in the

diagram just above, and the maps in

W

��
J

~~~~~~~~~~

  AAAAAAAA

D D′

are the obvious ones.

The Maurer-Cartan equations give

dω3
2 ≡π (ω2

2 − ω3
3) ∧ ω3

2

which when we interpret the ωij in terms of the indexing of weights in this case says that

ω3
2 transforms as a section of π∗F(0,2).

This is why the Penrose transform takes F ′(a′,b′) → F(a′,b′+2).

For the case

ω′
⊗k/3
H = F ′(−k,−k)

whose Γ-invariant sections correspond to Siegel modular forms of weight k for the Penrose

transform will be injective for k = 1.

Summary: We have been referring to D and its quotient X = Γ\D as non-classical, and

D′ and its quotient X ′ = Γ\D′ as classical. The Penrose transform gives a mechanism

for relating the cohomology of line bundles Lµ in the non-classical case to that of L′µ′ in

the classical case. The condition for this is the relation

χµ+ρ = χµ′+ρ′

between the infinitesimal characters.42 In Lecture 10 we discuss the open (so far as I

know) question of whether this is sufficient.

In the classical case the groups Hq′(X,L′µ′) have an arithmetic structure. One may

ask if a Penrose transform between two classical cases Hq′(X ′, L′µ′) and Hq′′(X ′′, L′′µ′′)

preserves the arithmetic structures. This is plausible but, so far as I know, has not been

established.

42To be more precise, µ+ ρ and µ′ + ρ′ should be related by WK to give the necessary condition.
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Appendix to Lecture 8:

Proofs of the results on Penrose transforms for D and D′

This appendix is largely reproduced from notes for a seminar at the IAS and from

[GGK2]. There is some repetition with the material in Lecture 8.

Step one: With the notations from Lecture 7, we consider the diagram

W

τ

��
π

�����������������

π′

��0
00000000000000

J

σ′   AAAAAAAA

σ
~~~~~~~~~~

D D′

We will denote by ωji the restriction to the open subset lying over W in GC = SL(3,C)

of the Maurer-Cartan forms and we set

ω = ω1
3 .

Proposition: ω is a holomorphic section of

Ω1
π ⊗ π∗F(−2,1) .

Proof. Denoting congruence modulo Ω•π by ≡π, by the Maurer-Cartan equation we have

dω1
3 ≡π (ω3

3 − ω1
1) ∧ ω1

3 .

From ω1
1 + ω2

2 + ω3
3 = 0 we obtain

dω1
3 ≡π (−2ω1

1 − ω2
2) ∧ ω1

3 .

From Lecture 8, we obtain that over D

F(a,b) = L−ae∗1+be∗2
,

from which the result follows. �

Remark: The maps are

s
P

s
��
�
��

�
��
�

p

l

HHH
HHH

HHHp̃
s l̃

τ−→ s
P

s
��

�
��

�
��
�

p

l

σ−→
s

��
�
��

�
��
�

p

l
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The fibres are

• τ−1(p, l, P ) =

{
set of lines l̃ through P , l̃ 6= l,

and points p̃ ∈ l̃ such that pp̃ ⊂ Bc

}

= disc bundle over C
• σ−1(p, l) = {P ∈ l ∩ B} ∼= ∆ .

These are contractible Stein manifolds, so that at least one half of the proof of the EGW

theorem applies to each map. However,

J ∼= {(p, P ) : P ∈ B and p ∈ Bc}

is not Stein. Thus even though the diagram

J

��






��2
2222

D D′

is the most natural one to interpolate between D and D′, we need to go up to the

correspondence space W to be able to apply the EGW theorem to holomorphically realize

the cohomologies of D and D′ and then to relate them via the Penrose transform. This

situation is the general one when B and B′ are not “opposite” Borel subgroups. In this

case for the group A = B ∩B′ we may expect to have

J

��






��2
2222⊂ GC/A

D D′

as the natural space to connect D and D′.

Even though J is not Stein the geometry is reflected in the exact sequence

0→ τ ∗Ω1
σ → Ω1

π → Ω1
τ → 0 ,

where the geometric meanings are

• τ ∗Ω1
σ means dP moves along l,

• Ω1
π means dp̃, dl̃ move subject to d

〈
l̃, p̃
〉

= 0,

• Ω1
τ means that dp̃ moves, where l̃ = P p̃ is determined by p̃.

The above exact sequence gives a filtration of Ω•π. For any line bundle L → D we may

tensor it with

π∗L ∼= τ ∗(σ∗L)
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to obtain a spectral sequence

Ep,q
0 = Γ

(
W,Ωq

τ ⊗ τ ∗Ωp
σ(π∗L)

)
⇒ Hp+q

DR

(
Γ(W,Ω•π(π∗L)); dπ

)
.

For fixed p, the relative differentials are dτ and since the fibres of τ are contractible and

Stein we may apply the proof of EGW to infer that

Ep,q
1 = H1

(
J,Ωp

σ(σ∗L)
)
.

One may then identify the canonical form ω as representing a class in the image of the

natural mapping

H1
DR

(
Γ(J,Ω•σ(σ∗OD(−2, 1)))

) τ∗−→ H1
DR

(
Γ(W,Ω•π(π∗OD(−2, 1)))

)

∼ =

E1,0
2 .

Step two: We want to relate the following

• over D we have the line bundles F(a,b);

• over D′ we have the line bundles F ′(a′,b′);

• over W we have the homogeneous line bundles

Le∗i
→W

given by the identification W ∼= GC/TC and the characters of TC corresponding

to the e∗i .

Proposition: Over W we have
{
π′∗F ′(−1,0)

∼= π∗F(1,−1)

π′∗F ′(0,−1)
∼= π∗F(0,−1) .

Corollary: Over W we have
{
π′∗F ′(a′,b′)

∼= π∗F(−a′,a′+b′)
π′∗F ′(a′,b′) ⊗ π∗F(−2,1)

∼= π∗F(−a′−2,a′+b′+1) .

Proof. The result follows from
{
π∗F(−1,0)

∼= Le∗1
, π∗F(0,−1)

∼= L−e∗2
π′∗F ′(−1,0)

∼= Le∗3
, π′∗F ′(0,−1)

∼= L−e∗2 .
�

Definition: The Penrose transform

P : H0(D′, L′(a′,b′))→ H1(D,L(a,b)) ,
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where a = −a′ − 2 and b = a′ + b′ + 1, is defined by the commutative diagram

H0
DR

(
Γ(W,Ω•π′ ⊗ π′∗L′(a′,b′))

) ω // H1
DR

(
Γ(W,Ω•π ⊗ π∗L(a,b))

)

∼ = ∼ =

H1(D′, L′(a′,b′))
P // H1(D,L(a,b)) .

Remark: We have noted that ω corresponds to the simple root α that changes sign when

we pass from D′ to D. Geometrically, ω is the EGW representative of the fundamental

class (a divisor in this case) of the Bruhat cell corresponding to the parabolic subgroup

associated to B′ and α; i.e., the one whose Lie algebra is b′ ⊕ CXα. We do not know

what, if any, generality this method has.

Step three: We begin with the

Observation: For F ∈ H0(D′, L′(a′,b′))
∼= H0

DR

(
Γ(W,Ω•π′ ⊗ π′∗L′(a′,b′))

)
,

Fω ∈ Γ(W,Ω1
π ⊗ π∗L(a,b))

is harmonic.

Proof. Lifted up to the open set in GC lying over W, F is a function of f1, f2, f3 of the

form

F = F (f3, f1 ∧ f3) .

If α = e∗3 − e∗1 is the root with

ω1
3 = ω−α ,

then the harmonic condition from [EGW] is

Xα · (X−αcFω) = Xα · F = 0 .

This is equivalent to

F 1
3 = 0 ⇐⇒ the coefficient of ω3

1 in dF is zero.

By the chain rule, dF will be a linear combination of the forms in df3 and in d(f1 ∧ f3).

The former are the ωj3, and for the latter we have

d(f1 ∧ f3) ≡ (df1) ∧ f3 mod{ω3
3, ω

2
3, ω

1
3}

≡ 0 mod{ω1
1, ω

2
1, ω

3
3, ω

2
3 ∧ ω1

3}
since f3 ∧ f3 = 0.

Since ω3
1 does not appear in the bracket term we have F 1

3 = 0. �
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Theorem 2.13 in [EGW] gives conditions on (a, b) such that a de Rham class in

H1
DR

(
W,Ω1

π(L(a,b)); dπ
)

has a unique harmonic representative. Unfortunately, this re-

sult does not apply in our situation. Geometrically, one may say that the reason for this

is that the [EGW] proof uses the diagram

W

��444444
// I

��






D

rather than the above diagram which more closely captures the geometric relationship

between D and D′. This brings us to the

Proposition: (i) If H0(D′, L′(a′,b′)) 6= 0, then b′ = 0.

(ii) The Penrose transform is injective if b′ 5 0. The common solutions to (i) and

(ii) are b′ = 0.

Remarks: (i) In terms of (a, b) these conditions are
{
a+ b+ 1= 0

a+ b+ 15 0 .

(ii) The Weyl chamber where H0
(2)(D

′, L′(a′,b′)) is non-zero is given by
{

b′ + 1> 0

a′ + b′ + 2< 0 .

If b′ = 0 these reduce to

a′ 5 −3 .

As we have seen, the pullback ω′B to D′ of the canonical bundle on B is given by

ω′B = F ′(−3,0) .

Also, we have noted that the pullback V
′1,0
+ to D′ of the Hodge bundle V1,0

+ over B is

given by

V
′1,0
+ = F ′(−1,0) .

Thus

ω′B = F ′(−3,0) .

We set ω
′⊗k/3
B = F ′(−k,0) = ⊗kV ′1,0+ and have defined Picard automorphic forms of weight

k to be Γ-invariant sections of ω
′⊗k/3
B . Picard automorphic forms of weight k = 1 then

give sections of

F ′(−k,0) → D′ .

From the above we have the
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Corollary: The Penrose transform

P : H0(D′, F ′(−3−l,0))→ H1(D,F(l+1,−2−l))

is injective for l = 0.

In particular, P will be seen to be injective on Picard modular forms of weight k = 3.

Remark: In Carayol (cf. Proposition (3.1) in [C2]) it is proved that

P is injective for b′ = 0, a′ + b′ + 2 5 0 .

The common solutions to the two sets of conditions are are

b′ = 0, a′ 5 −2 .

The solutions when b′ = 0 are

a′ < −2

which is exactly the range in Carayol’s condition.

Proof of (ii). The first step is to use the above diagram and the spectral sequence

arising from the above exact sequence of relative differentials to reduce the question to

one on J. The spectral sequence leads to the maps

H1
DR

(
Γ(J,Ω•σ ⊗ σ∗L(a,b)); dσ

) τ∗−→H1
DR

(
Γ(W, τ ∗Ω•σ ⊗ π∗L(a,b)); dτ

)

−→ H1
DR

(
Γ(W,Ω•π ⊗ π∗L(a,b)); dπ

)
.

We will show that

(a) Fω ∈ Γ(J,Ω1
σ ⊗ σ∗L(a,b));

(b) the image of Fω under the natural map

H1
DR

(
Γ(J,Ω•σ ⊗ σ∗F(a,b)); dσ

)
→ H1

DR

(
Γ(W,Ω•π ⊗ π∗F(a,b); dπ)

)

is non-zero in H1
DR

(
Γ(W,Ω•π ⊗ π∗L(a,b)); dπ

)
for (a, b) in the range stated in the

Proposition.

Proof of (a): We let GC(J) be the inverse image of J under the mapping

(f1, f2, f3)→ ([f1] ∈ Bc, [f3] ∈ B · [f1 ∧ f3])

where the RHS is the point

s
P

s
��

��
�
��

��

p

l
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of J given by p = [f1], P = [f3] and l = Pp = f1 ∧ f3. The 1-forms ω2
1, ω

3
1, ω

2
3, ω

1
3 are

semi-basic for GC(J) → J, and ω2
1, ω

3
1, ω

2
3 are semi-basic for GC(J) → D. Then ω = ω1

3,

F = F (f3, f1 ∧ f3) and

d(Fω) ≡ 0 mod{ω1
1, ω

2
2, ω

3
3, ω

2
1, ω

3
1, ω

2
3}

implies that Fω ∈ Γ(J,Ω1
σ ⊗ σ∗L(a,b)).

Suppose now that

Fω = dπG

where G ∈ Γ(W, π∗L(a,b)). Pulling G back to the open subset GC(J) of GC we have that

G = G(f1, f2, f3, f1 ∧ f3, f2 ∧ f3). Then Fω = dπG implies that dG has no ω1
2, ω

3
2 term,

which then gives that G = G(f1, f3, f1 ∧ f3), and when the scaling is taken into account

G ∈ Γ(J, σ∗L(a,b)) .

This reduces the question to one on J; we have to show that the equation on J

Fω = dσG

implies that F = 0. We will prove the stronger result

For (a′, b′) in the range stated in the above proposition, this equation

implies that G = 0.

The idea is to show that (i) the maximal compact subvarieties Z ⊂ D have natural lifts

to compact subvarieties Z̃ ⊂ J, and the Z̃ cover J; (ii) the restrictions G
∣∣
Z̃

are zero. In

fact, we have that Z ∼= P1 and under the projection σZ̃ → Z we will show that

σ∗F(a,b)

∣∣
Z̃
∼= OP1(a+ b) .

Thus

G
∣∣
Z̃
∈ H0(OP1(a+ b)) ,

and we see that the range of (a′, b′) in the proposition is exactly a+ b < 0.

For the details, we identify J with pairs (P, p) ∈ B × Bc and B with lines L ⊂ Bc.
Then B × B = U is the cycle space, and we have seen that each point (P,L) ∈ U gives

a maximal compact subvariety Z(P,L) ⊂ D as in the picture

P

•

p•

ll

L
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where

Z(P,L) = {(p, l) ∈ D} ∼= P1 .

The lift Z̃(P,L) ⊂ J of Z(P,L) is then given by

Z̃(P,L) = {(p, l, P ) ∈ J}

where P is constant. We have

Z̃(P,L)

f

����������
f̌

��::::::::

P2 P2∗

where {
f(p, l, P ) = p

f̌(p, l, P ) = l .

From this we may infer the formula for σ∗F(a,b)

∣∣
Z̃

where Z̃ = Z̃(P,L). This completes

the proof of (ii) in the proposition.

The proof of (i) is similar. Given (P,L) ∈ U we define Z ′(P,L) ⊂ D′ by

Z ′(P,L) = {(P,L) ∈ D′}

in the above figure. Then we have

Z ′(P,L)

f ′

����������
f̌ ′

��;;;;;;;;

P2 P2∗

where {
f ′(P, l) = P

f̌ ′(P, l) = l .

Since P is fixed we have that

F ′(a′,b′)
∣∣
Z′(P,L)

∼= OP1(b′) .

If follows that

b′ < 0⇒ Γ(J, σ′
∗
F ′(a′,b′)) = 0⇒ Γ(D′, F ′(a′,b′)) = 0

where σ′(P, p) = P . �
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Discussion: The argument in [C2] is rather different in that Carayol uses the pseudo-

concavity of J rather than the compact subvarieties. It goes as follows.

Since f1 and f3 obviously determine f1 ∧ f3, we may write

G(f1, f3, f1 ∧ f3) = H(f1, f3) .

Then for each fixed f3 the LHS is bi-homogeneous of degree (a, b) in f1 and f1∧ f3. The

RHS is then bi-homogeneous of degree a+ b = b′− 1 in f1 and b = a′+ b′+ 1 in f3. Now

as noted above

J ∼= B× Bc

where [f3] ∈ B and [f1] ∈ Bc. For fixed f3, H(f1, f3) is a holomorphic function defined

for f1 ∈ (C3\{0})\B̃c, where ˜ denotes the inverse image in C3\{0} of Bc ⊂ P2. By

Hartogs’ theorem, H(f1, f3) extends to a holomorphic function of f1 to all of C3 where it

is homogeneous of degree b′−1. Then if b′ 5 1, the case we shall be primarily interested

in, it follows that G = 0.

As noted in [C2], the above argument gives the following

Observation: Every section s ∈ Γ(D,F(a,b)) is the restriction to D of a section ŝ ∈
Γ(Ď, F̌(a,b)).

Proof. The section s lifts to a function (f1, f1 ∧ f3) defined on an open set of GC and

homogeneous of degree (a, b) in (f1, f1 ∧ f3). We then define

S(f1, f3) = s(f1, f1 ∧ f3)

and apply Hartogs’ theorem to S to give the result (cf. [C2] for the details). �

Corollary:

H0(D,F(k−2,1−k)) = (0) for all k ∈ Z .

Proof. We must show H0(Ď, F(k−2,1−k)) = (0). For k ∈ Z and µk = k−3
3
α1 + 2k−3

3
α2 we

have 



µk + ρ singular (k = 1, 2)

or

q(µk + ρ) = 1

which gives the result. �

The Penrose transform in the second example

The objectives of this section are

(i) to define the Penrose transform

P : H0(D′, L′µ′)→ H1(D,Lµ)
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in the second example, where D and D′ are Sp(4,R)/T with the non-classical

and classical complex structures described in Lecture 3;

(ii) to show that P is injective for certain µ and µ′.

The discussion will be carried out in several steps.

Step one: We first will carry out for Sp(4) the calculations that were given for SU(2, 1)

just below the statement of the theorem in that case. As was done there, we first discuss

the compact case where we have
{
M = GC/B

M ′= GC/B
′

where B,B′ are the Borel subgroups where D = GR/T , T = GR ∩ B and D′ = GR/T
′,

T ′ = GR∩B′. Of course, M = Ď and M ′ = Ď′ are isomorphic as homogeneous complex

manifolds, but after making this identification D and D′ will be different GR orbits.

The first step is to describe in the compact case the diagram

GC

��

W̌

��
π′

��4444444444444444444444

π

������������������������
= GC/TC

J̌

||yyyyyyyyyyyyy

##GGGGGGGGGGGGG = GC/A

GC/B = M M ′ = GC/B
′.

Here the pictures are

• GC/B ←→
B
B
B
BB

E

• p
= Lagrange flag

• GC/A←→
A
A
A
AA

E

• p

�
�
�
��

E ′

=





pairs of

Lagrange flags

meeting in

a point




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• GC/TC ←→

•

•

•

•

p3

p4

p2E12

p1

E13 E24

@
@
@

�
�

�
�

�
�

�� @
@
@@

E34

= Lagrange quadrilaterals

• GC = frames (f1, f2, f3, f4).

The maps are




(f1, f2, f3, f4) −→ (p1, p2, p3, p4), pi = [fi]

(p1, p2, p3, p4) −→ (p1, E13, E12),

(p, E,E ′) −→ (p, E) and (p, E,E ′)→ (p, E ′), p = p1 and

E = E13, E
′ = E12 .

Step two: We have

H1
DR

(
Γ(W̌,Ω•π ⊗ π∗Lµ); dπ

)
oo ω___ H0

DR

(
Γ(W̌,Ω•π′ ⊗ π′∗L′µ′); dπ

)

∼ = ∼ =

H1(M,Lµ) H0(M ′, L′µ′).

We shall show that

The form ω3
2 gives the pullback to GC of a canonical form

ω ∈ Γ
(
W,Ω1

π ⊗ π∗Lµ ⊗ π′∗Ľ′µ′
)

that gives the map indicated by the dotted line above.

Here, µ and µ′ are characters of T that give homogeneous line bundles Lµ, L
′
µ′ over

M,M ′, where µ + ρ = µ′ + ρ′ (see below). The calculations are parallel to those given

below.

Proof. The method is similar to that used below. The fibres of the map GC → M are

given by {
ω2

1 = 0, ω3
1 = 0, ω4

1 = 0

ω2
3 = 0

.

where we have used ω2
1 + ω4

3 = 0 and ω3
1 + ω4

2 = 0. The fibres of GC → J̌ are given by

the above Pfaffian equations together with

ω3
2 = 0 .
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Geometrically the above means that along the fibres of GC → J̌ the configuration

p1 •

�
�

�
�
�

�
�
�

��

E12E13

is constant, while along the fibres of GC →M the configuration

E13

• p1

is constant.

We next observe that

ω3
2 spans an integrable sub-bundle J ⊂ Ω1

π .

Indeed, using ω4
2 + ω3

1 = 0, the Maurer-Cartan equation

dω3
2 = ω1

2 ∧ ω3
1 + ω2

2 ∧ ω3
2 + ω3

2 ∧ ω3
3 + ω4

2 ∧ ω3
4

= ω1
2 ∧ ω3

1 + (ω2
2 − ω3

3) ∧ ω3
2 + ω3

4 ∧ ω3
1

gives

dω3
2 ≡π (ω2

2 − ω3
3) ∧ ω3

2 .

This implies first that J is a sub-bundle and secondly that it is integrable.

Step three: We next have the observation

Let F be a holomorphic function, defined in an open set in GC that is

the pullback of a holomorphic section of L′µ′ →M ′. Then

dF ≡ 0 mod
{
ωjj , ω

2
1, ω

3
1, ω

4
1, ω

3
2

}
.

Here, 1 5 j 5 4. It follows that, where again 1 5 j 5 4,

dπF ≡ 0 mod
{
ωjj , ω

3
2

}
.

From the preceeding we conclude that

dπ(Fω3
2) ≡ 0 .
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We now let ω be the form on J̌ that pulls back to ω3
2 on GC. More precisely, there is

a line bundle L→ J̌ that will be identified below and then

ω is a section of J ⊗ L ⊂ Ω1
π ⊗ L .

The above calculations then give the main step:

Proposition: For F ∈ H0(M,L′µ′), the map

F → Fω

induces a map given by the dotted arrow above.

Finally it remains to identify the relation among the line bundles L′µ′ , Lµ and L. Let
{
L′µ′ = F ′(a′,b′)
Lµ = F(a,b) .

Then it follows that

L = π∗F(0,2) .

Using this and π∗F(a,b) = π′∗F ′(a,b) on J, the identifications give for the Penrose transfor-

mation

P : H0(D′, L′(a′,b′))→ H1(D,L(a,b)){
a = a′

b = b′ + 2 .

This is the same as

µ+ ρ = µ′ + ρ′ .

Step four: For F ∈ H0(D′, F ′(a′,b′)), we may pull F back to an open set in GC where it

is a holomorphic function

F (f1, f1 ∧ f2) .

It follows that

Fω ∈ Image
{
H1

DR

(
Γ(J,Ω•σ ⊗ σ∗F(a,b))

)
→ H1

(
Γ(W,Ω•π ⊗ π∗F(a,b))

)}
.

Suppose that

Fω = dπG

where G ∈ H0
DR

(
Γ(W,Ω•σ ⊗ π∗F(a,b))

)
. We will show that

The pullback of G to an open set in GC is

a function of the form G(f1, f1 ∧ f2, f1 ∧ f3).
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Proof: As in the first example, we shall work modulo the differential scaling coefficients

ωjj , which will take care of themselves at the end. We recall that

Ω1
π = span

{
ω2

1 = −ω4
3, ω

3
1 = −ω4

2, ω
4
2, ω

2
3

}
.

Then we have

dG does not involve ω1
2 = −ω3

4, ω
1
3 = −ω2

4, ω
1
4 .

It follows first that G = G(f1, f2, f3). Next, since ω1
2 and ω1

3 do not appear in dG, we

infer that

G = G(f1, f1 ∧ f2, f1 ∧ f3) .

This gives the

Conclusion: If Fω = dπG, then G ∈ Γ(J, σ∗F(a,b)).

Step five: The space J has maximal compact subvarieties Z = Z(E,E ′) given by the

picture

,(1 1)

> 0
E

E
< 0

•

•
= ⊥p p

p

That is, the locus

{p, pp′, E}, E fixed

gives a P1 in J. The line pp′ is Lagrangian since p′ = p⊥, and H has signature (1, 1) on

pp′ since H(p) < 0 and H(p′) > 0. Since J is covered by such Z(E,E ′), to show that

the equation

dπG ≡ Fω, G ∈ Γ(J, σ−1F(a,b))

cannot hold non-trivially it will suffice to establish the stronger result that all

G
∣∣
Z(E,E′)

≡ 0 .

But we have seen that

F(a,b)

∣∣
Z(E,E′)

= OP1(a− b) .
This gives the

Theorem: The Penrose transform

P : H0(D′, L′(a′,b′))→ H1(D,L(a,b))

is injective for a < b, or equivalently for

a′ + b′ + 1 < 0 .
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Corollary: The Penrose transform

P : H0(D,ω
′⊗k/3
H )→ H1(D,F(−k,−k+2))

is injective for k = 1.

Remark: As a check on the signs we recall that the distinguished Weyl chamber C is

the unique one where {
µ′ + ρ′ ∈ C⇒ H0

(2)(D
′, L′µ′) 6= 0

µ+ ρ ∈ C⇒ H1
(2)(D,Lµ) 6= 0 .

Then for µ′ = a′e1 + b′e2

µ′ + ρ′ ∈ C⇐⇒
{
a′ < −2

b′ < a′ + 1 ,

and for µ = ae1 + be2

µ+ ρ ∈ C⇐⇒
{
a < −2

b < a+ 3 .

The Penrose transform {
P : H0(D′, L′(a′,b′))→ H1(D,L(a,b))

a = a′, b = b′ + 2

exactly takes the µ′ satisfying the above to the µ satisfying its conditions.
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Lecture 9

Automorphic cohomology

The purposes of this lecture are

• to complete the proof of the injectivity of the Penrose transform for Picard and

Siegel modular forms;

• to present the calculation of cup-products, which allows one to reach the groups

Hq(X,L−ρ), q = 1, 2,

corresponding to the TDLDS by cup-products of Penrose transforms of Pi-

card/Sigel modular forms.

The intricate calculations here involve computations in n-cohomology, which are partic-

ularly subtle for TDLDS’s. In Appendix I to this lecture we have given the analysis of

the U(2)-modules and nK-cohomologies that will form the basis for some of these calcu-

lations. In Appendix II we have given the proofs, due to Schmid, of the degeneration of

the Hochschild-Serre spectral sequences in the cases of TDLDS’s that are of particular

interest in these lectures.

Before getting into the specifics I would like to make one remark from the perspective

of an algebraic geometer. Namely, from

ωX = L−2ρ

we see that the canonical bundle ωX has a natural square root

ω
1/2
X = L−ρ,

which by Kodaira-Serre duality gives

Hq(X,L−ρ) ∼= Hn−q(X,L−ρ)
∗

where dimX = n. Thus the groups Hq(X,L−ρ) come in dual pairs.

In general, if µ+ ρ is singular then the sheaf cohomology Euler characteristic

χ(X,Lµ) =
∑

q

(−1)q dimHq(X,Lµ) = 0.

Proof. For Ď it follows from the BWB theorem that all the groups Hq(Ď, Lµ) = 0. Next,

by the Hirzebruch-Riemann-Roch theorem, for any weight µ

χ(Ď, Lµ) =

∫

Ď

P (Ωµ̂,ΩTĎ)
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where P (Ωµ̂,ΩTĎ) is a Gc-invariant polynomial in the curvature forms Ωµ̂ for Lµ and

ΩTĎ for the tangent bundle TĎ. When µ + ρ is singular, the BWB theorem and Gc-

invariance give that P (Ωµ̂,ΩTĎ) = 0. For D, by the curvature considerations from

Lecture 5 at the identity coset we have

P (Ωµ,ΩTD) = ±P (Ωµ̂,ΩTĎ).

When µ + ρ is singular the RHS is zero, while by the Atiyah-Singer version of the

Hirzebruch-Riemann-Roch theorem for X

χ(X,Lµ) =

∫

X

P (Ωµ,ΩTD) = 0. �

We see from this that the line bundles L−ρ → X have much the flavor of special

divisors on algebraic curves, especially those corresponding to line bundles of degree

g − 1. In fact, from L−ρ = ω
1/2
X they resemble theta characteristics. For G = SL2 the

line bundle L−1 → X is a distinguished theta characteristic, meaning here a particular

square root of the canonical bundle arising from the uniformization H→ X.

Returning to the main topic of this lecture, the calculation in n-cohomology will yield

the results stated in examples just below. One observes that the Euler characteristic

phenomenon is already evident. One notes also the difference with the Schmid results

in Lecture 5 on n-cohomology for DS, where there is only one non-zero group and con-

sequently non-zero Euler characteristic as well.

Examples

SU(2, 1): There is one equivalence class of a TDLDS (0, C) where C is the positive Weyl

chamber for the non-classical complex structure. For the corresponding Harish-Chandra

module V0 we will see that

h1(n, V0)ρ = h2(n, V0)ρ = 1.

Sp(4): There are then two equivalence classes of TDLDS’s (0, C1) and (0, C2) corre-

sponding to the two non-classical complex structures D = D1 and D2. The pictures are
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C1

C2

We will then see that
{
h1(n, V1)ρ = h2(n, V2)ρ = 1

h2(n, V2)ρ = h3(n, V2)ρ = 1.

Before turning to specifics we want to give an approximate statement of the main

results for SU(2, 1). The Sp(4) case will be discussed later. Recall our notations from

Lecture 8

• ω′⊗k/3B = L′µ′k
= line bundles over D′ whose sections over X are Picard modular

forms of weight k;

• Lλ′k → D where λ′k + ρ = µ′k + ρ′;

• H0(X ′, L′µ′k
)
∼−→ H1(X,Lλ′k) for k = 4 via the Penrose transform.

The picture is

−ρ/2

λ′k µ′k + ρ′ = λ′k + ρ
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For the other classical complex structure D′′ with anti-holomorphic fibration D′′ → B
over the ball, there are similar results with the picture

−ρ/2

λ′′k
µ′′k + ρ′′ = λ′′k + ρ

From this we see that

λ′k + λ′′k = −ρ
so that cup-products in cohomology give a map

H1(X,Lλ′k)⊗H
1(X,Lλ′′k )→ H2(X,L−ρ).

The very approximate statement is that this cup-product is surjective for k = 5.43 Since

as noted above

H1(X,L−ρ) = H2(X,L−ρ)
∗,

and since as we have seen from the curvature considerations thatH0(X,L−ρ) = H3(X,L−ρ)

= 0, this means that the non-classical groups Hq(X,L−ρ) can be reached by classical

groups.

Other than the very rich connection between complex geometry and representation

theory that is involved, one may ask why is this of interest to arithmetic algebraic ge-

ometers? One answer is that the group H1(X,L−ρ) appears as the infinite component

of an automorphic representation that is not associated to the cohomology, either l-adic

or coherent, of a Shimura variety.44 Thus defining an arithmetic structure on this vector

space is not possible by classical methods. In the above boxed map, the vector spaces

on the LHS have an arithmetic structure, and if one could show that the kernel of the

cup is defined over Q, this would give an arithmetic structure to the RHS.

43The boxed statement is what one might initially try to prove from the above weight considerations.
The precise result, discussed below, involves a duality and taking a limit over the discrete groups Γ.

44This topic will be discussed in the lecture by Wushi Goldring.
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Williams lemma and application

We first recall the Casselman-Osborne lemma in its original form and then shall dualize

it to the form we shall use. Let V be the Harish-Chandra module associated to an

irreducible unitary representation Ṽ of GR and suppose that V has a highest weight

vector v of weight µ. Then

• v ∈ H0(n+, V )µ where H0(n+, V ) = V n+
= Cv;

• V has infinitesimal character χµ+ρ.

The Casselman-Osborne lemma states that in general

Hq(n+, V )µ 6= 0⇒ χV = χµ+ρ

(we don’t asume V has a highest weight vector of weight µ). A consequence is

If Hq(n, V )−µ 6= 0, then V has infinitesimal character χ−(µ+ρ).

In order to ensure that Ṽ is in the discrete series we need an extra hypothesis, given by

Williams lemma: Given an irreducible unitary representation V and a weight µ sat-

isfying

(i) µ+ ρ is regular;

(ii) Property P: For each β ∈ Φnc with (µ+ ρ, β) > 0

(µ+ ρ− 1

2

∑
{
α∈Φ
(µ+ρ,α)>0

α, β) > 0.

Then

Hq(n, V )−µ 6= 0⇒





• q = q(µ+ ρ)

• dimHq(n, V )−µ = 1

• Ṽ = Ṽ−(µ+ρ)

where Ṽ−(µ+ρ) is a discrete series representation with infinitesimal character

χ−(µ+ρ).

For both the SU(2, 1) and Sp(4) examples we may define the Penrose transform

H0(X ′, L′µ′k)
P−→ H1(X,Lλ′k)

where µ′k are the weights giving Picard, respectively Seigel modular forms. Indeed, from

the diagram

Γ\W
π

��������
π′

��444444

Γ\D =X X ′= Γ\D′
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we have seen in Lecture 7 that Γ\W is Stein and the fibres of π, π′ are contractible.

Moreover, the form ω is GR, and hence Γ, invariant. Thus the constructions in the

previous lecture apply here to define the mapping P above. We note that

• H0(X ′, L′µ′k
) = H0(D,L′µ′k

)Γ;45

• P is an isomorphism for k = 4.

For the proof of the second statement the same argument as in the previous lecture shows

that P is injective. For the surjectivity we will give below a proof using n-cohomology.

That it should be true, at least for k � 0, may be seen as follows:

We first have, for k � 0, from the vanishing of cohomology arising from the sign

properties of the curvature forms

Hq′(X ′, L′µ′k) = 0 for q′ 6= 0, Hq(X,Lλ′k) = 0 for q 6= 1.

It first follows by using the Leray spectral sequence and noting that ωB → B is a positive

line bundle (in fact, k = 4 works here if we use duality and Kodaira vanishing) that

Hq′(X ′, L′µ′k)
∼= Hq′(Γ\B, ω⊗k/3B ).

For the Hq(X,Lλ′k) we use that the curvature form Ωλ′k
has one positive and all the rest

negative eigenvalues. Standard vanishing theorems then give the result.

Once we have injectivity and the vanishing result, it will suffice to show that the

sheaf Euler characteristics are the same. Noting that vol(X ′) = vol(X), this follows

from the proportionality property of the curvature forms at the identity coset and the

Atiyah-Singer version of the Hirzebruch-Riemann-Roch theorem.

The application of Williams lemma is this:

For both SU(2, 1) and Sp(4) and for k = 4 the condition P is satisfied

for the µ′k giving Picard, respectively Siegel automorphic forms.

Proof for SU(2, 1). The Penrose transform is given symbolically by

F ′(−k,0) → F(k−2,1−k).

Then referring to the formulas for line bundles in the SU(2, 1) case in Lecture 8 we find

that

µ′k + ρ′ = λ′k + ρ =

(
k

3

)
(e∗2 − e∗1) +

(
2k − 3

3

)
(e∗3 − e∗2).

45In general there is a spectral sequence abutting to H∗(X,Lµ) and with Ep,q1 = Hq(Γ, Hp(D,Lµ)).
Similarly for X ′ and X ′′. Somewhat miraculously for the groups that appear in the main results in this
lecture we will always have Hq(X,Lµ) = Hq(D,Lµ)Γ (cf. [GGK2]).
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Using the picture

*

e∗1 − e∗3
e∗2 − e∗3

e∗2 − e∗1

e∗3 − e∗1
µ′k + ρ

e∗3 − e∗2

e∗1 − e∗2

the non-compact roots β with (λ′k + ρ, β) > 0 are e∗3 − e∗1 and e∗3 − e∗2, where we have

assumed k ≥ 3 and used (e∗2−e∗1, e∗2−e∗1) = (e∗3−e∗2, e∗3−e∗2) = 2 and (e∗2−e∗1, e∗3−e∗2) = −1.

Then (
1

2

) ∑

α∈Φ
(µ′k+ρ,α)>0

α = e∗3 − e∗1

and {
(λ′k + ρ+ e∗1 − e∗3, e∗3 − e∗1) =

(
2
3

)
(k − 3)

(λ′k + ρ+ e∗1 − e∗3, e∗3 − e∗2) = k − 3.

Thus condition P holds for k = 4.

The argument for Sp(4) is similar. �

Note: For SU(2, 1) and for k = 1, 2 the weight λ′k + ρ is irregular and, even though it

is regular for k = 3 condition P fails in this case.

Automorphic cohomology in terms of n-cohomology We first recall the general

formula

Hq(X,Lµ) = ⊕
π∈ĜR

Hq(n, Vπ)
⊕mπ(Γ)
−µ

where mπ(Γ) is the multiplicity of Vπ in L2(Γ\GR). Assuming that µ satisfies condition

P with q(µ+ρ) = 1, and denoting by V−(µ+ρ) the Harish-Chandra module corresponding

to a DS representation with infinitesimal character χ−(µ+ρ), using Casselman-Osborne

the above becomes

H1(X,Lµ) ∼= H1
(
n, V−(µ+ρ)

)m−(µ+ρ)(Γ)

where the n-cohomology group is 1-dimensional and Hq(X,Lµ) = 0 for q 6= 1.
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There is a similar result

H0(X ′, L′µ′)
∼= H0

(
n′, V−(µ′+ρ′)

)m−(µ′+ρ′)(Γ)

for X ′. When µ + ρ = µ′ + ρ′, which is the case for Penrose transforms, we see that

h1(X ′, L′µ′) = h0(X,Lµ) which gives a proof of the claim above that P is an isomorphism

for Picard modular forms of weight k = 4. A similar argument works for Siegel modular

forms.

Remark: As one might expect on general geometric grounds, since the Penrose trans-

forms are GR-equivariant they may be defined at the level of n-cohomology, and then

when sheaf cohomology is expressed in terms of n-cohomology the two ways of defining

Penrose transforms agree. In the SU(2, 1) case this goes as follows:

We want to construct

H0
(
n′, V−(µ′+ρ′)

)
−µ′

ω−→ H1
(
n, V−(µ+ρ)

)
−µ .

Now {
n′ = span

{
Xe∗3−e∗1 , Xe∗3−e∗2 , Xe∗1−e∗2

}

n = span
{
X−(e∗3−e∗1), Xe∗3−e∗2 , Xe∗1−e∗2

}

and ω = ω−(e∗3−e∗1), which since µ− µ′ = e∗1− e∗3 transforms exactly the right way to give

the desired map.

n-cohomology for the TDLDS: The SU(2, 1) case

Let V0 = H1(D,L−ρ) be the Harish-Chandra module associated to the TDLDS for

SU(2, 1). We will show that

H0(n, V0)ρ = H3(n, V0)ρ = 0

H1(n, V0)ρ ∼= W
(0)
0

H2(n, V0)ρ ∼= W
(0)
0 .

Here we are using the notation from Appendix I to this lecture:

• W = standard U(2)-module;

• W (n)
k = SymnW ⊗ (detW )k as a U(2)-module.

The proof of the boxed statement will actually produce generators for these groups;

these will be used in the computation of cup-products.

The calculation uses what is arguably the basic tool; namely, the Hochschild-Serre

spectral sequence (HSSS). This is a spectral sequence that abuts to H∗(n, V0)ρ and has

E1-term

Ep,q
1 = Hq

(
nK , V0 ⊗ ∧pp+

)
ρ
.
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Here we use the notation Xij = Xe∗i−e∗j for the root vector corresponding to a root e∗i−e∗j ,
and have

• nK = n ∩ kC = CX12;

• p+ ∼= p/p−

with the isomorphism being given by the Cartan-Killing form. The HSSS is usually

stated without the ρ, but the terms in it are T -modules and the differentials are T -

morphisms so that it makes sense to take the part that transforms by the weight ρ.

The idea of computing the E1-term is to expand V0 into its K-type and then use

Kostant’s theorem from the appendix to Lecture 7. In general there is a significant sub-

tlety in that p+ is generally not a trivial nK-module, but rather has a composition series

whose successive quotients are 1-dimensional trivial nK-modules to which Kostant’s the-

orem applies. For SU(2, 1) the situation is simpler in that as a bK = h⊕ nK-module

p+ ∼= CX31 ⊕ CX23,

reflecting the geometric fact that, as a U(2)-homogeneous vector bundle, the normal

bundle NZ/D of the maximal compact subvariety Z ⊂ D is a direct sum of line bundles.

From Appendix I the K-type of V0 is

Gr•V0 =
∞
⊕
n=0

V0,n

V0,n = ⊕
05k5[n3 ]

W
(n)
n−3k

From the calculations in that appendix
{
H0(nK ,W

(n)
l )−µ 6= 0⇐⇒ µ = (l, n+ l)

H1(nK ,W
(n)
l )−µ 6= 0⇐⇒ µ = (n+ l + 1, l − 1)

we may readily fill in the E1-term in the HSSS. The notation (a, b) means that µ =

ae∗1 + be∗2.

The lowest K-type in V0 is the trivial K-module W
(0)
0 with generator v0. With the

notation

ωij = X∗ij

the generator of E0,1
1 is v0ω12. We will show that

The HSSS degenerates at E1. Since we will see trivially that d1(v0ω12) =

0, this is equivalent to d2(v0ω12) = 0.

We will present two proofs of this result. The first is by direct computation and it will

yield an expression for the generator of H1(n, V0)ρ. The second proof, due to Wilfried
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Schmid, uses his results recalled in Lecture 5 and Zuckerman translation and Casselman-

Osborne. It will be given in Appendix II to this lecture, where a similar argument for

the degeneracy of the HSSS in the Sp(4) case, also due to Schmid, will also be presented.

For the computation we shall let dπ denote the Lie algebra coboundary. Then

dπωij means take the usual dωij given by the Maurer-Cartan equation

and mod out any terms with an (h⊕ n+)∗ factor.

Then {
dπω12 = −ω13 ∧ ω32

dπω13 = 0, dπω32 = 0.

The reason for the notation dπ is that it agrees with that used in the EGW formalism.

Step one: d1(v2ω12) = 0 means to solve the equation

dπ(v0ω12) ≡ 0 mod(terms with an n∗K entry),

which using the above and n∗K = Cω12 is to determine A,B so that

dπ(v0ω12 + Aω13 +Bω32) ≡ 0 modω12.

Using

dπ(v0ω12 + Aω13 +Bω32) = (−v0 +X13B −X32A)ω13 ∧ ω32

+ (X13v0 −X12A)ω13 ∧ ω12 + (X32v0 −X12)ω32 ∧ ω12

we have

d1(v0ω12) = 0⇐⇒ v0 = X13B −X32A.

This gives

(∗) For A,B satisfying v0 = X13B −X32A, to have

dπ(v0ω12 + Aω13 +Bω32) = 0 we must have
{
X12A = X13v0

X12B = X32v0.

Step two: We will proceed to analyze these equations. As will be seen below, this

analysis will involve only the first two graded pieces in the K-type. For book-keeping
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purposes it is convenient to draw these with the 1-dimensional weight spaces labelled

s(0, 0) v0
@
@

@
@I

�
�

�
�	

s(−1,−2) X12
�

X32

s � X13

X12(2, 1) A

s
(1, 2)

B

s(−2,−1)

W
(1)
−2

W
(0)
0

W
(1)
1

This diagram will be amplified and further explained in the first appendix to this lecture.

The horizontal arrows are the action of the compact root vector X12. The actions of the

non-compact root vectors are described by

X13 ←→ (2, 1) , X31 ←→ (−2,−1)

X23 ←→ (1, 2) , X32 ←→ (−1,−2)

where the notation means: “the action ofXij takes an (a, b) weight space to an (a+ i, b+ j)

weight space.” Above, we have drawn in the actions of X13 and X32 on the (0, 0) weight

space and have indicated the weight spaces where A and B are situated.

Using X21X12A = [X21, X12]A = A and X21X13 −X13X21 = X23 we have

X12A = X13v0 ⇐⇒ A = X21X13v0 = X23v0 +X13X21v0��
��

where the crossed out term is zero. Similarly

X12B = X32v0 ⇐⇒ B = X21X32v0 = −X31v0 +X32X21v0.��
��

From these two equations we obtain

X32A−X13B = −v0 ⇐⇒ (X32X23 +X13X31)v0 = −v0.

Thus we must show that

(X32X23 +X13X31)v0 = −v0.

Step three: We have yet to use that among the Harish-Chandra modules with the same

K-type we are considering the TDLDS V0. The LHS of the boxed equation suggests the

Casimir operator Ω ∈ Z(gC). For this we have the

Lemma: For any TDLDS

χ0(Ω) = −‖ρ‖2.
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Assuming the lemma we will complete the proof of the equation in the box above.

For SU(2, 1), ρ = e∗2 − e∗1 so that ‖ρ‖2 = 2. Since z ∈ Z(gC) acts on V0 by the scalar

χ0(z) from the lemma we have (
1

2

)
Ωv0 = −v0.

Thus we need to show that the LHS of the boxed equation is
(

1
2

)
Ωv0. Certainly the

LHS of that equation looks like at least part of the Casimir operator. We shall show

that the remaining part acts trivially on v0. The reasons this is so are

• t acts by zero on v0 ∈ W (0)
0 ;

• nK acts also by zero.

The calculation is

Ω = X32X23 +X23X32 +X13X31 +X31X13 +X12X21 +X21X12

= 2(X32X23 +X13X31) + [X23, X32] + [X31, X13] + [X21, X12] +X12X21

= 2(X32X23 +X13X31) + e∗2 − e∗3 + e∗3 − e∗1 + e∗2 − e∗1 +X12X21

= 2(X32X23 +X13X31) + 2(e∗2 − e∗1) +X12X12︸ ︷︷ ︸
and the terms over the bracket act trivially on v0. �

Proof of the lemma. From [K] we want to show that the constant term of γ(Ω) is −‖ρ‖2.

From loc. cit., page 295,

Ω =
l∑

i=1

H2
i + 2Hρ + 2

∑

α∈Φ+

X−αXα

where H1, . . . , Hl are an orthonormal basis of h with respect to the Cartan-Killing form

and Hρ is the co-weight corresponding to ρ. Following the notations in Lecture 5

γ′(Ω) =
∑

H2
i + 2Hρ

γ(Ω) = σ
(
γ′(Ω)

)
=
∑

i

(
Hi − ρ(Hi)

)2
+ 2
(
Hρ − ρ(Hρ)

)
.

The constant term here is
∑

ρ(Hi)
2 − 2ρ(Hρ) = ‖ρ‖2 − 2‖ρ‖2. �

For later use, if we denote by v(a,b) a highest weight for W
(a)
b then the generator of

H1(n, V0)ρ is

ω0 =: v0ω12 − v(1,1)ω13 − v(1,−2)ω32.
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The cup-product result

We let V ′k and V ′′k be the DS representations with infinitesimal characters λ′k + ρ = µ′k
and λ′′k + ρ = µ′′k. Then

q(µ′k) = q(µ′′k) = 1,

and so by Schmid’s results we have

dimH1(n, V ′k)−λ′k = dimH1(n, V ′′k )−λ′′k = 1

and all the other n-cohomology groups are zero. We will very roughly show that

• V0 occurs as a direct summand in V ′k⊗̂V ′′k ;

• the cup-product followed by the projection V ′k⊗̂V ′′k → V0 induces an isomorphism

for k = 5

H1(n, V ′k)−λ′k ⊗H
1(n, V ′′k )−λ′′k

∼−→ H2(n, V0)ρ.

Here “very roughly” means that what is actually proved in Carayol is that V ′k is a

direct summand of V0⊗̂V ′k , and then the cup-product statement follows by applying the

n-cohomology version of Serre duality.

Remark: Before presenting some details of the argument we will give an heuristic for

the result. From Appendix I to this lecture we have using the HSSS

H2(n, V0)ρ ∼= H0(nK ,∧2p+)ρ ∼= W
(0)
0 .

Taking (here we change notation slightly to make the formulas come out more transpar-

ent) {
λ′ =

(
c
2

)
(e∗1 + e∗2)− ρ/2

λ′′ = −
(
c
2

)
(e∗1 + e∗2)− ρ/2

and letting V ′, V ′′ be the Harish-Chandra modules corresponding to DS representations

with infinitesimal characters χλ′+ρ, χλ′′+ρ, from the degeneracy of the HSSS we have that
{
H1(n, V ′)−λ′ ∼= H0(nK , p

+)−λ′

H1(n, V ′′)−λ′′ ∼= H0(nK , p
+)−λ′′ .

Now denoting by Cγ the tC-module with weight γ, we have

p+ = Ce∗3−e∗1 ⊕ Ce∗2−e∗3 .

Let’s suppose that the ′ group comes from Ce∗3−e∗1 and the ′′ group from Ce∗2−e∗3 . A little

computation gives {
−(λ′ + e∗3 − e∗1) = −

(
c−3

2

)
(e∗1 + e∗2)

−(λ′′ + e∗2 − e∗3) =
(
c−3

2

)
(e∗1 + e∗2).
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Then from Appendix I we have


H0(nK ,Ce∗3−e∗1)−λ′ ∼= W

(0)

−( c−3
2 )

H0(nK ,Ce∗2−e∗3)−λ′′ ∼= W
(0)

( c−3
2 )
.

Thus heuristically the cup-product should be

W
(0)

−( c−3
2 )
⊗W (0)

( c−3
2 )

∼−→ W
(0)
0 .

Turning to the statement and proof of the cup-product result, the idea is this: Recall

the root diagram where we omit the subscripts “k.” Here the µ′ and µ′′ are the Blattner

parameters and µ′+ ρ′, µ′′+ ρ′′ the Harish-Chandra parameters of the holomorphic and

anti-holomorphic DS representations46

�
�
�
�
�
�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@
@
@
@
@
@

ss sλ′

µ′

µ′ + ρ′ = λ+ ρ

s−ρ/2s−ρ

s ss
λ′′

µ′′

µ′′ + ρ′′ = λ+ ρ

We have Penrose transforms{
H0(X ′, L′µ′)

∼−→ H1(X,Lλ′)

H0(X ′′, L′µ′′)
∼−→ H1(X,Lλ′′).

46We recall that given a nonsingular weight ξ we may define a positive root system

Φ+(ξ) = {α ∈ Φ : (ξ, α) > 0} .
If then ξ + ρ(ξ) is integral there exists a unique DS representation πξ with infinitesimal character χξ.
Moreover, πξ

∣∣
K

contains with multiplicity one the K-type with highest weight

Ξ = ξ + ρ(ξ)− 2ρc(ξ).

Finally, if Ξ′ is the highest weight of a K-type in πξ
∣∣
K

, then

Ξ′ = Ξ +
∑

α∈Φ+(ξ)

nαα, nα ∈ Z=0.

Two such representations are equivalent if, and only if, their parameters are equivalent under WK .
Then ξ is the Harish-Chandra parameter and Ξ is the Blattner parameter.
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The LHS’s are Picard authomorphic forms and their conjugates, and hence are “classi-

cal.” We have

λ′ + λ′′ = −ρ ,

and because of this the cup-product is a mapping

H1(X,Lλ′)⊗H1(X,Lλ′′)→ H2(X,L−ρ)

where the RHS is non-classical. We want to show that

the above cup-product is surjective

so that in this way we can reach a non-classical object with a classical one.47 By using the

expressions for the above cohomology groups in terms of n-cohomology we are reduced

to proving a result about cup-products in n-cohomology. As previously noted we shall

actually prove a dual form of the desired result.

We are going to work with each of D′, D′′ separately and then combine the results.

For D′ we use the picture

�
�
�
�
�
�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@
@
@
@
@
@

ssλ′(2) λ
′(1)

s sν ′

Λ′

HH
HH
HH
HH
H

λ′(1) = λ′ in
the earlier picture

ν = λ′′ in the
earlier picture

We shall denote by V ′ the unique DS representation of SU(2, 1)R with Harish-Chandra

parameter ν ′; Λ′ will denote the Blattner parameter, which is the “lowest highest weight”

in the K-type. Explicitly, {
Λ′ =

(
k
3

)
(e∗1 + e∗2)

ν ′ = Λ′ + e∗3 − e∗2

47The actual result will be a little weaker in that it will involve the limit over Γ’s. But the essential
idea is the above.
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λ′
(1)

= −
(
k
3

)
(e∗1 + e∗2) + 2e∗1 + e∗2

λ′
(2)

= −
(
k
3

)
(e∗1 + e∗2) + 3e∗1.

Then the K-type of V ′ is

⊕
n=0

W
(n)
k+3n.

The picture of the K-type is

Gr0

Gr1

Gr2

(k + 2, k + 1)

(k, k)

(k + 4, k + 2) (k + 3, k + 3) (k + 1, k + 4)

(k + 1, k + 2)

X13

X13 X32

From the picture we see that there is a non-zero vector v′ ∈ (k, k) such that
{

X32 · v′= 0

(e∗1 + e∗2)v′= kv′;

i.e., v′ transforms like detk.

The reason for using V ′ will appear below. From the results of Schmid we have

Hq(n, V ′)−µ 6= {0} ⇔
{
q = 1 and µ = λ′(1)

q = 2 and µ = λ′(2).

Moreover, H1(n, V ′)−λ′(1) is generated by v′ω31 and H2(n, V ′)−λ′(2) by v′ω12 ∧ ω13. For

V ′′ we have a similar picture flipped about the horizontal axis and with

Hq(n, V ′′) 6= {0} ⇔
{
q = 1 and µ = λ′′(1)

q = 2 and µ = λ′′(2).

From a result in representation theory (cf. [C1]), there is a unique 1-dimensional

subspace of V ′ ⊗ V0 that is killed by X32 = Xe∗3−e∗2 and on which K acts by detk.
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Intuitively, from the formal expansion intoK-types of V ′⊗V0 we need to have a summand

W
(n)
k+3n ⊗W

(l)
−3n

in the tensor product such that there is a weight vector killed by Xe∗3−e∗2 . By inspection

of the pictures of the K-types we see that W
(0)
k ⊗W

(0)
0 is the unique such subspace.

The projection of Harish-Chandra modules

V ′ ⊗ V0 → V ′

then induces

H1(n, V ′)−λ′(1) ⊗H1(n, V0)ρ → H2(n, V ′)−λ′(2)

which using the above notation for the generator ofH1(n, V0)ρ and the fact that v′⊗v(1,−2)

projects to zero, is given by a generator

v′ω13 ⊗ (v0ω12 − v(1,1)ω13 − v(1,−2)ω32)→ cv′ω13 ∧ ω12

for some non-zero constant c. Dualizing gives the desired surjectivity of

H1(n, V ′)−λ′(1) ⊗H1(n, V ′′)−λ′′(1) → H2(n, V0)ρ.

The case of Sp(4)

We first recall the root diagram

2e2

�
�
�
�
�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@
@
@
@
@

s
•

s
s

s
•

s
s

e1 + e2

C ′

2e1

C1

e1 − e2
C2−2e2

C ′′

Up to equivalence under the Weyl group there are two TDLDS’s V1 and V2 corresponding

to (0, C1) and (0, C2). We will focus on the complex structure on D = Sp(4)R/T given
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by the Weyl chamber C1, for which we have the picture

s
s

s

+

s
s

•
+

s+
s

e1 + e2
+

2e1 ,

e1 − e2

−2e2

ρ1 = 2e1 − e2.

From the argument given by Schmid in appendix II to this lecture we have that for the

n = ⊕ (negative root spaces in this picture)

The Hochschild-Serre spectral sequence for each of H∗(n, Vi)−ρ, i = 1, 2,

degenerates at E1

This will enable us to compute the n-cohomology from the E1-term, and using the results

in appendix I to this lecture this can be done once we know the K-types of V1 and V2.

We will now give this computation for

V1 = H1(D,L−ρ).

The argument for V2 is similar using the Weyl chamber C2.

K-type of H1(D,L−ρ)

We will first show that

As a holomorphic line bundle

NZ/D
∼= L−2e2 ⊕ Le2 ⊕ L2e1+e2 .
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Proof. We shall use the picture

s
•e2 − e1

s

+

s
s

•
+

s+
s

e1 + e2+

@
@I

2e1

e1 − e2

−2e2

The normal bundle is the U(2)-homogeneous bundle given by the action of the negative

compact root vector Xe2−e1 on p+ = pC/p
−. For

p+ = span{X−2e2 , X2e1 , Xe1+e2}
we see that as a U(2) module

p+ = CX−2e2 ⊕ C{X2e1
X21−−→ Xe1+e2},

where the term in the brackets denotes the 2-dimensional vector space span{X2e1 , Xe1+e2}
with the indicated action of X21. Thus as U(2) homogeneous bundle

NZ/D
∼= L−2e2 ⊕N ′

where

0→ Le1+e2 → N ′ → L2e1 → 0.

As holomorphic vector bundles this is a Koszul sequence

0 // OZ

(z1,z2)
// OZ(1)⊕ OZ(1)

(−z2z1 )
// OZ(2) // 0

∼ = ∼ = ∼ =

0 // Le1+e2
// N ′ // L2e1

// 0

where [z1, z2] are homogeneous cooredinates on P1. This gives for the dimension

h0(Z,NZ/D) = 7 = 6 + 1 = dim sp(4)C + 1.

Since h1(Z,NZ/D) = 0 the deformations of Z in D are unobstructed. Thus

H0(Z,NZ/D) = image{sp(4)C → H0(Z,NZ/D)} ⊕ C
and we see that

the deformations of Z in D consist of the cycle space plus one “extra”

deformation.
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For the K-type we have as holomorphic vector bundles

SmN∗Z/D
∼= ⊕

i+j+k=n
L(−j−2k)e1+(2i−k)e2

SmN∗Z/D(L−ρ) ∼= ⊕
i+j+k=m

L(−j−2k−2)e1+(2i−k+1)e2 .

Of course we need these as U(2)-homogeneous vector bundles, which involves the SymnN ′∗’s

where N ′ is as above. But from the above we see that H0(Z, ∗) = (0) for all the line

bundles ∗ on the RHS. It follows that H1(Z, SymmN∗Z/D(L−ρ)) is, as a U(2)-module, the

same as ⊕H1(Z, ∗). The point is that a filtered U(2)-module is, as a U(2)-module, the

same as the associated graded

H1
(
Z, SymmN∗Z/D(L−ρ)

)
=

m
⊕
k=0

k
⊕
i=0

W
(2m+2i−2m+1)
−i−m−1 .

We may now fill in the following table of the E1-term for the HSSS for H∗(n, V1)ρ

∧0p∗ ∧1p∗ ∧2p∗ ∧3p∗

H1

H0

n = 1

k = −1

n = 1

k = 0
0 0

0 0
n = 1

k = −1

n = 1

k = 0

The notation means that in the non-zero blocks only the W
(n)∗

k in the K-type occurs for

the given n and k. We may abbreviate this by the table

W
(1)∗

1 W
(1)∗

0 0 0

0 0 W
(1)∗

−1 W
(1)∗

0

Since the d1’s are maps of bK modules we see that they are zero. This is true for any

Harish-Chandra module with the above K-type. For the particular V1 = H1(D,Lρ)

Schmid has given a proof, reproduced in appendix II, that d2 = 0.

Remark: We recall the corresponding picture for SU(2, 1) is

W
(0)
0 0 0

0 0 W
(0)
0

The symmetry is due to the special feature

L−ρ
∣∣
Z

= ωZ
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in this case. In general, for X = Γ\D where Γ is co-compact we have from ωX = L−2ρ

and Kodaira-Serre duality

Hq(X,L−ρ)
∗ ∼= Hd−q(X,L−ρ).

Here, d = 3 for SU(2, 1) and d = 4 for Sp(4); both sides are zero for q = 0, d. In

the computation of the automorphic cohomology in terms of n-cohomology the nK-

cohomology groups for groups

Hq(Z,L−ρ) and its dual Hd−q(Z,Lρ ⊗ ωX)

appear. For SU(2, 1)

Lρ ⊗ ωX = L−ρ.

But for Sp(4)

Lρ ⊗ ωX = L2e1−e2 ⊗ L−2ρc

= L2e1−e2 ⊗ Le2−e1
= Le1 = L−ρ ⊗ L3e1−e2

and this reflects the dualities {
W

(1)∗

−1
∼= W

(1)
0

W
(1)∗

0
∼= W

(1)
−1

between the E0,1
1 and E3,0

1 terms and E0,2
1 and E4,0

1 terms in the table for Sp(4).

If we try to mimic for Sp(4) the cup-product story given above for SU(2, 1) we find

that the asymmetry

ρ 6= 2ρc

does not allow a direct analogy. For SU(2, 1) the Picard automorphic forms and their

conjugates occurred as in the picture

�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@∗

∗
∗

∗
∗
∗

The symmetry ρ = 2ρc in this case led to the picture given at the beginning of a previous

section giving the cup-product result in this case.
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For Sp(4) the Siegel modular forms and their conjugates are pictured as

�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@∗

∗
∗

∗
∗
∗

Because of the aforementioned asymmetry the SU(2, 1) picture must be replaced by

�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@

sµ′
s
µ′′

Thus we let

• V ′ = holomorphic DS with Blattner parameter µ′ = k(e1 + e2);

• V ′′ = almost-holomorphic DS with Blattner parameter µ′′ = −k(e1 + e2)− e2.

The weights of the corresponding DS representations are contained in the shaded regions

µ′′

µ′

An analysis simlar to, but in several ways more intricate than that given for the SU(2, 1)

case, leads to the “surjectivity” of

H1(D,Lµ′(1))⊗H2(D,Lµ′′(2))→ H3(D,L−ρ).



219

The quotation marks mean that as in the SU(2, 1) case one only has surjectivity in the

limit over Γ’s.

The n-cohomology result is the isomorphism

H1(n, V ′)−µ′(1) ⊗H2(n, V ′′)−µ′′(2)
∼−→ H3(n, V2)−ρ

where V2 is the “other” TDLDS

�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@C2

C1

V1

V2

The proof of this result will be given in the sequel to [GGK2].
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Appendix I to Lecture 9:

The K-types of the TDLDS for SU(2, 1) and Sp(4)

In this appendix we establish the notation for the relevant representation theory of

U(2) and determine the above K-types and subsequent structure of the above mentioned

(gC, KC)-modules.

We shall first deal with the representation theory of U(2) and recall the notations:

• K = U(2) with maximal torus T =
{(

e2πiθ1 0
0 e2πiθ2

)}
;

• t has coordinates θ =
(
θ1
θ2

)
so that T ∼= R2/Z2;

• e∗1, e∗2 ∈ t∗ are the weights giving a Z-basis for the character lattice Hom(Λ,Z)

of T = t/Λ and where

〈e∗1,θ〉 = θ1, 〈e∗2,θ〉 = θ2;

• e∗2 − e∗1 = α is the positive root for U(2);

• Z = U(2)R/T = U(2)C/B where B is the Borel subgroup with Lie algebra

bK = tC ⊗ nK

where

nK = CX12 and

X12 = Xe∗1−e∗2

is the negative root vector;

• for a weight µ = ae∗1 + be∗2, Lµ → Z, or L(a,b) → Z, is the corresponding

U(2)-homogeneous, holomorphic line bundle;

• W = C2 is the standard U(2)-module with highest weight e∗2, and where we set
{
w1 = ( 1

0 ) = lowest weight vector

w2 = ( 0
1 ) = highest weight vector;

• ∆ = U(2)-module Λ2W with U(2) acting by the character det with weight e∗1+e∗2;

we set

δ = w2 ∧ w1;

• W (n)
k is the U(2)-module SymnW ⊗∆k; it has weight vectors

wn1 δ
k, wn−1

1 w2δ
k, . . . , wn2 δ

k,

where the weights increase from left to right;

• we shall sometimes abuse notation and write the above weight vector as wn+k
1 wk2 , . . . , w

k
1w

n+k
2 ;
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• as U(2)-modules

W
(n)∗

k
∼= W

(n)
−n−k

W
(n)
k ⊗W (m)

l =
m
⊕
i=0

W
(n+m−2i)
i+k+l , m 5 n,

• we have

OZ(1) = Le∗2

so that

Z = PW ∗;

• from this we have as U(2)-modules
{
H0(Z,Lae∗1+be∗2

) = W
(b−a)
a

H1(Z,Lae∗1+be∗2
) = W

(a−b−2)
b+1 .

Note: The BWB theorem is usually stated for semi-simple groups. Suitably interpreted

it also holds for reductive groups. Thus we write

ae∗1 + be∗2 = (b− a)e∗2 + a(e∗1 + e∗2)

and think of W
(b−a)
a as the U(2)-module with highest weight (b− a)e∗2 and determinant

weight a(e∗2 + e∗2), so that the statement is

H0(Z,Lae∗1+be∗2
) is the U(2)-module with highest weight (b − a)e∗2 and

determinant weight a(e∗1 + e∗2).

As for H1(Z,Lae∗1+be∗2
) we have

ρc =

(
1

2

)
(−e∗1 + e∗2)

so that ae∗1 + be∗2 + ρc is singular if, and only if,

a = b+ 1.

The linear form ρc is not integral on Λ where T = t/Λ, but since (ρc, e
∗
2 − e∗1) = 1 it

is integral on the root e∗2 − e∗1 and is therefore a “weight” in this sense. The geometric

point is that ωZ does have an SU(2)-invariant square root, but it does not have a U(2)-

invariant one.

As a check we will verify that the above formulas for the U(2)-modules Hq(Z,Lae∗1+be∗2
)

are consistent with the formula

Hq(Z,Lµ) = ⊕
k,n
W

(n)
k ⊗Hq

(
nK ,W

∗(n)
k

)
−µ
.
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Using W
∗(n)
k = W

(n)
−k−n we have

H0
(
nK ,W

∗(n)
k

)
= C (lowest weight vector in W

(n)
−k−n).

This lowest weight vector is w−k1 w−n−k2 and transforms by −µ exactly when

µ = ke∗1 + (n+ k)e∗2 = ne∗2 + k(e∗1 + e∗2),

which was to be proved.

Next

H1
(
nK ,W

∗(n)
−k−n

)
∼= C (highest weight vector in W

(n)
−k−n ⊗X∗12).

Using X∗12 = w−1
1 w2 the term in parenthesis is wn−k−1

1 w−k+1
2 so that

µ = (n+ k + 1)e∗1 + (k − 1)e∗2

as desired.

• Finally, the notation

(a, b) = ae∗1 + be∗2

will make the book-keeping easier. Thus
{
Lae∗1+be∗2

= L(a,b)

ωZ = L(1,−1).

The K-type for the TDLSD V0 for SU(2, 1)

We have V0 = H1(D,L−ρ) and the K-type is the U(2)-module

⊕
n=0

H1
(
Z, SymnN∗Z/D(L−ρ)

)
.

Recalling that

p+ = span{X31, X23} = span{Xe∗3−e∗1 , Xe∗2−e∗3}
and identifying p+ ∼= pC/p− as bK-modules using the Cartan-Killing form the normal

bundle is the U(2)-homogeneous vector bundle

NZ/D

��

= U(2)×T p+

��
Z = U(2)/T.

Since nK = CX12 acts trivially on p+, as bK-modules we have

p+ = CX31 ⊕ CX23.
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Now e∗3 = −e∗1 − e∗2 so that

X31 has weight e∗3 − e∗1 = −2e∗1 − e∗2 = −2(e∗1 + e∗2) + e∗2

X23 has weight e∗2 − e∗3 = e∗1 + 2e∗2 = (e∗1 + e∗2) + e∗2.

This gives the conclusion

NZ/D = ∆−2(1)⊕∆(1) = L(−2,1) ⊕ L(1,2)

where ∆k(1) = ∆⊗ OZ(k). Then

• N∗Z/D = L(2,−1)⊕L(−1,−2);

• SymnN∗Z/D = ⊕
k
L(2n−3k,n−3k);

• SymnN∗Z/D(L−ρ) = ⊕L(2n−3k+1,n−3k−1)

where the last step uses −ρ = (1,−1). Using the formula for H1(Z,L(a,b)) above, for the

K-type of V0 we find that

Grn · V0 = ⊕
k
W

(n)
n−3k.

The first few terms are

Gr0 W
(0)
0

Gr1 W
(1)
1 ⊕W (1)

−2

Gr3 W
(2)
2 ⊕W (2)

−1 ⊕W (2)
−4

...

Remark: For later use we give the following picture of the K-type with action of n as

depicted by

@
@

@
@
@

@I

�
�

�
�

�
�
�	

X12

X32

X13
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Gr0 •
(0, 0)

Gr1

• •
(−1,−2) (−2,−1)

�

�

W
(1)
−2

W
(1)
1•

(2, 1)
•

(1, 2)

Gr2

�• �• • W
(2)
2

(2, 1) (1, 2) (0, 3)

�• �• • W
(2)
−1

(1,−1) (0, 0) (−1, 1)

�• �• • W
(2)
−4

(−1,−2) (−2,−1) (−3, 0)

Here the dots represent 1-dimensional weight spaces where (a, b) corresponds to the

weight ae∗1 + be∗2. The dashed arrows give the action of X12 as depicted above. In

contrast to the DS we see that weights such as (0, 0) can appear infinitely after in

the K-type. To get the action of n we have to overlay these diagrams. For example,

overlaying Gr0 and Gr1 gives the picture

(−1,−2) (−2,−1)
W

(1)
−2

W
(0)
0

W
(1)
1

(1, 2)(2, 1)

X13

X32 (0, 0)

This diagram was used in the computation showing that d1 = d2 = 0 in the HSSS given

above.
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Appendix II to Lecture 9: Schmid’s proof of the degeneracy of the

HSSS for TDLDS in the SU(2, 1) and Sp(4) cases

The SU(2, 1) case

For notational simplicity we shall use

• •

• •

••

γ

β

α

for the positive root system. Then



ρ = α

ρc = α/2⇒ ωZ = OZ(L−ρ)

ρnc = α/2.

We let Vρ be the Harish-Chandra module associated to the DS realized as the L2-

cohomology group H1
(2)(D,L−2ρ). Since

OZ(L−2ρ) = OZ(L−ρ)⊗ ωZ ,
we have H1(Z,L−2ρ) ∼= H0(Z,Lρ)

∗ so that Vρ has lowest K-type the irreducible SU(2)-

module with highest weight ρ.48 We also denote by V0 the Harish-Chandra module

H1(D,L−ρ) associated to the TDLDS.

We denote by Mρ the irreducible finite dimensional representation of SU(2, 1)C with

highest weight ρ. It is the adjoint representation and has weights

±α,±β,±γ, and 0 (twice).

The argument uses the basic operation of Zuckerman tensoring, which consists of taking

an infinite dimensional representation and tensoring it with a finite dimensional one to

obtain a representation that is not irreducible but has an infinitesimal character which is

a sum containing the one in which we are interested. Thus we consider Vρ ⊗Mρ, which

involves composition factors with infinitesimal characters χρ+ν where ν is a weight of

Mρ. Moreover, it is a basic general fact that

if the weight ν has multiplicity one, if ρ+ ν is dominant and if ρ+ ν is

not Weyl equivalent to ρ + ν ′ for any other weight ν ′ of W ρ, then the

DS or LDS Harish-Chandra module with infinitesimal character χρ+ν

occurs once in the tensor product as a subrepresentation and no other

composition factors have infinitesimal character χρ+ν .

For our TDLDS V0 this gives

48We note that the degeneracy argument will only involve the weights of SU(2)-modules.
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V0 occurs as a summand in Vρ ⊗Mρ and no other composition factor

has infinitesimal character χ0.

For the n-cohomology of Vρ, we have from Lecture 5 that it is the Harish-Chandra

module associated to each of

• H1
(2)(D,L−2ρ) (q(−2ρ+ ρ) = 1)

• H2
(2)(D,L2ρ) (q(2ρ+ ρ) = 2)

Here the compact Weyl group WK = {id, sα} where sα is reflection in the compact root

line, and since

−2ρ+ ρ = sα(2ρ) + ρ

the above two SU(2, 1)-modules are equivalent realizations of the DS with Harish-

Chandra module Vρ. From Schmid’s results on the n-cohomology of Vρ in Lecture 5

we have

Hq(n, Vρ) =





one dimensional of weight 2α for q = 1,

one dimensional of weight 0 for q = 2,

0 for q 6= 1, 2




.

The generator of H1(n, Vρ) is the lift of the Kostant class κµ ∈ H1(nK , H
1(Z,L−2ρ))

which was discussed in the appendix to Lecture 5.

Since V0 is a summand of Vρ ⊗Mρ we have an inclusion

H∗(n, V0) ↪→ H∗(n, Vρ ⊗Mρ).

By Casselman-Osborne the cohomology of V0 occurs in weight ρ,49 and no other compo-

sition factors can contribute cohomology in weight ρ. Thus

H∗(n, V0) = ρ-weight space in H∗(n, Vρ ⊗Mρ).

For a weight ν let Cν denote the 1-dimensional b-module on which h acts via ν. As a

b-module, Mρ has a composition series with composition factors Cν as ν runs over the

weights of Mρ. Specifically,

• C−ρ occurs as a b-submodule of Mρ;

• Cρ occurs as a b-quotient module of Mρ.

Thus we obtain morphisms

• H∗(n, Vρ)⊗ C−ρ → H∗(n, Vρ ⊗Mρ);

• H∗(n, Vρ ⊗Mρ)→ H∗(n, Vρ)⊗ Cρ.

Specializing this to the ρ-weight components and using the above description of H∗(n, Vρ)

we find

49As we saw in Lecture 9, the E1-term of the HSSS has generators v0ω
−α in E0,1

1 and v0ω
−β ∧ ω−γ

in E2,0
1 .
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• H1(n, Vρ)⊗ C−ρ → H1(n, Vρ ⊗Mρ);

• H2(n, Vρ ⊗Mρ)→ H2(n, Vρ)⊗ Cρ.

The composition series for the b-module Mρ gives a spectral sequence abutting to

H∗(n, Vρ ⊗ Mρ), and since cohomology in the lower degree maps in and cohomology

in the higher degree maps out, there cannot be cancellation in the ρ-weight space in

H∗(n, Vρ ⊗Mρ). Thus

h1(n, V0) = h2(n, V0) = 1

which implies that the HSSS degenerates at E1.

The Sp(4) case:

We recall the root diagram

+

+

+

+

−e1 − e2

−2e2
C̃
e1 − e2

C

2e1

e1 + e2

In this case there are two TDLDS’s V0 and Ṽ0 corresponding to the Weyl chambers C,

C̃.50 Taking

Φ+ = {e1 + e2, 2e2, e1 − e2,−2e2}
we want to show that the HSSS degenerates at E1 for each of H∗(n, V0) and H∗(n, Ṽ0).

We first take the case of H∗(n, V0). We have

ρ = 2e1 − e2

ρc =
1

2
(e1 − e2)

ρnc =
1

2
(3e1 − e2).

Since V0 is the Harish-Chandra module associated to H1(D,L−ρ) and

OZ(L−ρ) = OZ (L−ρnc+ρc)⊗ ωZ ,
50In the lecture these were denoted by C1 and C2. Here it is more convenient to use the above

notation.
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using Kodaira-Serre duality we see that V0 has lowest K-type the K-module with highest

weight

ρnc − ρc = e1.

We shall also consider the Harish-Chandra module Vρ =: H1(D,L−ρ−2ρc) which has

lowest K-type the K-module with highest weight

ρ+ ρnc − ρc = 3e1 − e2.

Again by Casselman-Osborne, the n-cohomology of V0 occurs in weight ρ and that of Vρ
in weights wρ+ ρ where w ∈ W

• H∗(n, V0) = H∗(n, V0)ρ;

• H∗(n, Vρ) = ⊕
w∈W

H∗(n, Vρ)wρ+ρ.

From Schmid’s results in Lecture 5

Hq(n, Vρ) =





C4e1−2e2 if q = 1

Ce1+e2 if q = 2

0 if q 6= 1, 2.

Let W−ρ be the irreducible Sp(4)-module of lowest weight −ρ. Then as before

V0 is a direct summand of Vρ ⊗W−ρ
and no other composition factor of Vρ ⊗W−ρ has infinitesimal character χ0. Hence

H∗(n, V0) = H∗(n, Vρ ⊗W−ρ)ρ.

Note that 4e1 − 2e2 = 2ρ, e1 + e2 = ρ + se1−e2ρ. Filtering W−ρ by b-submodules we

obtain a spectral sequence with E2-term

(
H∗(n, Vρ)⊗W−ρ

)
ρ
⇒ H∗(n, V0).

The reason that the E2-term is as given is because the action of n shifts the filtration

down by two, so that d1 = 0. The notation “⇒” means that the spectral sequence abuts

to H∗(n, V0) = H∗(n, Vρ ⊗W−ρ)ρ. We then have

(Hq(n, Vρ)⊗W−ρ)ρ =





H1(n, Vρ)⊗ (W−ρ)−ρ q = 1

H2(n, Vρ)⊗ (W−ρ)−se1−e2ρ q = 2

0 otherwise .

But −se1−e2ρ > −ρ, so the non-zero term in H2 occurs at a higher level in the filtration

than the non-zero term in H1. This implies that the spectral sequence degenerates at
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E2 and

H1(n, V0) =





Cρ q = 1

Cρ q = 2

0 otherwise

which was to be shown.

For H∗(n, Ṽ0), it is convenient to equivalently compute H∗(ñ, V0) where ñ corresponds

to the direct sum of the negative root spaces for the system of positive roots

Φ̃+ = {−e1 − e2, e1 − e2, 2e1,−2e2}.
The corresponding quantities are

ρ̃ = e1 − 2e2, ρ̃c =
1

2
(e1 − e2), ρ̃nc =

1

2
(e1 − 2e2).

In this situation

Hq(n, Vρ) =





C3(e1−e2) if q = 2

C0 if q = 3

0 otherwise.

Arguing as before we find that

H∗(ñ, V0) = H∗(ñ, Vρ ⊗W−ρ)ρ̃.
We have 3(e1−e2) = ρ̃+se1+e2 ρ̃, 0 = ρ̃− ρ̃. Then as before we obtain a spectral sequence

with E2-term

(H∗(ñ, Vρ)⊗W−ρ)ρ̃ ⇒ H∗(ñ, V0),

and for the LHS

(Hq(ñ, Vρ)⊗W−ρ)ρ̃ =





H2(ñ, Vρ)⊗ (W−ρ)−se1+e2
ρ̃ if q = 2

H3(ñ, Vρ)⊗ (W−ρ)ρ̃ if q = 3

0 otherwise.

Again, the non-zero term in the higher q occur at a higher level of the filtration than

the non-zero term for the lower q, because ρ̃ > −se1+e2 ρ̃ relative to the ordering given

by Φ̃+. In conclusion

• H2(ñ, V0) = Cρ̃;

• H3(ñ, V0) ∼= Cρ̃

and Hq(ñ, V0) is zero otherwise.

Remark: We are aware of three methods of computing the n-cohomology for a TDLDS.

(i) by direct computation knowing the explicit form of the representation ([C1] and

[C2]);
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(ii) by direct computation using the HSSS, where both the K-type and the action

of p ↪→ H0(Z,NZ/D) are known geometrically (as was done for SU(2, 1) above);

(iii) by Schmid’s method, using his results for the n-cohomology of DS’s and Zuck-

erman tensoring and Casselman-Osborne as in this appendix.
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Lecture 10

Selected topics and potential areas for research

We begin by giving a brief preview of the items to be covered in this lecture. Remark

that there is an extended appendix on boundary components and degenerations of PHS’s

with emphasis on the examples SU(2, 1) (Carayol) and SO(4, 1), both cases where there

is an arithmetic structure on the boundary components but not on the Mumford-Tate

domain itself (cf. [KP] for recent work in this direction).

Hermitian symmetric sub-domains of non-classical Mumford-Tate domains

It may be shown that a Hodge domain with trivial IPR is an Hermitian symmetric

domain; the argument will be given below. It is beginning to appear that of particular

interest are equivariantly embedded Hodge domains

DH ⊂ D

where D is non-classical and where DH is an integral manifold of the IPR. As just noted,

DH is then an HSD. We will discuss two particular cases of this.

• The recent work of Freidman-Laza [FL]. In first approximation they show that

if Γ is an arithmetic group and S ⊂ Γ\D is a closed integral manifold of the

IPR where S is quasi-projective and where the inverse image S̃ ⊂ D is the

intersection of D with an algebraic subvariety in the compact dual Ď, then

S̃ is an HSD. They then use this and other methods to analyze the VHS’s of

Calabi-Yau type having this property.

• An extremely interesting issue to arithmetic algebraic geometers is to

put a “natural” arithmetic structure on Hq
o (X,Lµ).

Here, Γ is an arithmetic group and Hq
o (X,Lµ) is the cuspidal automorphic co-

homology, which we have not yet defined (cf. [C3], [GGK2] and the appendix

to this lecture, where Hq
o (X,Lµ) will be denoted Hq

e (X,Lµ)). An arithmetic

structure means a “natural” subspace Hq
o (X,Lµ)F ⊂ Hq

o (X,Lµ) that is defined

over a number field F ⊂ C and with Hq
o (X,Lµ)F ⊗F C = Hq

o (X,Lµ). For those

cuspidal cohomology groups that are Penrose transforms of classical cuspidal

automorphic groups Hq′
o (X ′, L′µ′), there is an arithmetic structure arising from

the fact that L′µ′ → X ′ is an algebraic line bundle defined over a number field.

Not obtainable in this way are the cuspidal automorphic cohomology groups

Hq
o (X,L−ρ) corresponding to TDLDS’s.

Classically one criterion for arithmeticity of modular forms is by taking arith-

metic values at CM points. In fact, this was the central topic in Shimura’s CBMS
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lecture series here some years ago [Shi]. For X = Γ\D where D = U(2, 1)R/T

as in the earlier lectures, an analogue of this would be to evaluate classes in

H1
o (X,L−ρ) on Shimura curves, which are 1-dimensional quotients of HSD’s

DH ⊂ D.51 There are in fact three types of Shimura curves, but the program

of evaluating classes in H1
o (X,L−ρ) on them to give a criterion for arithmeticity

has yet to be carried out. We will briefly discuss this below.

Boundary components of Mumford-Tate domains

For period domains D, Kato-Usui [KU] have defined extensions DΣ ⊃ D leading to

completions of VHS’s52

Φ : S −→ Γ\D
∩ ∩

Φ : S −→ Γ\DΣ.

Here S is a smooth, quasi-projective variety having a smooth completion S where S\S
is a normal crossing divisor around which the VHS Φ has unipotent monodromies (an

inessential assumption) and Φ is an extension of Φ to S. As a set we may think of

Γ\DΣ as certain Γ-equivalence classes, specified by the fan Σ, of limiting mixed Hodge

structures (LMHS’s). The boundary components Dσ ⊂ DΣ\D correspond to nilpotent

cones σ ⊂ g in the fan Σ (see below for discussion of the terms).

Although it has only been carried out in detail in a few cases, it is reasonable to assume

that the Kato-Usui theory can be extended to general Mumford-Tate domains D. Both

the extent to which the extension DΣ depends only on the underlying Hodge domain

and not on the particular Mumford-Tate domain, and the relation of the boundary

components to the orbit structures under Matsuki duality, are interesting issues that

remain to be clarified.

• One classical definition of arithmeticity of modular forms defined on Γ(N)\H is

in terms of the arithmeticity of the coefficients in the Fourier expansions about

a cusp. In [C3] Carayol has given a similar definition for the cohomology group

H1
o (X,L−ρ) in the SU(2, 1) case. In this he takes Γ = U(2, 1)O where O is the

ring of integers in the number field F = Q(
√
−d) as was used in the Mumford-

Tate domain with generic Mumford-Tate group U(2, 1) discussed in Lecture 3.

51In [GGK2] there is a result that shows how, using EGW, one may in some cases “evaluate”
cohomology classes at points of Γ\W, and that when this is done the Penrose transform of arithmetic
classes in H0

o (X ′, L′µ′
k
) take arithmetic values at CM points. However, for evident dimension reasons it

is more natural to evaluate classes in H1
o (X,L−ρ) on algebraic curves in X.

52Here the term “completion of Φ” refers to extending Φ to the completion S of S. The term “partial
compactification” is also sometimes used for Γ\DΣ.
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Carayol’s method uses that two of the boundary components of X are C∗-
bundles over CM elliptic curves E ′, E ′′ which are “arithmetic objects.” He then

extends his Penrose transform method to the Kato-Usui completions to define

a Fourier expansion of an automorphic cohomology class in H1
o (X,Lµ) about

an arithmetically defined boundary component. The details of the argument

over the boundary lead to the Penrose transforms between pairs of CM elliptic

curves that was presented in Lecture 2. We shall briefly discuss this below; in

the appendix to this lecture we have included notes from a seminar talk given

at the IAS that gives a more comprehensive treatment of the story, including

an informal introduction to the Kato-Usui theory.

Existence of Penrose transforms

We have seen that in the case of flag varieties GC/B the different ways of realizing a

given irreducible GC-module as a cohomology group may all be achieved through Penrose

transforms among them, which in fact leads to yet another proof of the BWB theorem.

The analogous issue in the non-compact case seems to be an open question, one that we

will briefly discuss.

Lifting the Kostant class

As we have seen in Lecture 5, the n-cohomology of the Harish-Chandra module

Hd(D,Lµ), where µ + ρ is in the closure −C of the anti-dominant Weyl chamber, is

a topic of interest. In the case where µ+ ρ ∈ −C is in the interior, this group is known

by the work of Schmid as presented in Lecture 5. In the case where µ + ρ is on the

boundary and corresponds to a non-degenerate LDS there is the result by Williams

[Wi2] extending that of Schmid. For the case µ = −ρ of a TDLDS the general result

seems not to be known. The standard techniques include the use of the HSSS, and below

we give an heuristic geometric argument that the differentials in the spectral sequence

all vanish on the important Kostant class.

Three other topics that will be mentioned are

On the Stein property of quotients Γ\W by a generally non-co-compact arith-

metic group.

Relations between the Kato-Usui boundary components and the GR and KC orbit

structures.

On the presumed non-algebraicity of quotients Γ\D when D is non-classical.

We now turn to a discussion of the above topics, beginning with the
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Work of Friedman-Laza

We begin with the

Observation: A Mumford-Tate domain D = GR/H with trivial infinitesimal period

relation is an Hermitian symmetric domain.

Proof. We have

gC = hC ⊕ (⊕
i 6=0

g−i,i)

where at the reference point ϕ0 of D the holomorphic tangent space

Tϕ
0
D ∼= ⊕

i>0
g−i,i.

The assumption that the IPR is trivial is

g−i,i = (0), i = 2,

i.e.

gC = g−1,1 ⊕ g0,0 ⊕ g1,−1.

From [g−i,i, g−j,j] ⊂ g−(i+j),i+j we infer that

g−1,1 and g1,−1 = g−1,1 are abelian sub-algebras of gC.

We also have that g−1,1 and g1,−1 are direct sums of non-compact root spaces, while

h0 ⊆ kC. It follows that h0 = kC, and in the Cartan decomposition

gR = k⊕ p

we have the k-invariant decomposition

pC = g−1,1 ⊕ g1,−1

=: p+ ⊕ p−

where p± are abelian sub-algebras. In particular, GR/K has an GR-invariant, integrable

almost complex structure. �

Next we let

Φ : S → Γ\D
be a variation of Hodge structure where the global monodromy group Γ ⊂ GZ is irre-

ducible over Q. By the structure theorem in Lecture 3 one may always reduce to this

case. Also, without loss of generality we may assume that Φ(S) is closed in Γ\D.53

53This is a standard result in VHS: period mappings extend across divisors around which the local
monodromy group is finite.
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Theorem ([FL]): Assume that the inverse image S̃ of S in D is

S̃ = Ŝ ∩D
where Ŝ ⊂ Ď is an algebraic variety. Then S̃ = DH where DH is an HSD equivariantly

embedded in D.

Proof (sketch — details in [FL]): By the structure theorem from Lecture 3 we may

assume that D = GR/H is a Mumford-Tate domain where G is the Mumford-Tate group

of a generic point of S. Then we have

• Γ(Q) = G (from Lecture 3);

• ΓS̃ ⊆ S̃ ⇒ Γ(C) stabilizes Ŝ.

This is because S̃ ⊂ Ď is defined by algebraic equations together with inequalities; in

particular, S̃ is Zariski dense in Ŝ.

• Γ(C) = GC acts transitively on Ď and stabilizes Ŝ ⊂ D̂ ⇒ Ŝ = D̂.

Here one must take some care with connected components (loc. cit.).

• Then S̃ = D;

• Finally, D is a Mumford-Tate domain with trivial IPR; hence is an HSD. �

Lifting of the Kostant class:

This discussion is speculative and some of the issues raised are probably well known

to experts.

Let µ be a weight such that µ + ρ ∈ −C, the closure of the anti-dominant Weyl

chamber. Recall that µ+ρ ∈ −C is the situation when the L2-cohomology and ordinary

cohomology “line up” in the sense that the natural map (cf. [Sch2])

Hd
(2)(D,Lµ)→ Hd(D,Lµ)

is injective with dense image. It is also the situation where Hd(D,Lµ) is an irreducible

Harish-Chandra module Vµ+ρ with infinitesimal character χµ+ρ. The issue we will discuss

is the

Question: Is there an n-cohomology interpretation of the surjectivity of the mapping

Hd(D,Lµ)� Hd(Z,Lµ)?

To explain this, we recall from the discussion of Kostant’s theorem in the appendix to

Lecture 7 that

Hd(Z,Lµ) ∼= ⊕
λ∈K̂

W λ∗ ⊗Hd(nK ,W
λ)−µ.
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By Kodaira-Serre duality and using ωZ = L−2ρc

Hd(Z,Lµ) ∼= H0(Z,L−µ ⊗ L−2ρc)
∗

∼= W−µ−2ρc∗

Thus

Hd(Z,Lµ) ∼= W−µ−2ρc∗ ⊗ κµ
where

κµ ∈ Hd(nK ,W
−µ−2ρc)−µ ∼= C

is the Kostant class

κµ = vµ+2ρc ⊗
∧

α∈Φc

ω−α.

Note that the Kostant class determines the irreducible K-module Hd(Z,Lµ), since from

it we know its highest weight −µ− 2ρc.

We note that Hd(Z,Lµ) is the lowest K-type of Vµ+ρ. That is, all the other irreducible

K-summands W λ in Vµ+ρ have highest weight λ > −µ−2ρc. When µ+ρ is non-singular

this implies that the K-module Hd(Z,Lµ) determines the discrete series Hd
(2)(D,Lµ) and

its associated Harish-Chandra module Vµ+ρ.

By the results of Schmid from Lecture 5, in case µ+ ρ is non-singular we have

dimHd(n, V ∗µ+ρ)−µ = 1.

We denote by σµ ∈ Hd(n, V ∗µ+ρ) a generator and refer to it as the Schmid class.

We next consider the diagram

Hd(nK ,W
−µ−2ρc)−µ // Hd(nK , V

∗
µ+ρ)−µ

Hd(n, V ∗µ+ρ)−µ

OO

where the top arrow results from the inclusion W−µ−2ρc ⊂ V ∗µ+ρ and the vertical arrow

from the inclusion nK ↪→ n. It seems quite plausible, but we do not have a proof, that

in the above diagram the Schmid class maps to the image of the Kostant class. If so we

have the following

Conclusion: In the Hochschild-Serre spectral sequence for H∗(n, V ∗µ+ρ)−µ we have

κµ ∈ Hd(nK , V
∗
µ+ρ)−µ = E0,d

1 .

Moreover, the differentials

d1κµ = d2κµ = d3κµ = · · · = 0

and the Schmid class σµ ∈ Hd(n, V ∗µ+ρ)−µ maps to the Kostant class κµ ∈ E0,d
∞ .
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We would like to have the same result when µ + ρ is singular; e.g., when µ = −ρ
corresponds to a TDLDS V0. For SU(2, 1) by explicit calculations we have seen that the

Kostant class

κ−ρ = v0ω12

can be lifted, where the explicit lifting to the Schmid class in H1(n, V0)ρ is given by

σ−ρ = v0ω12 + Aω13 +Bω32

with {
A = X21X13v0

B = X21X32v0.

For both SU(2, 1) and Sp(4) it follows from Schmid’s arguments in Appendix I to

Lecture 9 that κ−ρ can be lifted.

In general, an heuristic could be this:

The Kostant class determines, and is determined by, the lowest K-type

of V0. The lowest K-type lifts naturally — i.e., geometrically — to V0.

Hence the Kostant class should lift, in fact to a Schmid class σ−ρ ∈
H1(n, V0)ρ that determines V0.

Shimura curves: This discussion pertains to the non-classical Mumford-Tate domains

D = GR/T when GR = U(2, 1)R or Sp(4)R.

A classical criterion for arithmeticity of modular forms f defined on Γ(N)\H is that

f should assume arithmetic values (suitably defined — cf. [Shi]) at CM points. For D as

above, say in the SU(2, 1) case, the interesting automorphic cohomology for X = Γ\D
is H1(X,Lµ) where µ+ρ is in the closure of the anti-dominant Weyl chamber. As noted

above, in [GGK2] there is a discussion of how to “evaluate” classes η ∈ H1(X,Lµ) at

compatible pairs of CM points in Γ\W where W ⊂ D ×D′, and there an arithmeticity

result is proved when η = P(η′) where η′ ∈ H0(X ′, L′µ′) is an arithmetic Picard modular

form.

However, it is more natural to evaluate η on algebraic curves C ⊂ X. We will briefly

explain some of the issues involved in the G = SU(2, 1) case. Let G̃ ⊂ G be a Q-algebraic

subgroup such that G̃R = SU(1, 1)R. For the Hermitian form diag(1, 1,−1) on Q3 there

are two evident such 

∗ 0 ∗
0 1 0

∗ 0 ∗


 ,




1 0 0

0 ∗ ∗
0 ∗ ∗


 .

A third is by taking the Hermitian form ( 1 0
0 −1 ) on C2 and identifying Sym2 Q2 = Q3;

this gives an embedding SU(1, 1) ↪→ SU(2, 1). The group Γ̃ = Γ ∩ G̃ is an arithmetic
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subgroup of Γ, and setting T̃ = TS ∩ G̃R where TS ⊂ SU(2, 1)R is the evident maximal

torus, we have

G̃R/T̃

��

⊂ GR/TS

��
Γ̃\G̃R/T̃ ⊂ Γ\GR/TS.

For the non-classical and classical complex structuresD,D′ onGR/TS, and forX = Γ\D,

X ′ = Γ\D′ we let

C ⊂ X, C ′ ⊂ X ′

be the corresponding algebraic curves given by the two appearances of Γ̃\G̃R/T̃ .

Definition: We shall call C,C ′ Shimura curves.

Each of C,C ′ is a quotient of the unit discs ∆,∆′ equivariantly embedded in D,D′

respectively.

Example: For a suitable choice of a fixed line l, we have

s
p′ p

s l

and {
∆′ = l ∩ B
∆ = l ∩ Bc.

An evident issue is the

Question: Describe the maps H1(X,Lµ)→ H1(C,Lµ).

Since C is an algebraic curve defined over a number field, H1(C,Lµ) has an arithmetic

structure. As pointed out by Carayol, this could be a step towards defining an arithmetic

structure on the automorphic cohomology group H1(X,Lµ).

In order for this question to make sense one is led to the following consideration: Let

µ, µ′ be weights giving line bundles Lµ → D, L′µ′ → D′ whose cohomology groups are

related by a Penrose transform P as in Lecture 9. Although we have not checked the
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details, it seems reasonable that there should be a commutative diagram

H0(X ′, L′µ′)

��

P // H1(X,Lµ)

��
H0(C ′, L′µ′)

P̃ //___ H1(C,Lµ)

where the vertical arrows are restriction maps and the dashed horizontal arrow is a

Penrose transform between algebraic curves as discussed in Lecture 2. The left vertical

arrow is an arithmetic map; i.e., a map preserving arithmetic structures on the vector

spaces. In order to use P to define an arithmetic structure on H1(X,Lµ) one would need

to know that

P̃ preserves arithmetic structures.

More precisely, there should be a complex number δ such that

P̃
(
H0(C ′, L′µ′)Q

)
⊆ δH1(C,Lµ)Q.

This seems plausible since on the correspondence space, P̃ is given by multiplication by

a fixed cohomology class.

The map H1(X,L−ρ) → H1(C,L−ρ) is of course particularly interesting. We note

that on X, L−ρ = ω
1/2
X and OC(L−ρ) = ω

1/2
C .

Realization by Penrose transforms:

We shall not attempt to formulate a precise question here. The issue is this: For flag

manifolds GC/B we have seen in the appendix to Lecture 7 that the different realizations

of an irreducible GC-module as the cohomology groups of a homogenous line bundle over

GC/B are all related by Penrose transforms. This provides a geometric way of realizing

the identifications provided by the BWB theorem.

There is a similar issue for Harish-Chandra modules constructed from the cohomology

of homogeneous line bundles over flag domains. Here new subtleties arise. First, as we

have seen in Lectures 8 and 9 the Penrose transform may be between flag domains

with inequivalent complex structures. A second is that, whereas in the BWB case the

cohomology groups will vanish in case µ + ρ is singular, this will not be so in the

flag domain case. In fact, the case when µ + ρ is singular is a particularly interesting

one. Finally, the topology on the cohomology groups may enter; e.g., the ordinary

cohomology vanishes in degree bigger than d = dimCK/T . To avoid this issue, it

may be more convenient to ignore it and consider Penrose transforms on quotients by

arithmetic groups where at least in the co-compact case, the topology does not matter.
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This is also the case that is particularly interesting in representation theory. The first

hypothesis to test might be:

Hq(X,Lµ) and Hq(X ′, L′µ′) are Penrose related if, and only if, the in-

finitesimal characters satisfy χµ+ρ = χµ′+ρ′.

Boundary components of Mumford-Tate domains:

As indicated above we shall briefly discuss Carayol’s result about defining arithmetic-

ity of automorphic cohomology in terms of “Fourier expansions” about an arithmetic

boundary component. In the appendix to this lecture we have reproduced the relevant

part of the unpublished IAS lecture notes that goes into the proof of Carayol’s theorem.

Notational remark: In the work of Kato-Usui they use Σ, corresponding to a fan

consisting of a family of nilpotent cones σ ⊂ g satisfying certain conditions, to denote the

particular extension D ⊂ DΣ. Here we shall sometimes simply use the subscript “e,” as

in De, Xe, H
1
e (X,Lµ) to denote extensions of the corresponding object D,X,H1(X,Lµ)

to a larger object.

We recall notations from Lecture 3:

• F = Q(
√
−d)

• V = Q-vector space of dimension 6

• Q : V ⊗ V → Q an alternating non-degenerate form

• µ : F→ EndQ(V )

• VF = V+ ⊕ V−
• H(u, v) = −iQ(u, v), u, v ∈ V+,C

• D =





Mumford-Tate domain for PHS’s of

weight n = 3 with h3,0 = 1, h2,1 = 2

and with generic Mumford-Tate group

G̃ = Sp(V,Q) ∩ ResF/Q(GL(V+)).

Then G̃ ∼= U(2, 1) and D = GR/T where GR ∼= SU(2, 1).

• Γ ⊂ G an arithmetic subgroup; we shall eventually take Γ = UH(OF) where OF

are the integers F and UH(OF) =: G̃(OF);

• X = Γ\D.

For L = L−k,0 or L = L0,−k we will define

• a “parabolic” subspace H1
e (X,L) ⊂ H1(X,L).

Following Carayol, we will then define what it means for a class α ∈ H1
e (X,L) to be

arithmetic (in this case, this means defined over Fab = maximal abelian extension of F).

Theorem (Carayol): H1
e (X,L) is generated by arithmetic classes.
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This is an analogue of the classical result that cuspidal modular forms are generated

by ones whose Fourier expansions at the cusps are arithmetic; i.e., whose coefficients lie

in a fixed number field.

Step one. In Lecture 9, we had diagrams

W

��







��555555

D D′

��
∆

and the quotient by Γ (co-compact in Lecture 9 but definitely not assumed to be so

here)

Γ\W
π

�������� π′

��;;;;;;

X X ′

p
��

Y ′.

Using the [EGW] Penrose-type transform, this allowed one to give isomorphisms

H1(X,Lλ) ∼= H0(X ′, Lλ′)

∼= H0(Y ′, L̃′)

where, for suitable λ and λ′, L̃′ is an explicit line bundle over the Picard modular

surface Y ′.

Step two. As noted above Kato-Usui ([KU]) have developed a theory of extensions, or

partial compactifications,
D ⊂ DΣ

of period domains with the property that period mappings

S
Φ // Γ\D

∩ ∩

S
Φ // Γ\DΣ

extend as indicated. Here, S is a smooth quasi-projective variety, S is a smooth comple-

tion with S\S := Z a normal crossing divisor with unipotent monodromies around the

branches of Z (this may always be assumed), and Φ is a “period mapping” arising from a
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global variation of Hodge structure over S. In the classical case when D is an Hermitian

symmetric domain, Γ\DΣ is a toroidal compactification constructed by Mumford and

his collaborators.

As remarked above, it is plausibly the case that the KU theory can be extended to

Mumford-Tate sub-domains

DM ⊂ D

of period domains. The issue is that the KU theory is based on the limiting mixed Hodge

structures (LMHS’s) constructed by Cattani-Kaplan-Schmid using the several variable

nilpotent and SL2-orbit theorems that give precise approximations to the period mapping

in punctured polycylinders around points of Z (cf. [CKS]). The nilpotent orbits may be

chosen to lie in DM but this is, at least to me, not clear for the SL2-orbits. It is OK,

however, for the case D = SU(2, 1)/T of interest here, and the analysis of the boundary

∂DΣ = DΣ\D
and of the quotients by Γ

∂XΣ = XΣ\X
is step two. It turns out that there is one “principal” boundary component E ′ ⊂ ∂XΣ,

which is a C∗-bundle over a CM elliptic curve

E ′ ∼= C/OF.

Step three. The correspondence space picture extends to

Γ\WΣ

��������

��======

XΣ X ′Σ

��

Ỹ ′Σ

where Y ′Σ = (Γ\∆) ∪ {points} is compact.54 Moreover, the [EGW] Penrose-type trans-

forms extend to this situation to relate H1(XΣ, LΣ) and H0(Ỹ ′Σ, L̃
′
Σ). We define

H1
e (X,L) = ker

{
H1(XΣ, LΣ)→ H1(∂XΣ, LΣ)

}

and similarly for H0
e (Ỹ ′, L̃). Then there is a map

H0
e (Ỹ ′, L̃′)→ H1

e (X,L).

54This diagram is only a first approximation to the actual picture, in which Carayol uses a desingu-

larization Ỹ ′Σ → Y ′Σ of YΣ with the elliptic curve E′ appearing over the cusp in Y ′Σ.
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The group H0
e (Ỹ ′, L̃′) may be identified as “parabolic Picard modular forms of weight

k”. Using results of Siegel and Shimura, this vector space has an arithmetic structure.

In fact, after suitably trivializing the canonical bundle ω∆, and therefore also L̃′, with

coordinates (x, y) ∈ C2 the sections in H0
e (Y ′, L̃′) are given by

f(x, y) =
∑

r∈N∗
gr(y) exp

((−2πir

β0

)
x

)
,

where β ∈ F is related to the logarithm N of monodromy, β0 = Im β and the gr|y| are

theta functions on E ′. These theta functions are sections of an arithmetic line bundle

over E ′, and thus it makes sense to say that gr(y) is “arithmetic”. The arithmetic

f(x, y)’s are shown to generate H0
e (Y ′, L̃′), and their images under the above map are

then shown to generate H1
e (X,L).

On the Stein property of quotients Γ\W where Γ is an arithmetic group

In Lecture 9 we have used the Penrose transform method applied to the diagram

Γ\W

��>>>>>>

��������

Γ\D Γ\D′

where Γ ⊂ GR is a co-compact discrete group. Just above we have discussed Carayol’s

use of it in the SU(2, 1) case when Γ is an arithmetic group. In this special case he

showed by a direct argument that Γ\W is Stein ([C3]). In general one would like to

show that

Γ\W is Stein.

In Lecture 6, and in the appendix to that lecture, we have discussed the construction of

GR-invariant, strictly plurisubharmonic functions

f : U→ R.

For co-compact Γ these give an exhaustion function

f : Γ\U→ R,

proving that Γ\U is Stein. From this and the fact that the fibres of

Γ\W→ Γ\U

are affine algebraic varieties one concludes that Γ\W is Stein. This leads naturally to

the question:
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For f , constructed as explained in Lecture 6 from a strictly convex func-

tion on ω0 where U = GR exp(iω0) · u0, and for Γ an arithmetic group

is the induced function f : Γ\U→ R an exhaustion function?

For co-compact Γ the argument is of a general topological nature based on the observa-

tion that the projection

Γ\U→ GR\U
is a proper map. In general, to answer the above question it may be necessary to consider

the geometry of a fundamental domain (Siegel set) for the action of Γ on D.

Relation between Kato-Usui boundary components and the GR and KC orbit

structure55

For D a classical period domain there is in [KU] an extensive theory of extensions of

D given by adding to the “boundary” families of limiting mixed Hodge structures Dσ

associated to nilpotent cones σ ⊂ g. Here, the word “boundary” is in quotation marks

as the Dσ’s are not defined as subsets of the topological boundary ∂D = D\D of D

in the compact dual Ď. In fact, it is not even clear to me that there are natural maps

Dσ → ∂D.

As noted the [KU] theory has been worked out in case D is a period domain. It

is reasonable to anticipate that the theory can be extended to general Mumford-Tate

domains. We will assume this, and will in fact take for D a flag domain embedded in

its compact dual Ď, which is a flag manifold. As has been discussed in Lecture 6, there

is a rich orbit structure for the action of GR on ∂D, and these orbits are in duality to

KC orbits in Ď. The general question, not precisely formulated here, is

Is there a relation between the KU boundary components Dσ and the

GR-orbit structure of ∂D? If so, what is the relation between the Dσ’s

and the dual KC orbits? In particular what is the Hodge theoretic inter-

pretation of this relation?

For a nilpotent cone σ one has that

σ ⊗ R ⊂ A

for a suitable abelian sub-algebra A ⊂ pC. In fact, for a suitable reference point in D

we will have

σ ⊗ R ⊂ A ⊂ g−1,1
ϕ .

55Some of what follows was suggested by Mark Green.
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According to the theorem of Cattani-Kaplan [CKn], one has the very strong property

that the monodromy weight filtration associated to N in the interior of σ ⊗ R is inde-

pendent of N . This is easily proved in case σ ⊗ R is spanned by a strongly orthogonal

set of root vectors Xαi ; this means that

±αi ± αj is not a root for i 6= j.

We do not know how general this is; i.e., does the Cattani-Kaplan property imply that

σ ⊗ R is spanned by the Xαi for a strongly orthogonal set of roots? This observation

suggests that there may be a relation between the KU theory and the group theoretic

structure of the orbits of GR acting on ∂D, and then perhaps also to the dual KC-orbits.

On the non-algebraicity of quotients Γ\D when D is non-classical

A theorem of Carlson-Toledo states that

For D a period domain for PHS’s of even weight, excluding the case

when n = 2 and h2,0 = 1 when D is an HSD, and for Γ ⊂ GR discrete

and co-compact, the quotient Γ\D does not have the homotopy type of

a compact Kähler manifold.

In particular, X is not a projective algebraic variety. An obvious question is

For D a non-classical Mumford-Tate domain and Γ an arithmetic group,

can one prove that Γ\D is not a quasi-projective algebraic variety?

Of course, in case G is of Hermitian type and Γ is co-compact the quotient will have

the homotopy type of a compact Kähler manifold. So even in this case addressing the

question above will necessitate new methods and seems to me to be an interesting issue

in complex geometry, one that so far as I am aware has not been addressed in the

literature.
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Appendix to Lecture 10: Boundary components and Carayol’s result

The contents of this appendix is reproduced from notes for an IAS seminar in March,

2011. In addition to discussing [C3], it gives an introduction, illustrated by examples,

to the Kato-Usui theory.

1. Limiting mixed Hodge structures (LMHS’s)

Recall that a mixed Hodge structure is given by the data (V,W•, F •) where

• V is a Q-vector space

• {0} ⊂ W0 ⊂ · · · ⊂ Wm = V is the weight filtration

• F n ⊃ F n−1 ⊃ . . . is the Hodge filtration of VC

and where

• F p ∩Wk,C/Wk−1,C := F p
k is a pure Hodge structure of weight k, meaning that

F p
k ⊕ F

k−p+1

k
∼−→ Grk,C, 0 5 p 5 k.

Thus, for Hp,q
k := F p

k ∩ F
q

k we have



Grk,C = ⊕
p+q=k

Hp,q
k

H
p,q

k = Hq,p
k .

There is also the notion of a polarized mixed Hodge structure, whose formal definition

in the case we need it will be given below.

The definitions of a pure Hodge structure and a mixed Hodge structure are of course

motivated by geometry. If X is a smooth, complete complex algebraic variety, then

Hn(X,Q) has a (canonical) pure Hodge structure of weight n. If X is an arbitrary

complex algebraic variety, then Hn(X,Q) has a (canonical) mixed Hodge structure. If

X is complete then the m = n in the weight filtration. If X is projective, then the pure

Hodge structure in the smooth case and mixed Hodge structure in the general case are

polarized.

If we have a family Xt of smooth varieties degenerating to a generally singular variety

X0, then one might suspect that the pure Hodge structures Hn(Xt,Q) have as limit a

mixed Hodge structure related to Hn(X0,Q). This is in fact the case as we shall now

briefly summarize.

First, we recall that if N : V → V is a nilpotent endomorphism with Nn+1 = 0, there

is a unique weight filtration W•(N) such that
{
N : Wk(N)→ Wk−2(N), and the induced maps

Nk : Grn+k(N)
∼−→ Grn−k(N) are isomorphisms.
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One defines {
W0(N) = Nn(V )

W2n−1(N) = kerNn,

and then for V = V/W0 and N : V → V induced by N and with N
n

= 0, we have

W0(N), W2n−3(N)

and for V
π−→ V we set {

W1 = π−1(W0(N))

W2n−2 = π−1(W2n−3(N))

and proceed inductively.

Suppose now we are given (V,Q) and a nilpotent endomorphism N ∈ EndQ(V ).

Definition: A limiting mixed Hodge structure (LMHS) is given by (V,Q,W•(N), F •)

where

(i) (V,W•(N), F •) is a mixed Hodge structure,

(ii) N is a morphism of mixed Hodge structures of type (−1,−1); in particular

N(F p) ⊂ F p−1, 56

and

(iii) on Grn+k,prim := kerNk+1, the bilinear forms

Qk(u, v) = Q(Nku, v) u, v ∈ Grn+k,prim

define a polarized Hodge structure of weight n+ k (here there may be a sign).

One picture of a LMHS is given by a Hodge diamond which looks like the cohomology

of a compact Kähler manifold with N playing the role of the Lefschetz operator but

going in the opposite direction. For n = 2 we have the possibilities

F 2

F 1(2,2)

(2,1)

(2,0)

(1,0)

(1,1)

(0,0)

(1,2)

(0,1)

(0,2)

{
N3 = 0, N2 6= 0

(1, 1) = N(2, 2)⊕ (1, 1)prim

56In the classical case of weight n = 1 PHS’s (families of abelian varieties), the condition N(F p) ⊂
F p−1 is automatically satisfied, but this is not the case in the non-classical case, and in fact is the
controlling feature in the non-classical theory.
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F 2

F 1

(2,1)

(2,0)

(1,0)

(1,1)

(1,2)

(0,1)

(0,2)
{
N2 = 0, N 6= 0

Gr2 = Gr2,prim.

Example 1: When dimV = 5, dimF 2 = 2, as in the case of PHS’s of weight two with

h2,0 = 2, h1,1 = 1, the only possibility is when N3 = 0 and we have the picture

(2,0) (1,1)

(0,0)

(0,2)

(2,2)

{
N3 = 0, N2 6= 0

Gr2 = Gr2,prim.

Then Gr2
∼= Q(−1)⊕H where H is a PHS of weight two with h2,0 = 1. We will return

to this example below.

Another way of displaying this is

Q(−2) Q(−1) Q
• −−−−→ • −−−−→ •

•
H

where HC = H2,0 ⊕H0,2 is a weight 2 PHS.

Example 2: In this case we shall take N ∈ g where G = U(2, 1) viewed as a Q-algebraic

subgroup of Aut(V,Q) where V is a 6-dimensional Q-vector space with an action of F
as above. Then because of the picture of the PHS’s, N3 = 0 and the possibilities are

(3, 2) (2, 3)

• •y y
(2, 1) (1, 2)

• •y y
(1, 0) (0, 1)

• •

N3 = 0, N2 6= 0(A)
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(3, 1) (1, 3)

• •y

y
(2, 1) (1, 2)

• •

(2, 0) (0, 2)

• •

N2 = 0, N 6= 0

Gr3 = Gr3,prim

(B)

(2, 2)⊕2

•
(3, 0) (0, 3)

• •y
(1, 1)⊕2

•

N2 = 0, N 6= 0

Gr2 = Gr3,prim.
(C)

The alternative diagrams for these given above are

(A)
H(−2) H(−1) H

• −−−−→ • −−−−→ •

where HC = H1,0 ⊕H0,1

(B)

J(−1) J

• −−−−→ •

K

•





J = J2,0 ⊕ J0,2

K = K3,0 ⊕K0,3

(C)
Q(−2)⊕2 −−−−→ Q(−1)⊕2

K

•
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We shall also return to this example below. Without the requirement that N ∈ g as

above, there are additional possibilities for LMHS’s; e.g. with N3 6= 0.

Remark. In Lecture 9 we discussed the third example of the non-classical Sp(4)/T .

The LMHS’s are worked out in detail in [GGK0]; they have a rich arithmetic structure.

2. Kato-Usui boundary components (nilpotent orbits)

We asume given a Q-vector space V , weight n and a non-degenerate bilinear form

Q : V ⊗ V → Q with Q(u, v) = (−1)nQ(v, u), and a set of Hodge numbers hp,q = hq,p

for p + q = n and with
∑

p,q h
p,q = dimV . There is then a period domain D̃ and we

let D ⊂ D̃ be a Mumford-Tate domain consisting of PHS’s whose generic member has

Mumford-Tate group G where D = GR/H. Finally, we let w ∈ C and for Imw > 0 we

set

q = e2πiw.

Definition: A nilpotent orbit (V,Q,N, F •) is given by a nilpotent element N ∈ g

and a point F • ∈ Ď satisfying
{

(i) exp(wN)F • ∈ D for Imw � 0

(ii) N(F p) ⊂ F p−1.

We set T = expN ∈ G. In practice there will frequently, but not always, be a lattice

VZ ⊂ V such that T ∈ GZ := {g ∈ G : g(VZ) ⊆ VZ}. Since

exp((w + 1)N)F • = T exp(wN)F •

and T ·D = D, condition (i) depends only on w with |Rew| 5 1/2. Recalling that

TF •Ď ⊂ ⊕Hom(F p, VC/F
p)

we set

T hF •Ď =
{
ξ ∈ TF •Ď : ξ(F p) ⊆ F p−1/F p

}
.

This gives a GC-invariant sub-bundle

T hĎ ⊂ TĎ

and condition (ii) means exactly that the tangents to the orbit exp(wN)F • are in T hĎ.

Rescaling so that (i) is satisfied for Imw > 0 and setting ΓN ={T k}k∈Z ⊂ G, we have a

map from the disc ∆∗d={q : 0 < |q| < 1}

F • : ∆∗d → ΓN\D
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where F •(q) = exp(wN) · F •. Condition (ii) says exactly that the map (∗) is a varia-

tion of Hodge structure (VHS). Results of Schmid give that any VHS over ∆∗d may be

approximated by a nilpotent orbit (nilpotent orbit theorem).

Example: It is well-known that a degenerating family of elliptic curves over ∆d has a

period point in the upper-half-plane H given by

m
log q

2πi
+ f(q)

where m ∈ Z=0 and f(q) is holomorphic in ∆d. The approximating nilpotent orbit is

given by taking f(0) to be constant in the above expression.

In fact, a much deeper and more precise result than the nilpotent orbit theorem was

proved by Schmid. Namely, for T0 ∈ SL2(Z) given by T0(w) = w+ 1, Γ0 = {T k0 }k∈Z and

identifying

Γ0\H = ∆∗d,

the nilpotent orbit is itself approximated by an equivariant VHS

(∗∗) F • : ∆∗d → ΓN\D̃

induced by a representation
{
r : SL2(R)→ Aut(VR, Q)

r(T0) = T.

Note that (∗∗) maps to ΓN\D̃; it seems not to be known if we can keep the image in

ΓN\D.

Using Schmid’s result it follows that

Associated to a nilpotent orbit (V,Q,N, F •) is a limiting polarized mixed

Hodge structure (V,Q,W•(N), F •). Conversely, associated to a polar-

ized LMHS (V,Q,W•(N), F •), there is a nilpotent orbit whose associated

LMHS is the given one.

There is a several variable version of the above, due to Cattani-Kaplan-Schmid [CKS],

where ∆∗d is replaced by (∆∗d)
k and T by commuting nilpotent monodromies T1, . . . , Tk

with logarithms Ni = log Ti. Set

σ = spanR=0{N1, . . . , Nk} ⊂ gR

and for λ = (λ1, . . . , λk) with λi ∈ R, λi > 0 set

Nλ =
∑

i

λiNi.
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Then each Nλ is nilpotent, and a basic result (conjectured by Deligne and proved by

Cattani-Kaplan) is

the weight filtration W•(Nλ) is independent of λ.

This result paved the way for the several variable SL2-orbit theorem in [CKS], which in

turn provided the foundation for the Kato-Usui theory.

In general, we let σ ⊂ gR be a nilpotent cone as above where{
Nn+1
i = 0

[Ni, Nj] = 0.

Setting σC = spanC{N1, . . . , Nk} = σ ⊗R C ⊂ gC, a σ-nilpotent orbit Z ∈ Ď is given by

Z = exp(σC) · F •, F • ∈ Ď
where the conditions corresponding to (i), (ii) above are satisfied.

Now let Σ be a fan (not defined here) of nilpotent cones in gR and set

DΣ = {(σ, Z) : σ ∈ Σ and Z is a σ-nilpotent orbit}/(rescalings).

Then D ⊂ DΣ by F • → (0, F •) (trivial nilpotent orbit). Next let Γ ⊂ G be an arithmetic

group. There are natural conditions, also not spelled out here, that Σ be compatible and

strongly compatible with Γ (cf. [KU]). In this case we may form

XΣ := Γ\DΣ.

Kato-Usui prove that XΣ has the structure of a Hausdorff log-analytic variety with slits,

and that any VHS

(∆∗d)
k → Γσ\D,

extends to a morphism of log analytic varieties

(∆d)
k → XΣ.

In fact, for each σ ∈ Σ there is a boundary component that we denote here by ∂Dσ

and which is constructed as follows: First, we let

D#
σ = D{faces of σ}.

We remark that {faces of σ} is a fan. Here the subset of D#
σ consisting of (σ, Z) gives

the orbit as a subset of Ď

Z = exp

(∑

j

wjNj

)
· F • ;

we obtain the same orbit by rescaling wj → wj + cj. We set

Dσ = D#
σ /{rescalings}.
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The picture over ∂D#
σ =: D#

σ \D is something like

∂D#
σ

∂Dσ

where the fibres are Ck’s, and where in practice we describe Dσ by taking a slice as

pictured (somtimes referred to as normalizing the nilpotent orbit).

Next, we let

Γσ = {normalizer of σ in Γ} .

Then Γσ acts on D#
σ , and this action preserves the fibres in the above picture but in

general will not preserve the slice. We let Dσ = D#
σ /(rescalings). As a set Dσ = ∂DσtD

(disjoint union). In the cases of interest here the topology on Dσ will be discussed below.

The quotient

Γσ\∂Dσ =: ∂Xσ

is the boundary component corresponding to the nilpotent cone σ. As a set we have

∂XΣ =
⋃

σ∈Σ

∂Xσ.

We remark that XΣ is a log analytic variety with slits. A log-analytic variety with

slits looks locally something like

C2\({0} × C∗)

This condition is forced by the condition Ni(F
p) ⊆ F p−1 if one wants a separated exten-

sion of X = Γ\D to which VHS’s extend. It is not present in the classical case when

D is an Hermitian symmetric domain and where the Kato-Usui construction reduces to

the toroidal compactification. But it is present in the situation studied by Carayol.
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Toy example: Before turning to the determination of the nilpotent orbits in our two

“running” examples, we consider the case when

D = H is the upper-half-plane

∩

Ď = P1 with points F =

[
x

y

]

where

H = {F : i(x̄y − xȳ) > 0} .
As in Lecture 1 we normalize F ∈ H by taking F = [ τ1 ], Im τ > 0.

We take N = ( 0 1
0 0 ). Then

exp(wN)F =

[
x+ wy

y

]
.

If exp(wN)F ∈ H, then y 6= 0 and we may take y = 1. The nilpotent orbit is then

Z =

{[
x+ w

1

]
: w ∈ C

}
= P1

∖[1

0

]
,

which we may think of as P1\∞. There is thus one nilpotent orbit. By rescaling we may

take F = [ 0
1 ] = 0 ∈ C ⊂ P1. The normalized nilpotent orbit is then

w →
[
w

1

]

so that {w : Imw > 0} → H ⊂ P1.

Example 1: This is the case of D = SO(4, 1)/U(2), the period domain for weight 2

polarized Hodge structures with h2,0 = 2, h1,1 = 1. We will analyze the nilpotent orbits

in this case. To get a sense of what to expect we recall that the LMHS’s are of the form

(∗) Q(−2)
N // Q(−1)

N // Q

H

where H is a PHS of weight 2 with HC = H2,0 ⊕H 2,0
where dimH2,0 = 1. A picture is

GrW4 = Q(−2)

GrW2 = Q(−1)+

GrW0 = Q(0)

γ

β
∗

α∗

α

H

β
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One may replace the Q’s by Z’s by working carefully. The extension classes correspond-

ing to α and its dual α∗ may be normalized out by choosing the right point F • in the

nilpotent orbit. One of the remaining extension classes β is in

Ext1
MHS(Q(−2), H) ∼= H0,2/H.

If we have a lattice VZ with V = Q⊗Z VZ, the extension class will be in H0,2/HZ where

HZ is the image of VZ ∩W2 in H. If we have HZ ∼= Z2 and H0,2 = Cvτ where τ = (τ, 1),

then Im τ 6= 0. If

QH : H ⊗H → Q

is the polarizing form, then Q(vτ , vτ ) = 0 gives a quadratic equation for τ with rational

coefficients. Thus

Ext1
MHS(Z(−2), H) is a CM elliptic curve.

The other extension class is γ ∈ Ext1
MHS(Z(−2),Z) ∼= C∗. Thus the boundary component

is 2-dimensional.57

To carry out the calculations we will use the following notations:

• Q =



−I3 0 0

0 0 1

0 1 0


 .

• Na =




0 0 0 0 a1

0 0 0 0 a2

0 0 0 0 a3

a1 a2 a3 0 0

0 0 0 0 0



.

Then

• Na ∈ so(4, 1) and Na ∈ g = so(4, 1) is defined over Q if the aj ∈ Q.

• [Na, Nb] = 0.

57There are actually two CM elliptic curve boundary components, depending on a choice of ± sign
below.
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• N2
a =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −a2/2

0 0 0 0 0



, a2 = a · a.

• N3
a = 0.

• expNa =




1 0 0 0 a1

0 1 0 0 a2

0 0 1 0 a3

a1 a2 a3 1 −a2/2

0 0 0 0 1




.

• The standard basis for Q5, written as column vectors, is e1, . . . , e5. Then





Q(ei, ej) = −δij 1 5 i, j 5 3

Q(e4, e5) = 1

all other Q(eα, eβ) = 0.

Lemma: (i) Any nilpotent cone can be conjugated into the above. (ii) If σ gives a

nilpotent orbit then dimσ = 1.

For simplicity of calculation we shall take a1 = 1, a2 = a3 = 0. Then





Ne1 = e4

Ne5 = e1 ⇒ N2e5 = e4

all other Neα = 0.

The weight filtration is then

•
W0 = {e4}
∩
W2 = {e1, e2, e3, e4}

where here { } denotes span over Q.
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We now determine the conditions on F = F 2 = span{f1, f2} over C so that (V,Q,W•(N), F )

gives a LMHS. We know the picture of the LMHS must be

F 2
F 1

}
W0

}
W2




W4

Since W2 = span{e1, e2, e3, e4}, if f1 ∈ F 2 projects to a non-zero element in W4/W2 its

e5-component must be non-zero. This is the topmost dot above. Thus we may take

f1 =



v1

a

1


 , v1 =



v11

v12

v13


 ∈ C3.

Adding a multiple of f1 to f2, we may take

f2 =



v2

b

0


 , v2 =



v21

v22

v23


 ∈ C3.

The bilinear relations Q(F, F ) = 0 are




0 = Q(f1, f1) = −v2
1 + 2a

0 = Q(f2, f2) = −v2
2

0 = Q(f1, f2) = −v1 · v2 + b

which give 



a = v2
1/2

b = v1 · v2

v2
2 = 0.

Since dimF = 2 these imply that v2 6= 0.

Next, we determine the conditions that

N(F 2) ⊆ F 1 ⇐⇒ Q(N(F ), F ) = 0.

Using {
Nf1 = v12e4 + e1

Nf2 = v21e4,
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the equations Q(N(F ), F ) = 0 give v21 = 0. From v2
2 = 0 and v2 6= 0, we may normalize

to have v22 = 1, and then by the middle bilinear relation above v23 = ±i. We take the

+ sign and set v1 = z to have

f1 =




z

z2/2

1


 , f2 =




0

1

i

z2 + iz3

0



.

We next determine the conditions that F (w) =: exp(wN)F ∈ D for Imw � 0. We

have

f1(w) =




z1 + w

z2

z3

wz1 + z2/2 + w2/2

1



, f2(w) =




0

1

i

z2 + iz3

0



.

Setting |z|2 = z · z̄ the matrix Q(fi(w), fj(w)) is
(
−|w|2 − |z|2 − 2 Re z1w̄ + Re(2wz1 + z2 + w2)− 2i Im(z2)

2i Im(z2) − 2

)
.

Conclusion. For Imw = C1(z)

‖Q(fi(w), fj(w)‖ < 0.

Remark. The conclusion becomes very transparent if we do the following. First, we

may rescale to have z1 = 0. Next, for simplicity of notation we take z2 = u, z3 = v so

that

f1 =




0

u

v
u2+v2

2

1



, f2 =




0

1

i

u+ iv

0



.

Since for any ζ ∈ C
−|ζ|2 + Re ζ2 = −2(Im ζ)2

and the above matrix is

Q = −2

(
(Im s)2 + (Imu)2 + (Im v)2 2iv

−2iv̄ 1

)

so that Q < 0 unless Im s = Imu = Im v = 0.
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For later reference, we observe that the basis for F 1 = F⊥ may be taken to be

f1 =




0

u

v
u2+v2

2

1



, f2 =




0

1

i

u+ iv

0



,

︸ ︷︷ ︸
F=F 2

f3 =




1

0

0

0

0




︸ ︷︷ ︸
F 1

Then

• F 2 modulo W2,C is spanned by e1.

•
{
F 2 ∩W2,C/W0,C is spanned by

e2 + ie3 + (u+ iv)e4.

• F 1 ∩W2,C/W0,C spanned by F 2 ∩W2,C/W0,C together with e1.

• N(f1) = f3.

• Gr2,prim is spanned by e2, e3 and F 2Gr2,prim is spanned by e2 + ie3.

• The extension class in Ext1
MHS(Q(−2), H) is given by noting that

H2,0 = C(e2 + ie3),

so that the extension class is represented by
(
u
v

)
∈ C2/C

(
1
i

)
.

• If we have a lattice, then equivalent extensions are given by
{
u→ u+m

v → v + n

where m,n ∈ Z.

Example 2.58 Recall that we have

gR ∼=
{
g ∈ End(V+,C) : t[g]γ[H]γ + [H]γ[g]γ = 0

}

=







A B C

D E B

G D −A


 :

C,E,G ∈ iR
A,B,D ∈ C




.

58This exposition is based in part on notes on [C3] written by Matt Kerr.
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Here we have chosen an F-basis for W+ so that the matrix of Ih is
(

0 0 −1
0 1 0
1 0 0

)
.

Lemma: Any nilpotent cone can be conjugated in GR to be of the form



0 ∗ ∗
0 0 ∗
0 0 0


 .

We will see that there can be 2-dimensional spaces of commuting nilpotent matrices

of this form, but due to the condition Nλ(F
p) ⊂ F p−1 there are only 1-dimensional

nilpotent cones σ that give nilpotent orbits. Let

σ ∈








0 α ib

0 0 α

0 0 0


 :

b ∈ R
α ∈ C





=: σ0.

We note that

exp(σ0) =








1 α ib+ |α|2
2

0 1 α

0 0 1








=








1 α β

0 1 α

0 0 1


 : β + β = |α|2




.

For N1, N2 ∈ σ0

[N1, N2] =




0 0 α1α2 − α2α1

0 0 0

0 0 0


 .

Recalling our notation from “9” and where we do not differentiate between non-zero

points in C3 and their images in P2

p =



x

y

z


 and l = (u, v, w)

and their images in P2 and P2∗, we have for j = 1, 2

Njp =



αjy + ibjz

αjz

0


 .
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Since we must have

exp(wNj)p ∈ Bc = P2\B, Imw � 0

because of the form of Hγ this cannot happen if z = 0. Thus we may assume that

p =



x

y

1


 .

Then the condition Nj(F
3) ⊆ F 2, which translates into

〈l, Njp〉 = 0,

forces


a1y + ib1

α1

0


 and



α2y + ib2

α2

0




to be dependent. Thus

0 = α1α2y + ib1α2 − α1α2y − ib2α1

= (α1α2 − α2α1)y + i(b1α2 − b2α1),

and because of [N1, N2] = 0 the first term is zero so that

b1/b2 = α1/α2 = α1/α2

which gives that N2 is a multiple of N1.

Thus, we may assume that Σ = {σ} where σ = spanR+(N), and where there are two

cases

type (III): N2 6= 0, N=




0 α ib

0 0 α

0 0 0


 , α 6= 0

type (II): N2 = 0, N =




0 0 ib

0 0 0

0 0 0


 , b 6= 0.
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We will take Γ = UIh(OF) and Γσ = Γ ∩ {stabilizer of σ}. This gives

type (III): Γσ =








1 a β

0 1 a

0 0 1


 :

a2/2 = Re(β)

β ∈ OF, a ∈ Z





type (II): Γσ =








1 α β

0 1 α

0 0 1


 :

β + β = |α|2
α, β ∈ OF




.

The next step is to determine the nilpotent orbits. We take w = is, s > 0, and set

(p′, l′) = exp(isN)(p, l).

The conditions that (p′, l′) ∈ D are

(\)

{
|y′|2 > 2 Re(x′z̄)

|v′|2 > 2 Re(u′w̄′).

We shall work out what these mean for each of the two types. Type (II) will separate

into the cases (B), (C) discussed above.

type (III): Then

p′ =



x+ isy − (s2/2) · z

y + isz

z


 ,

and (\) for p′ is

y2 + iszȳ − isz̄y + s2|z|2 > 2 Re(xz̄) + 2 Re(isyz̄)− 2 Re

(
s2

2
|z|2
)

for s� 0. This gives z 6= 0. Next

l′ =

(
u,−isu+ v,

−s2u

2
− isv + w

)
,

and (\) for l′ is

s2|u|2 − isuv̄ + isūv + |v|2 > 2 Re

(
−s

2

2
|u|2 + isuv̄ + uw̄

)

for s� 0. This gives u 6= 0. Projectively we may take

p =



x0

y0

1


 ,
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and by moving in the nilpotent orbit we may then take

p =



x

0

1


 .

Next, N(p) =
(

0
1
0

)
and the condition 〈l, N(p)〉 = 0 gives l = (1, 0,−x). Thus the set

of nilpotent orbits, factored by rescalings, has dimension one, and in fact is just C with

the coordinate x. To factor by Γσ, we take

g =




0 a β

0 1 a

0 0 1


 ∈ Γσ.

Then

g(p) =



x+ β

a

1




exp(nN)g(p) =



x+ β + wa+ w2/2

a+ w

1


 ,

and rescaling we take w = −a. Using −a2/2 + β = β − Re(β) this last vector is


x+ i Im(β)

0

1




Then

Γσ\∂Dσ
∼= C/

√
−dZ ∼= C∗

where d > 0.

type (II): We assume b > 0; the case b < 0 is similar but not the same. Then

p′ =



x− sbz

y

z




l′ = (u, v, w + sbu).
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The conditions (\) are
{
|y|2 > 2 Re(xz̄)− 2 Re sb|z|2 ⇐⇒ z 6= 0

|v|2 > 2 Re(uw̄)− 2 Re(sb|u|2) ⇐⇒ u = 0, v 6= 0.

The nilpotent orbit is given by

p(s) =



x− sb
y

1


 , l(s) = (0, 1, w).

In the usual picture we have

l

p s( )

s( )

By rescaling we may take x = 0, so that

p =




0

y

1


 , l = (0, 1,−y)

and ∂Dσ has the coordinate y ∈ C. For

g =




1 α β

0 1 α

0 0 1


 ∈ Γσ

we have

g(p) =



β + αy

y + α

1


 ,

and renormalizing gives β + αy = 0. Then we have

(0, 1,−y)




1 −α β

0 1 −α
0 0 1


 = (0, 1,−(y + α))

where α ∈ OF, so that

Γσ\∂Dσ = C/OF = CM elliptic curve Eσ.
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Remark: Earlier we listed the possible LMHS’s. The connection with the description

of the possible nilpotent orbits is:

type (III) ⇐⇒ (A): both p and l move

type (II) ⇐⇒
{

(B): b > 0, p moves and l remains fixed

(C): b < 0, l pivots around a fixed p.

3. Kato-Usui extensions

When dimσ = 2, except in the classical case the glueing of boundary components into

X = Γ\D is rather involved. When σ is spanned by a single N the process is relatively

direct. This section has two steps.

Step one: Describe a neighborhood Zσ ⊂ Xσ of a boundary component in general

and illlustrate the construction in the case of the toy example and one classical but

substantive example.

Step two: Describe the neighborhood Zσ of Eσ in Example 1 (D = SO(4, 1)/U(2, 1))

and in Example 2, type (II), and b > 0.59

Step one. We first introduce the space

Z̃σ =

{
(ξ, F •) ∈ C× Ď :

if ξ 6= 0, then exp((log ξ)/2πi)N)F • ∈ D
if ξ = 0, then exp(σC)F • is a nilpotent orbit

}
.

Next, we let C with coordinate λ act on Z̃σ by

λ · (ξ, F •) = (exp(2πiλ)ξ, exp(−λN)F •).

Then Z̃σ is acted on Γσ and, when factored by the action of Γσ the quotient is a neigh-

borhood of the boundary component Eσ.

An intermediate step to factorizing by Γσ is to factor by Γ(σ)gp where Γ(σ) = Γ∩expσ.

Then (cf. [KU] pp. 124–5) we have that

Zσ ∼= Γ(σ)gp\Dσ

where Dσ = ∂Dσ

∐
D as above and Γ(a)gp is the group generated by Γ ∩ expσ. To see

this we consider the map

Θ : Z̃σ � Γ(σ)gp\Dσ = ∂Dσ

∐
(Γ(σ)gp\D)

59For Sp(4)/T the LMHS’s have been described in [GGK0] but the neighborhoods of the boundary
components have yet to be worked out.
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given by

(ξ, x)→
{

exp
(

log ξ
2πi

)
N · F • if ξ 6= 0

(σ, expσC · F •) if ξ = 0 .

The top term is in Γ(σ)gp\D, and the bottom one is in ∂Dσ. The fibres of Θ are the

orbits of the action of C with coordinate λ given above.

Toy example (continued): Before turning to our running examples, we shall revisit

the toy example to see what it gives in this framework. We first note that if (ξ, F ) ∈ Z̃σ,

then if F =
[
x
y

]
in both the cases ξ 6= 0 and ξ = 0 we must have y 6= 0. Thus we may

take F =
[
x
1

]
. The conditions are

{
ξ 6= 0 =⇒ Im

(
log ξ
2πi

+ x
)
> 0

ξ = 0 =⇒ F =
[
x
1

]
.

The action of λ ∈ C is given by
{

ξ → exp(2πiλ)ξ[
x
1

]
→
[
x+λ

1

]
.

We remark that taking a “slice” in the fibration

Z̃σ → Z̃σ/C

is related to, but not the same as, normalizing a point in a nilpotent orbit.

Toy example (continued): Here, N = ( 0 1
0 0 ) and Γ(σ)gp = ( 1 Z

0 1 ). We have described

Z̃σ above. The map Θ is

Θ : Z̃σ → Γ(σ)gp\Dσ
∼= ∆ (= unit disc)

is given by

(ξ, x)

{
log ξ
2πi

+ x modZ
0 (equal to

[
0
1

]
∈ P1)

}
→ ξe2πix.

Thus Γ(σ)gp\D ∼= ∆∗ = ( 1 Z
0 1 ) \H.

Example: Before giving the two non-classical examples, we want to give a more sub-

stantive classical example. For V ∼= Q4 with

Q =

(
0 I2

−I2 0

)
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we consider the period domain P (∼= H2) for weight 1 PHS’s with h1,0 = 2. In the

compact dual we take F (x, y, z) ∈ Ď where

F (x, y, z) = span{f1(x, y, z), f2(x, y, z)}

f1(x, y, z) =




1

0

x

y



, f2(x, y, z) =




0

1

y

z



.

For N we take

N =




0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0




and σ = spanR+{N}. Recall that

Z̃σ = {(ξ;x, y, z) : conditions (i) and (ii) are satisfied for F = F (x, y, z)} .
For (i), setting ζ = log ξ

2πi
we have

(∗) exp(ζN)F (x, y, z) = span




1

0

x+ ζ

y



,




0

1

y

z




and condition (i) is ∥∥∥∥∥
x+ ζ y

y z

∥∥∥∥∥ > 0.

Writing ξ = reiθ this is {
− log r

2π
+ Imx > 0

Im z > 0

together with a condition on ζ, z, y. It is then clear that (i) is satisfied for

0 < r < C(x, y, z).

Condition (ii) is just Im z > 0.

The action of λ ∈ C on Z̃σ is, from (∗),
λ(ξ;x, y, z) = (exp 2πiλ · ξ;x− λ, y, z).

From this a “natural” slice of Z̃σ → Z̃σ/C is given by x = λ.
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For the normalizer ΓN of Q · N in Γ,60 computation gives that ΓN is a semi-direct

product

ΓN = Γ′ ∗ Γ′′

where Γ′ is given in coordinates (ξ; y, z) along the slice by



ξ → ξ

y → y

z → az+b
cz+d

where ( a bc d ) ∈ SL2(Z) ∩ Γ, and Γ′′ is




ξ → ξ

y → y +m+ nz

z → z

m, n ∈ Z

where this transformation is in Γ.61

Geometrically, we have a fibration of Zσ = Γ\Z̃σ/C
Zσ

��
Γ′\H

with fibres elliptic curves isogeneous to Ez = C/Z + z · Z.

We give this example to illustrate that in this classical case, there is a linear slice in

the natural coordinates being used. This is very special, as the next example will show.

However, miraculously it does occur in Carayol’s SU(2, 1)/T case.

Step two.

Example 1: To have a sense of what to expect, we recall that the LMHS’s are of the

form

(∗) Q(−2)→ Q(−1)→ Q
H

where H is a polarized Hodge structure of weight 2 with HC = H2,0 ⊕H2,0. This may

also be pictured as

0 → W2/W0 → W4/W0 → W4/W2 → 0

∼ = ∼ =

Q(−1)⊕H Q(−2).

60We assume there is a lattice VZ and Γ ⊂ Aut(VZ, Q).
61Thus, the m,n’s that appear are subgroup of finite index in Z⊕ Z.
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Using the polarizing form, the two short extensions in the top row in (∗) are dual, and

we may use the rescaling parameter to make them zero, thus normalizing the LMHS.

Then the remaining extension classes are in

Ext1
MHS(Q(−2), H2) ∼= H0,2/H

Ext1
MHS(Q(−2),Q).

If we have a lattice VZ with V = Q⊗Z VZ and we set HZ = image of VZ ∩W2 in H, then

over Z the first extension class will be in H0,2/HZ. Choosing an isomorphism HZ ∼= Z2,

then we may assume that H0,2 = Cvτ with vτ = (τ, 1) where Im τ 6= 0. If

QH : H ⊗H → Q

is the polarizing form, then Q(vτ , vτ ) = 0 is a quadratic equation in τ with Q-coefficients,

and this gives that

Ext1
MHS(Z(−2), H) is a CM elliptic curve E.

The second extension class is in Ext1
MHS(Z(−2),Z) ∼= C∗. Thus we may expect C∗ × E

for the boundary component in this case. To carry this out, and for easy reference, we

recall the following notations

• Q =



−I3 0 0

0 0 1

0 1 0


 .

• N0 =




0 0 0 0 a1

0 0 0 0 a2

0 0 0 0 a3

a1 a2 a3 0 0

0 0 0 0 0



.

Then

• Na ∈ so(4, 1) and Na ∈ g = so(4, 1) is defined over Q if the aj ∈ Q.

• [Na, Nb] = 0.
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• N2
a =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −a2/2

0 0 0 0 0



, a2 = a · a.

• N3
a = 0.

• expNa =




1 0 0 0 a1

0 1 0 0 a2

0 0 1 0 a3

a1 a2 a3 1 −a2/2

0 0 0 0 1




.

• If the standard basis for Q5, written as column vectors, is e1, . . . , e5, then



Q(ei, ej) = −δij 1 5 i, j 5 3

Q(e4, e5) = 1

all other Q(eα, eβ) = 0.

For simplicity of calculation we shall take a1 = 1, a2 = a3 = 0. Then



Ne1 = e4

Ne5 = e1 ⇒ N2e1 = e4

all other Neα = 0.

The weight filtration is then

W0 = {e4}
∩
W2 = {e1, e2, e3, e4}

where { } denotes the span /Q.

Glueing in the boundary component. Recall that we set

Z̃ =

{
(ξ, F ) ∈ C× Ď :

(i) ξ 6= 0⇒
(
exp

(
log ξ
2πi

)
N
)
F ∈ D

(ii) ξ = 0⇒ exp(CN)F is a nilpotent orbit.62

We then take the quotient Z̃/C for the action of λ ∈ C given by

λ(ξ, F ) = (exp(2πiλ)ξ, exp(−λN)F )

62For simplicity of notation, in this example we drop the subscript σ on Z̃ and Z.
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and factor the quotient by the action of the normalizer ΓN in Γ of spanQ{N} ⊂ g to

obtain the neighborhood

Z = Γσ\Z̃/C ⊂ Γ\Dσ

of the boundary component.

We have determined the F in (ii) above, and we now determine the condition on F

in (i). Setting

f1 =



u

a

b


 , f2 =



v

c

d




where u, v ∈ C3, Q(F, F ) = 0 gives





u2 = 2ab

v2 = 2cd

u · v = ad+ bc.

Setting w = log ξ/2πi, computation gives

(∗)





Q(f1(w), f1(w)) = −|u1 + bw|2 − |u2|2 − |u3|2 + 2 Re(ab̄+ |b|2w2/2)

Q(f2(w), f2(w)) = −|v1 + dw|2 − |v2|2 − |v3|2 + 2 Re(cd̄+ |d|2w2/2)

Q(f1(w), f2(w)) = −uv̄ + (terms involving b, d).

Case a: b or d 6= 0.

Then we may take b = 1, d = 0 and we are in case (ii) that was worked out above.

Case b: b = d = 0.

From (∗) we see that (expwN)F ∈ D for any w. The conditions on u, v are

u2 = v2 = u · v = 0.

These give a pair of orthogonal points on a conic in P2.

We note that in case (a), F depends on three parameters, whereas in case (b) it

depends on one parameter.
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We now restrict to case (a) and normalize along nilpotent orbits to take

f1(x, y) =




0

x

y
x2+y2

2

1




= xe2 + ye3 +

(
x2 + y2

2

)
e4 + e5

f2(x, y) =




0

1

i

x+ iy

0




= e2 + ie3 + (x+ iy)e4.

Setting F (x, y) = span{f1(x, y), f2(x, y)} over C and ζ = log ξ
2πi

, we shall determine the

conditions on (ξ;x, y) that (ξ;F (x, y)) ∈ Z̃. Now for condition (i) we have
(

exp

(
log ξ

2πi

)
N

)
F (x, y) = span{f1(ζ;x, y), f2(ζ;x, y)}

where

(∗)
{
f1(ζ;x, y) = ζe1 + xe2 + ye3 +

(
ζ2+x2+y2

2

)
e4 + e5

f2(ζ;x, y) = f2(x, y) = e2 + ie3 + (x+ iy)e4.

We have seen earlier that the matrix Q(fi(ζ;x, y), fj(ζ, x, y)) is negative definite unless
(

Im

(
log ξ

2πi

))2

+ (Imx)2 + (Im y)2 = 0.

If |ξ| 6= 1, this is satisfied for all x, y, which then gives an embedding

∆∗ × C2 ↪→ Z̃.

From (∗) we may think of an expansion of the periods as a quadratic polynomial in log ξ
2πi

with holomorphic coefficients.63

When ξ = 0 in case (ii), any x, y ∈ C2 give a nilpotent orbit. Thus the “boundary”

of Z = Z̃/C is given by

ξ = 0, {(x, y) ∈ C2} .
It remains to factor

ΓN\Z̃/C
63In general, for degenerating PHS’s of weight n, if Nm+1 = 0 the periods are polynomials of degree

m in log ξ
2πi with holomorphic coefficients.
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by the normalizer in Γ of N in g. We have noted above that

ΓN =





γ =




1 0 0 0 a1

0 1 0 0 a2

0 0 1 0 a3

a1 a2 a3 1 a2/2

0 0 0 0 1



, ai ∈ Z





.

Then

γ · f1 =




a1

x+ a2

y + a3

(x+ a2)2 + (y + a3)2

1



, γ · f2 =




0

1

i

x+ iy + a2 + ia3 + a2/2

0



.

We need to now slide along the nilpotent orbit to make the first entry zero in γ · f1.

The new γ · f1 is now 


0

x+ a2

y + a3

(x+ a2)2 + (y + a3)2 + a2
1/2

1



.

We map Z→ C by (ξ;x, y)+x+iy. After quotienting by ΓN we get a copy of C/
(

1
2

)
Z+

iZ. The fibre is a copy of C/Z ∼= C∗. Thus, the boundary component is a C∗-bundle

over a CM elliptic curve.

Example 2. We will now use the analogous process to determine Zσ in case (II), b > 0.

Shifting notation to conform with [C3], we let β0 = ib be such that



1 0 β0

0 1 0

0 0 1


 ∈ Γ, Im β0 > 0

and β0 is chosen to have the smallest imaginary part with this property. Then

exp(isN) =




1 0 isβ0

0 1 0

0 0 1


 .
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Using the above notations we have for (p′, l′) = exp(isN) · (p, l)

p′ =



x+ isβ0z

y

z


 , l′ = (u, v,−isβ0u+ w).

The positivity conditions that express the condition (p′, l′) ∈ D are
{
|y|2 > 2 Re(xz̄ + isβ0|z|2)

|v|2 > 2 Re(wū− isβ0|u|2).

From the above positivity conditions we see that this is still the case in a neighborhood

of Eσ. Thus we may asssume it to hold in Z̃σ. We have seen above that when ξ = 0, in

order to have a nilpotent orbit, using β0 = ib with b ∈ R we must have

z 6= 0, v 6= 0 and u = 0.

The action of C is given by

λ(ξ; p, l) = (exp(2πiλ)ξ; p̃, l̃)

where

p̃ =



x− λβ0z

y

z


 , l̃ = (u, v, λβ0u+ w).

Next, following Carayol we consider a 2-dimensional subvariety Ũσ ⊂ Z̃σ with the

following properties:

(i) Ũσ is invariant under the C-action,

(ii) the quotient Ũσ/C will contain all of the boundary component.

For this we define Ũσ by {u = 0}. Taking then z = v = 1, as in the toy example a slice

of the fibration Ũσ → Uσ is obtained taking x = 0, which then gives from 〈l̃, p̃〉 = 0 that

w = −y.64 Thus in Uσ we have coordinates ξ, y where for (ξ; p, l) ∈ Uσ

p =




0

y

1


 , l = (0, 1,−y).

The boundary ∂Uσ; i.e. that part of Uσ not coming from D, is given by

∂Uσ
∼= {y : y ∈ C}.

64Referring to the previous footnote, the reason that we can choose a linear slice is that N2 = 0.
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It remains to factor by the action of Γσ. If

γ =




1 α β

0 1 α

0 0 1


 ∈ Γσ

where α, β ∈ OF and β + β = |α|2, then the action of γ on

p =




0

y

1


 , l = (u, 1,−y)

sending p, l to p′, l′ is given by

p′ =



αy + β

y + α

1


 , l′ = (0, 1− α− y).

This is equivalent to the action of λ = 1
β0

(αy + β), where β0 = Im β, to

(
exp

(
2πi

β0

(αy + β)

)
ξ; p′′, l′′

)

where

p′′ =




0

y + α

1


 , l′′ = (u, 1− αu, αyu+ βu+ uβ − α− y)

= (1− αu)

(
u

1− αu, 1,−α− y
)
.

Thus the action of Γσ on Z̃σ/C is

(ξ, y, u)→
(

exp

(
2πi

β0

(αy + β)

)
ξ, y + α,

u

1− αu

)
.

The boundary

∂Uσ = Γσ\{(0, y, 0)} ∼= C/OF = Eσ
65

is, as expected, a CM elliptic curve.

65The subtlety here is that Zσ will be 3-dimensional and more complicated to describe, presumably
due to its being a slit analytic variety. The 2-dimensional subspace Uσ ⊂ Zσ contains the element
boundary information for the calculations below.
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4. Expansion of Picard modular forms about a boundary component

and relation to automorphic cohomology

We will proceed in three steps.

Step one: Expansion of Picard modular forms. In the case of an Hermitian symmetric

domain, after suitably trivializing the canonical bundle automorphic forms are given by

holomorphic functions satisfying a functional equation for each γ ∈ Γ. For the usual

upper-half plane H and γ unipotent, this functional equation is trivial and one obtains

a function f(τ) on H invariant under (say) τ → τ + 1 which then leads to the Fourier

expansion of f(q) where q = exp(2πiτ). A similar story was done by Shimura for Picard

modular forms on Y = Γ\∆. In this case, a neighborhood of a cusp in Y is given by

{(x, y) ∈ C2 : 2 Re(x) > |y|2},
the cusp being (0, 0). For

γ =




1 α β

0 1 α

0 0 1


 , β + β = |α|2

as above and where α, β ∈ OF, a Picard modular form has an expansion66

f ′(x, y) =
∑

r∈N∗
g′r(y) exp

(
−2πir

β0

x

)

where β is an imaginary multiple of β0 and g′r(y) satisfies the functional equation

g′r(y + α) = g′r(y) exp

(
2πir

β0

(αy + β)

)
.

To line up with the above notation we write this as

g′r(y + α) = g′r(y)χ(α) exp

(
2πir

β0

(
αy +

|α|2
2

))

where χ(α) can be given explicitly. We interpret this as saying that g′r is a section of a

line bundle L′r → E ′ (and is thus a theta-function).

For ∆∗, which we recall denotes the ball in P2∗ of lines not meeting ∆, in terms of the

coordinates (1, v, w) in ∆∗ we have

f ′′(v, w) =
∑

r∈N∗
g′′r (v) exp

(−2πir

β0

w

)

66Here, the primes refer to D′; below there will be given similar expressions for D′′. We shall denote
by E′ the elliptic curve C/OF where z′ ∼ z′+α, and by E′′ the elliptic curve C/OF where z′′ ∼ z′′−α.
The latter is a boundary component of XΣ given by case (II), b < 0.



Appendix to Lecture 10 277

where

g′′r (v + α) = g′′r (v) exp

(
2πir

β0

(αv + β)

)

and g′′r ∈ H0(E ′′, L′′r). (The reason why we have g′′r (v + α) and not g′′r (v − α) comes out

of the explicit calculation in [C3]).

Remark: Geometrically, there is a smooth compactification

Y ⊂ Y

whose boundary components include the elliptic curves E ′, E ′′ (cf. Larson, Arithmetic

compactification of some Shimura surfaces, in Zeta functions of Picard modular surfaces,

edited by Langlands and Ramakrishnan (Publications CRM, 1992)). There is also the

Kato-Usui extension

Y ⊂ YΣ,

which in this case is a toroidal compactification. Several issues arise, which in the case

at hand would provide a more conceptual framework for [C3]:

(i) Is Y = YΣ (for a suitable choice of fan Σ)?

(ii) In general, there seems to not yet be any “functoriality” theory associated to the

Kato-Usui extensions. Now B is a Mumford-Tate domain for polarized abelian

varieties A of dimension 3 with extra structure in H1(A). It is a moduli space,

as is D′, points of which are given by flags in H1(A)’s satisfying certain Hodge-

theoretic conditions.67 Thus

Γ\D′ → Γ\∆

= =

X ′ → Y ′

is a map of Mumford-Tate domains, meaning that for each point of X ′ repre-

sented by an equivalence class of weight 3 PHS’s there is canonically associated

a weight 1 PHS giving a point of Y ′. Fans refer to the data (g,Γ), and one may

ask if there is a map

X ′Σ → Y ′Σ.

67The description if very much like that given for the Mumford-Tate domain U(2, 1)/T̃ above.
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(iii) Finally, in the [EGW] framework where we have

Γ\W

��������

��::::::

X X ′

��
Y ′

are there Kato-Usui extensions giving a picture

(∗′) (Γ\W)Σ

~~~~~~~~~

  @@@@@@@

XΣ X ′Σ

��
Y ′Σ

that would allow us to geometrically interpret the expansion of an automorphic

cohomology class, around the boundary components E ′ and E ′′ of XΣ in terms

of the expansion of Picard modular forms around the corresponding boundary

components of Y ′Σ, which as analytic varieties are the same elliptic curves E ′

and E ′′?

Step two: The EGW transform between H0(E ′, L′r) and H1(E ′′, L′′−r). We shall use the

coordinate z′ ∈ C to give E ′ = C/OF, and similarly z′′ ∈ C to give E ′′. These notations

are consistent with those from Lecture 2. We then define

W = OF\C× C

where C×C has coordinates (z′, z′′) and where α ∈ OF operates by α on the first factor

and by −α on the second. There is a diagram

W
π′

��						
π′′

��777777

E ′ E ′′.

Carayol proves that W is Stein and that the fibres of the two projections are Stein and

contractable. Thus the [EGW] theory applies to give isomorphisms
{

η′ : H0(E ′, L′r)
∼= H1(E ′′, L′′−r)

η′′ : H0(E ′′, L′′r)
∼= H1(E ′, L′−r).
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To describe η′, we let θ′ ∈ H0(E ′, L′r) be a theta-function as above and set

h(z′, z′′) = θ′(z′) exp

(
2πir

β0

z′z′′
)
dz′.

The functional equation

h(z′ + α, z′′ − α) = h(z′, z′′) exp

(
2πir

β0

(αz′′ + β)

)

gives a section over W of π
′′−1(L′′−r), and then

η′(θ′)(z′, z′′) = θ′(z′) exp

(
2πir

β0

z′z′′
)
dz′′

defines a relative differential for π′′ : W→ E ′′ with values in π
′′−1(L′′−r). This gives the

above map η′, and η′′ is defined similarly. By explicit theta function calculations, which

ultimately relate back to work of Siegel in 1963, Carayol proves:

The line bundles L′r → E ′ and L′′−r → E ′′ are defined over the maximal

abelian extension Fab of F, and the isomorphisms η′ and η′′ are then

defined over Fab.

A hint as to what is involved is the following: The line bundle L′r → E ′ has an

Hermitian metric relative to which the inner product of two sections θ′1, θ
′
2 is given by

(θ′1, θ
′
2) =

∫

E′
θ′1(z′)θ′2(z′) exp

(−2πir

β
|z′|2

)
dz′ ∧ dz′.

Then, using work of Siegel and Shimura, Carayol shows that, up to a multiplicative

construct c independent of θ′1 and θ′2,

If θ′1 and θ′2 are defined over Fab, then so is c(θ′1, θ
′
2).

The calculation of the integral is carried by expanding θ′ and θ′′ in Fourier series. Then by

orthogonality-type relations, only finitely many terms appear, which are then explicitly

evaluated and shown to lie in c−1Fab.

Step three: It remains to pull everything together. I will take poetic license and

interpret the calculations in [C3] in terms of the diagram (∗′) above, which has not

(yet?) been proved to exist geometrically but does exist “in coo rdinates” in Carayol’s

calculations.
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First, as is evident from its formulation, the [EGW] theory is functorial. Thus, al-

though we do not know that there are actual pictures

(∗′) (Γ\W)Σ

~~~~~~~~~

  @@@@@@@

XΣ X ′Σ

��
Y ′Σ

and

(∗∗) (Γ\W)Σ

~~~~~~~~~

  AAAAAAA

X ′Σ

��

X ′′Σ

��
Y ′Σ Y ′′∗Σ

⊃

Γ\W

��������

��::::::

E ′ E ′′

as just mentioned in [C3] they do exist computationally. By functoriality of the [EGW]

constructions, the Penrose-type transformations P′ and P′′ from lecture I may be used

to (here we drop the subscript Σ and the primes on the Y ’s)

(a) move automorphic cohomology in H1(X,Lλ) to H0(Y, L̃) and to H1(Y ∗, L̃∗);

(b) restrict everything to punctured neighborhoods of the boundary components E ′,

E ′′;

(c) expand classes in H∗(X ′, L′λ′), H
∗(X ′′, L′′λ′′) and H∗(Y, L̃), H∗(Y ∗, L̃∗) about E ′,

E ′′ as above;

(d) using the isomorphism P′, define a class α ∈ H1(E,Lλ) to be arithmetic if the

coefficients g′r(y) and g′′r (v) are arithmetic;

(e) using step two show that these conditions are compatible and conclude the result

stated in Section 1.

For the record, the final expression for a class in H1
e (X,Lλ), expressed as a holomorphic

relative differential on Γ\W, is
∑

r∈N∗
g′r(y) exp

(
2πir

β0

xw

)
θrdy

where

θ = exp

((
2πi

β

)
w

)
.
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[HMSW] H. Hecht, D. Miličıč, W. Schmid and J. Wolf, Localization and standard modules for real
semisimple Lie groups I: The duality theorem, Invent. Math. 90 (1987), 297–332.

[KU] K. Kato and S. Usui, Classifying Spaces of Degenerating Polarized Hodge Structure, Ann. of
Math. Studies 169, Princeton Univ. Press, Princeton, NJ, 2009.

[Ke] M. Kerr, Shimura varieties: a Hodge-theoretic perspective, preprint 2011, available at
http://www.math.wustl.edu/∼matkerr/.

[KP] M. Kerr and G. Pearlstein, Boundary components of Mumford-Tate domains, to appear.
[K1] A. Knapp, Lie Groups Beyond an Introduction, Progr. in Math. 140, Birkhäuser, Boston, 3rd
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simple Hodge structure, 48
simple root, 60, 185
SL2-orbit theorem, 251
special divisor on an algebraic curve, 198
standard representation, 22, 71
structure theorem for a global VHS, 50, 234
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Notations used in the talks

A∗ = the dual of a vector space A

Ap,q(X) = C∞(p, q) forms on a complex manifold X

Ar = ⊕
p+q=r

= polarized Hodge structure (PHS)

(A)R= real points in a complex vector space having a conjugation.

b = Borel subalgebra

B = unit ball in C2 ⊂ P2

Bc = P2\(closure of B)

B = unit ball with conjugate complex structure

B = Cartan-Killing form or Borel subgroup, depending on the context

dπ = relative differential

Dϕ = Mumford-Tate domain

� is the external tensor product

F p = Hodge filtration bundles

G = Q-algebraic group

GR, GC = corresponding real and complex Lie groups

gα, h, Xα etc. are standard notations from Lie theory listed in Lecture 2

Gϕ̃ = Mumford-Tate group of (V, ϕ̃)

Gϕ = Mumford-Tate group of (V,Q, ϕ)

GW = part of GC lying over W

Gr(n,E) = Grassmannian of n-planes in a complex vector space E

G(n,E) = Grassmannian of Pn−1’s in PE
GL(n,E) = Lagrangian Grassmannian of n-planes P in a vector space E

having a bilinear form Q and with Q(P, P ) = 0

GL(n,E) = Lagrangian Grassmannian of Lagrangian Pn−1’s in PE.

hp,q = Hodge numbers and fp =
∑

p/=p h
p′,q′

H∗DR

(
Γ(M,Ω•π(F )); dπ

)
= de Rham cohomology of global, relative F -valued

holomorphic forms

H = upper half plane

I = incidence space

κµ = Kostant class

n = direct sum of negative root spaces (except in the appendix to Lecture 6)

nc = direct sum of negative, compact root spaces

nnc = direct sum of negative, non-compact root spaces

OGW = global holomorphic functions on GW

OPn(k) = standard line bundle over projective space
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ωZ = canonical line bundle for a complex manifold Z

Ωµ = curvature form of Lµ → D

Ωπ = sheaf of relative differential forms

π∗F = pullback of a vector bundle

π−1F = pullback of a coherent analytic sheaf

Φ+
c ,Φ

+
nc are positive compact, respectively non-compact roots

Φ,Φ+ = roots, respectively positive roots

q(µ) = #{α ∈ Φ+
c : (µ, α) < 0}+ #{β ∈ Φ+

nc : (µ, β) > 0}
ρ = (1/2) (sum of positive roots)

ResC/R = restriction of scalars

s2 ∈ W is reflection in the α root plane

σµ = Schmid class

S = Q-algebraic group given by {
(
a b
−b a

)
: a, b ∈ Q and a2 + b2 = 1}

U(gC) = universal enveloping algebra

U = cycle space ⊂ Ǔ = GC/KC

V = vector spaced defined over Q
VR, VC = V ⊗Q R, V ⊗Q C
V p,q = Hodge (p, q) spaces

(V, ϕ̃) = general Hodge structure

Vp,q = Hodge bundles

W = Weyl group of (gC, h)

WK = Weyl group of (gR, t) = “compact” Weyl group

W = correspondence space included in its dual W̌

χζ = infinitesimal character

ZG(H) = centralizer in G of a subgroup H ⊂ G


