MATH 20043 CHAPTER 4 EXAMPLES & DEFINITIONS

Section 4.1 - Factors & Multiples

Definition of Divisibility: If a and b are any whole numbers, then a is said to <u>divide</u> b if and only if there exists a **whole number** c such that b = ac. In other words, a **divides**

b if and only if the quotient is a **whole number** — **no** remainder allowed!

NOTATION:

alb "a divides b"

For example: consider the fact $15 = 5 \cdot 3$

We can say:

5 divides 15

also,

5 is a divisor of 15

5 | 15

15 is divisible by 5

5 is a factor of 15 15 is a multiple of 5

DIVISIBILITY CRITERIA: A whole number x is divisible by:

2 if and only if the last digit of x is divisible by 2.

3 if and only if the sum of its digits is divisible by 3.

4 if and only if the last two digits of x are divisible by 4.

5 if and only if the last digit of x is 5 or 0.

6 if and only if x is divisible by both 2 and 3.

9 if and only if the sum of its digits is divisible by 9.

10 if and only if x ends in 0.

Ex. A) Use divisibility criteria to answer the following. John has 2,144 pieces of candy. Can he divide them evenly among:

(a) 2 people? (b) 3 people? (c) 4 people? (d) 5 people? (e) 6 people?

(f) 9 people? <u>Use divisibility criteria only!</u>

Definitions: A natural number greater than 1 is **prime** if and only if its only two distinct factors are 1 and itself. A natural number is **composite** if and only if it has a natural number divisor other than itself and 1.

NOTE: Since 1 has only one factor, it is considered neither prime nor composite.

Ex B) Determine whether 157 is prime.

Pi	ractice	Problen	ns Over	Section 4	.1

		•	Years that end lowing are leap		ust be divisible	by 400 in orde
	(a) 1000	(b) 1492	(c) 1984	(d) 1800	(e) 1776	(f) 2006
2. Fill i	in each blank (a) 1 is a (b) 3 is a	of e	very natural nu	mber.		
	(c) 25 is a	of !	5			

Section 4.2 - Prime Factorization

Prime Factorization is the expression of a composite number as a product of all of its prime divisors. Two common methods for prime factorization are (1) the **prime-divisor method** (flowchart algorithm – see next page) and (2) the **factor-tree method**.

Ex. C) Work through the prime factorization flowchart algorithm to determine the prime factorization of 60. Then use the factor-tree method. What is an advantage and a disadvantage of each method?

Ex. D) Use a factor tree to find the prime factorization of 350.

Ex. E) Write the prime factorization of 1,386.

FUNDAMENTAL THEOREM OF ARITHMETIC:

Every composite natural number can be factored into a **unique** product of primes.

Practice Problems Over Section 4.2

1.	Sketch	a factor	tree to	find	the	prime	factors	of
		90		320			495	

Prime factorization flow chart:

start dividing by 2, if possible, for however many times possible, then by 3, then 5, etc.

